功能磁共振检测肝癌介入治疗后代谢改变的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分兔VX2肝癌模型功能磁共振成像的实验研究
     目的建立稳定的兔VX2肝癌模型,探讨磁共振扩散、灌注及波谱对该模型进行成像的技术可行性。方法选用16只新西兰大白兔,将VX2瘤组织碎块种植于肝包膜下,建立移植性肝癌模型。2周后将接种成功的VX2兔行常规MRI(包括T1WI、T2WI)、多个b值的扩散加权成像(DWI)、灌注成像(PWI)和磁共振波谱(MRS),将所有原始图像传输至工作站进行后处理:①设定b值后重建扩散加权图像并生成ADC图;②绘制相对肝血容量图(rHBV),选取ROI,获得信号强度—时间曲线;③用Function tool 2处理自动获取谱线后,根据基线及代谢峰情况进行质量评分。MRI扫描完毕后行DSA检查,并取肿瘤标本做病理学检查,包括常规H-E染色和免疫组化分析,使用的抗体有抗CD31、抗VEGF、抗p53抗体。结果①肝脏种植成功率93.8%(15/16),共种植18个病灶,大部分为单发结节(12/15,80%)。②所有肿瘤在DWI上均成功检出,呈高信号,ADC图上呈低信号,b值升高时,DWI图像质量下降;肿瘤在rHBV伪彩图上呈红色,以周边区明显,灌注曲线满意;波谱采集技术成功率为100%,谱线质量为:1分2个,2分3个,3分9个,4分4个。③DSA显示肿瘤由肝左动脉供血,血供丰富。④肿瘤在肝内形成浸润性癌巢,CD31表达于兔肝VX2瘤血管内皮细胞,VEGF和p53分别在肿瘤细胞的胞浆和胞核中染色。结论兔VX2肝癌模型血供丰富,接种成功率高,DSA操作方便,行磁共振功能扩散、灌注和波谱成像成功率高,技术上可行。
     第二部分应用扩散加权成像早期评价肝癌TACE疗效的研究
     目的评价磁共振扩散成像在兔VX2肝癌动脉化疗栓塞(TACE)后疗效监测中的作用,并探讨兼顾ADC测量准确性及图像对比噪声比(contrast-tonoiseratio,CNR)的最佳b值。方法选用12只新西兰大白兔,将VX2瘤组织碎块种植于肝包膜下,建立移植性肝癌模型。2周后将接种成功的VX2兔行常规MRI(包括T1WI、T2WI)和多b值扩散加权成像(b=0,200,400,600,1000,2000 s/mm~2)。MRI检查后用超液化碘油与阿霉素制成乳化栓塞剂行TACE治疗。治疗后3天行MRI复查,方法同前。扫描完成后将所有原始图像传输至工作站,设定b值后重建扩散加权图像并生成ADC图。由同一名放射科医生在DWI图像上肿瘤区、正常肝实质及背景分别放置感兴趣区(region of interest,ROI),然后将每个ROI复制到相应的ADC图上。在一系列不同b值的DWI和ADC图上计算每个ROI的信号强度(signal intensity,SI)和ADC值,共测量三次,取平均值,并在所有DWI图像上测量每个肿瘤的CNR。检查完毕后将所有动物处死取肝脏做病理,测量肿瘤坏死范围,以百分数表示,并研究ADC值与肿瘤坏死百分数之间的相关性。使用单因素方差分析(One-way ANOVA)分别对治疗前、后不同b值条件下测得的ADC值、CNR作比较;使用配对t检验对治疗前、后的所有肿瘤ADC值和CNR进行比较;使用Pearson相关分析研究ADC值与肿瘤坏死百分数的关系。结果当b值升高时,DWI图像质量随之下降。同一病灶不同b值所测得的ADC值之间有显著性差异(P<0.001),当b=600,1000,2000 s/mm~2时,治疗前后的ADC值具有显著性差异(P<0.05)。同一病灶不同b值条件下的CNR之间有显著性差异(P=0.000),当b=600,1000 s/mm~2时,治疗前、后图像的CNR具有显著性差异(P<0.05)。TACE治疗后,肿瘤平均坏死率为(89.1±10.6)%,除了b为200时,其它b值均显示ADC值与肿瘤坏死率正相关,尤其当b为1000或2000时,相关性更高(P<0.01)。结论通过测量ADC值可以早期监测肝癌TACE的疗效;若要兼顾图像的CNR和肿瘤ADC值测量的准确性,则建议b值取1000 s/mm~2。
     第三部分磁共振灌注成像评价兔VX2肝癌TACE疗效的研究
     目的通过研究兔VX2肝癌TACE治疗后的磁共振灌注(PWI)参数变化,并与微血管密度(MVD)和血管内皮生长因子(VEGF)相对照,探讨PWI在监测肝癌TACE疗效中的价值。方法选用24只新西兰大白兔,将VX2瘤组织碎块种植于肝包膜下,建立移植性肝癌模型。2周后将接种成功的VX2兔行常规MRI(包括T1WI、T2WI)和PWI检查。将24只兔平均分为A、B两组,A组动物MRI检查后用超液化碘油与阿霉素制成乳化栓塞剂行TACE治疗,B组不治疗。治疗后3天A、B两组均行MRI复查,扫描序列及参数同前。扫描完成后将所有原始图像传输至工作站,绘制相对肝血容量图(rHBV),选取ROI,获得信号强度—时间曲线,测量以下指标:达峰时间(TTP),最大信号下降率(SRR_(max))和最大信号下降斜率(SS)。检查完毕后将所有动物处死取肝脏做免疫组化染色,计算MVD和VEGF染色强度。使用配对t检验比较治疗组和对照组肿瘤的各个灌注参数以及VEGF、MVD有无差别;用Pearson相关分析研究灌注参数与VEGF、MVD有无相关性。结果肿瘤周边高灌注区在rHBV伪彩图上呈红黄色,设ROI获得信号强度—时间曲线,肿瘤高灌注区的曲线呈陡直倒置的峰。A组肿瘤治疗后中央低灌注区范围较治疗前增大,部分肿瘤中央低灌注区的灌注曲线呈不规则的锯齿。治疗组的SRR_(max)、SS较对照组显著下降(P<0.05);TTP较对照组延长,但无显著性差异(P>0.05)。治疗组肿瘤的MVD较对照组显著下降;VEGF较对照组表达增高,但无统计学差异。SRR_(max)、SS与对照组及治疗组的MVD均呈正相关,r分别为0.620、0.532,0.731、0.698(P<0.05),VEGF与各灌注参数之间均无相关性。结论SRR_(max)、SS与MVD密切相关,通过PWI检查可评价肿瘤TACE后的血流灌注变化。
     第四部分应用氢质子波谱早期评价兔VX2肝癌TACE疗效的研究
     目的探讨~1H-MRS作为定量分析方法早期评价肝癌TACE疗效的可行性。方法选用16只新西兰大白兔,将VX2瘤组织碎块种植于肝包膜下,建立移植性肝癌模型。2周后将接种成功的VX2兔行常规MRI(包括T1WI、T2WI)和~1H-MRS。MRI检查后用超液化碘油与阿霉素制成乳化栓塞剂行TACE治疗。治疗后3天行MRI复查,扫描序列及参数同前。扫描完成后将所有原始图像传输至工作站,根据基线及代谢峰情况进行质量评分,3分或4分的合格波谱通过SAGE软件进行定量分析,计算Cho与Lip峰高及峰下面积的比值。检查完毕后将所有动物处死取肝脏做病理,观察肿瘤坏死情况。对肿瘤治疗前、后的胆碱与脂质峰峰高和峰下面积比值使用配对t检验进行比较。结果治疗前采集到谱线15个,技术成功率为15/16(93.8%),合格谱线13个;治疗后采集到谱线13个,技术成功率为13/16(81.3%),合格谱线10个;治疗前后均获得可分析波谱的肿瘤有10例。治疗后Cho与Lip峰高及峰下面积的比值均较治疗前显著下降(P值分别为0.031和0.023,均<0.05)。10例治疗前后均获得可分析谱线的肿瘤平均坏死率为(82.5±12.4)%。结论~1H-MRS通过相对定量检测Cho/Lip的变化,能早期评价VX2肝肿瘤对TACE治疗的反应,但~1H-MRS检查的技术成功率和稳定性还有待提高。
PartⅠStudy of functional MR imaging in a rabbit model bearing VX2 liver tumor
     Objective To develope a rabbit model of liver tumor and investigate the feasibility of diffusion MR(DWI),perfusion(PWI) and magnetic resonance spectroscopy(MRS) in this animal model.Methods Sixteen adult male New Zealand White rabbits were selected as carrier rabbits,the VX2 tumor cells were implanted into the left lobe of the liver,and thus developed the implanted model of hepatic carcinoma.Two weeks later,15 rabbits bearing VX2 tumors successfully underwent conventional MRI(including T2WI and T1WI),DWI,PWI and MRS examination. All the raw data were transferred to the post processing workstation for further analysis.DSA and pathological examination were performed subsequently, immunohistochemical staining of CD31、VEGF and p53 were also performed. Results①Fifteen rabbits(93.8%) were implanted successfully,18 tumors were detected on MRI,most of them were solitary(12/15,80%).②All tumors were detected on DWI,manifested as a hyper-intense lesion,whereas hypo-intense on ADC map.Quality of DWI degraded as the b value increasing.The tumor was red on rHBV map,the perfusion curves were satisfactory.MRS was successfully conducted in all tumors,the quality of MRS was:2 spectra scored 1;3 scored 2;9 scored 3;4 scored 4.③DSA showed the tumor was hypervascular,and the left hepatic artery exclusively supplies blood flow to the tumor.④CD31 expression was detected in the vascular endothelial cells,VEGF and p53 expression was revealed in the tumor cells. Conclusion The rabbit model bearing VX2 liver carcinoma is hypervascular and can be easily developed.It's technically feasible to perform the diffusion-,perfusion-weighted MR and MRS study in the rabbit liver tumor.
     PartⅡMonitoring hepatic tumor response to TACE in rabbits by diffusion-weighted magnetic resonance imaging
     Objective To evaluate diffusion-weighted MR in assessing tumor response to transarterial chemoembolization(TACE) in a rabbit model,and to explore the diffusion gradient b-factor that optimizes both the measurement of apparent diffusion coefficient(ADC) and contrast-to-noise(CNR).Methods VX2 carcinoma cells were implanted in the livers of 12 healthy New Zealand white rabbits.All 12 rabbits beating VX2 tumors were treated with TACE.Conventional and diffusion-weighted MRI with various b values(0,200,400,600,1000,2000s/mm~2) was performed using the same protocol before and 3 d after being treated with TACE. ADC values and contrast-to-noise ratio(CNR) of each tumor pre- and post-treatment with different b factors were compared.Percentage of necrotic area in each rabbit at histological specimen was calculated.The ADCs and CNRs of the same tumor on different b values were analyzed by ANOVA;the ADCs and CNRs between pre- and post-treatment were compared by Paired-sample T Test;and the correlation between ADC values and extent of necrosis was analyzed by a Pearson's correlation test. Results The quality of diffusion-weighted images diminished as the b value increased. ADCs and CNRs of the same lesion measured on different b-value DWI were significantly different(P<0.05);ADC values between pre- and post-treatment were significantly different when b=600,1000,2000s/mm~2(P<0.05);CNRs between preand post-treatment were significantly different when b= 600,1000 s/mm~2(P<0.05).The mean percentage of necrotic cells present within the tumor was(89.1±10.6)%.A significant positive correlation was found between ADC values and the extent of necrosis with all b values except for b200,a higher relative coefficient between ADC values and percentage of necrosis was found on DWI with b1000 and b2000(P<0.01).Conclusion DWI can early evaluate the tumor necrosis after TACE by measuring ADC values.Taking into account both CNR and ADC measurement,b value of 1000s/mm~2 is recommended.
     PartⅢMonitoring hepatic tumor response to TACE in rabbits by perfusion-weighted magnetic resonance imaging
     Objective To evaluate the value of perfusion-weighted MR on assessing tumor response to TACE in a rabbit model by measurement of PWI parameters,with comparison of MVD and VEGF expression in the tumor.Methods VX2 carcinoma cells were implanted in the livers of 24 healthy New Zealand white rabbits.Conventional and perfusion-weighted MRI was performed 2 weeks later.All 24 rabbits bearing VX2 tumors in the livers were divided randomly into two groups: group A underwent TACE treatment,while group B untreated.Three days after treatment,both groups performed MRI study using the same protocol as before,rHBV map was developed on the post processing workstation,ROI was placed on the tumor and the signal intensity-time curve was obtained.The following parameters were measured:time to peak(TTP),the maximal signal reduction ratio(SRR_(max)) and steepest slope(SS).The tumors were dissected and sliced,and MVD and the staining intensity of VEGF were evaluated.The perfusion parameters and VEGF,MVD between pre- and post-treatment were compared by Paired-sample T Test;and the correlation between perfusion parameters and VEGF,MVD was analyzed by a Pearson correlation test.Results The peripheral area of the tumor was hyperperfusioned, which was red on rHBV map.SRR_(max)、SS of the tumors in TACE group were significantly lower than those of control group(P<0.05);TTP was prolonged without significant difference(P>0.05).MVD of the tumors in TACE group were significantly lower than those of control group;while VEGF was higher without significant difference.There was a positive correlation between SRR_(max)、SS and MVD both in group A and B,and there was no correlation between VEGF and all perfusion parameters.Conclusion SRR_(max)、SS are closely correlated with MVD,PWI can evaluate the change of the tumor perfusion after TACE treatment.
     PartⅣEarly assessing hepatic tumor response to TACE in rabbits by ~1H magnetic resonance spectroscopy
     Objective To evaluate the feasibility of ~1H-MRS on quantitative assessment of tumor response to TACE.Methods VX2 carcinoma cells were implanted in the livers of 16 healthy New Zealand white rabbits.All 16 rabbits bearing VX2 tumors were treated with TACE.Conventional MRI and ~1H-MRS was performed using the same protocol before and 3 d after being treated with TACE.Raw data were transferred to the post processing workstation,and the quality of the MRS was scored.The spectra scored 3 or 4 were analyzed quantitatively by SAGE,and Cho/Lip ratios were calculated.Percentage of necrotic area in each rabbit at histological specimen was evaluated.The Cho/Lip ratios between pre- and post-treatment were compared by Paired-sample T Test.Results ~1H-MRS was performed successfully in 15 tumors pre-treatment whereas 13 tumors post-treatment. Ten of all the MR spectroscopic data could be analyzed further.The Cho/Lip ratios decreased significantly post-treatment by comparison with those of pre-treatment(P<0.05).The mean percentage of necrotic cells present within the tumor was(82.5±12.4)%.Conclusion ~1HMRS has the potential of evaluation of early metabolite change in hepatic tumor by measuring the change of Cho/Lip,but its reproducibility and stability need to be improved.
引文
1.徐静.肝癌动物模型的建立[J].实用肝脏病杂志,2005,8(2):116—118.
    2.Zhao JG,Feng GS,Kong XQ,et al.Changes of tumor microcirculation after transcatheter arterial chemoembolization:First pass perfusion MR imaging and Chinese ink casting in a rabbit model[J].World J Gastroenterol,2004,10:1415-1420.
    3.Kusayk BS,Boitnott JK,Choti MA,et al.Local tumor recurrence following hepatic cryoablation:radiologic-histopathologic correlation in a rabbit model[J].Radiology,2000,217:477-486.
    4.Moroz P,Jones SK,Winter J,et al.Targeting liver tumors with hyperthermia:ferromagnetic embolization in a rabbit liver tumor model[J].J Surg Oncol,2001,78:22-31.
    5.Ramsey DE,Kemagis LY,Soulen MC,et al.Chemoembolization of hepatocellular carcinoma.J Vasc Interv Radiol,2002,13:S211-S221.
    6.Ha WS,Kim CK,Song SH,et al.Study on mechanism of multi-step hepatotumorigenesis in rat:development of hepatotumorigenesis[J].J Vet Sci,2001,2(1):53-58.
    7.Swistel AL,Bading JR,Raaf JH,et al.Intraarterial versus intravenous adriamycin in the rabbit VX-2 tumor system[J].Cancer,1984,53:1397 -1404.
    8.Eda I,Soga H,Ueoka M,et al.The suppression of postoperative liver metastasis caused by the continuous intraportal infusion of angiogenesis inhibitor FR-118487 in a rabbit colon cancer model[J].Surg Today,1998,28:273 - 278.
    9.邵国良,周康荣,王建华等.介入治疗实验研究中兔VX2肝癌模型制作的改进和CT评价[J].临床放射学杂志,2000,19(10):120-123.
    10.Folkman J.Role of angiogenesis in tumor growth and metastasis.Semin Oncol,2002,29:15-18.
    11.Hasan J,Byers R,Jayson GC.Intratumoural microvessel density in human solid tumours.Br J Cancer,2002,86:1566.
    12.Kwak BK,Shim HJ,Park ES,et al.Hepatocellular carcinoma:correlation between vascular endothelial growth factor level and degree of enhancement by multiphase contrast-enhanced computed tomography.Invest Radiol,2001,36:487.
    13.Paiva C,Oshima CT,Lanzoni VP,et al.Apoptosis,PCNA and p53 in hepatocellular carcinoma.Hepatogastroenterology,2002,49:1058-1061.
    14.Taouli B,Vilgrain V,Dumont E,et al.Evaluation of liver diffusion isotropy and characterization of focal hepatic lesions with two single-shot echo-planar MR imaging sequences:prospective study in 66 patients.Radiology,2003,226:71-78.
    15.Moteki T,Horikoshi H,Oya N,et al.Evaluation of hepatic lesions and hepatic parenchyma using diffusion-weighted reordered turbo FLASH magnetic resonance images.J Magn Reson Imaging,2002,15:564-572.
    16.Brasch R,Turetschek K.MRI characterization of tumors and grading angiogenesis using macromolecular contrast media:status report.Eur J Radiol,2000,34:148-155.
    17.Szczepaniak LS,Nurenberg P,Leonard D,et al.Magnetic resonance spectroscopy to measure hepatic triglyceride content:prevalence of hepatic steatosis in the general population.Am J Physiol Endocrinol Metab,2005,288:E462-468.
    18.Ichikawa T,Arbab AS,Araki T,et al.Perfusion MR imaging with a superparamagnetic iron oxide using T2-weighted and susceptibility-sensitive echoplanar sequences:evaluation of tumor vascularity in hepatocellular carcinoma.AIR Am J Roentgenol,1999,173:207-213.
    19.Tsui EY,Chan JH,Cheung YK,et al.Evaluation of therapeutic effectiveness of transarterial chemoembolization for hepatocellular carcinoma:correlation of dynamic susceptibility contrast-enhanced echoplanar imaging and hepatic angiography.Clin Imaging,2000,24:210-216.
    20.Pandharipande PV,Krinsky GA,Rusinek H,et al.Perfusion imaging of the liver:current challenges and future goals.Radiology,2005,234:661-673.
    21.郭卫平,刘燕,王执民,等.兔肝VX2移植瘤改良模型的建立[J].中国医学影像技术,2002,18(5):397-399.
    22.Lin WY,Chen J,Lin Y,et al.Implantation of VX2 carcinoma into the liver of rabbit:A comparison of three direct injection methods[J].J Vet Med Sci,2002,64(7):649-652.
    23.Park KS,Choi BI,Won HJ,et al.Intratumoral vascularity of experimentally induced VX2 carcinoma:comparison of color Doppler sonography,power Doppler sonography,and microangiography.Invest Radiol,1998,33:39.
    24.曹玮,王执民,张洪新,等.兔VX2肝癌改良模型的建立及其DSA影像分析.第 四军医大学学报2001,6:619.
    25.Semela D,Dufour JF.Angiogenesis and hepatocellular carcinoma[J].J Hepatol,2004,41:864.
    1.Taouli B,Vilgrain V,Dumont E,et al.Evaluation of liver diffusion isotropy and characterization of focal hepatic lesions with two single-shot echo-planar MR imaging sequences:prospective study in 66 patients.Radiology,2003,226:71-78.
    2.Moteki T,Horikoshi H,Oya N,et al.Evaluation of hepatic lesions and hepatic parenchyma using diffusion-weighted reordered turbo FLASH magnetic resonance images.J Magn Reson Imaging,2002,15:564-572.
    3.Murtz P,Flacke S,Traber F,van den Brink JS,Gieseke J,Schild HH.Abdomen:diffusion-weighted MR imaging with pulse-triggered single-shot sequences.Radiology,2002,224:258-264.
    4.Le Bihan D.Differentiation of benign versus pathologic compression fractures with diffusion-weighted MR imaging:a closer step toward the 'holy grail' of tissue characterization? Radiology,1998,207:305-307.
    5.林贵,王建华,顾正明,等.肝动脉化疗栓塞术治疗中晚期肝癌[J].中华肿瘤杂志,1992,26(2):311—313.
    6.Okusaka T,Okada S,Ueno H,et al.Evaluation of therapeutic effect of transcatheter arterial embolization for hepatic carcinoma.Oncology,2000,58:203-299.
    7.Choi BI,Kim HC,Han JK,et al.Therapeutic effect of transcatheter oily chemoembolization therapy for encapsulated hepatocellular carcinoma:CT and pathologic findings.Radiology,1992,182:709-713.
    8.Pacella CM,Bizzarri G,Cecconi P,et al.Hepatocellular carcinoma:long-term results of combined treatment with laser thermal ablation and transcatheter arterial chemoembolization.Radiology,2001,219:669-678.
    9.Lyng H,Haraldseth O,Rofstad EK.Measurement of cell density and necrotic fraction in human melanoma xenografts by diffusion weighted magnetic resonance imaging.Magn Reson Med 2000;43:828-836.
    10.Lang P,Wendland MF,Saeed M,et al.Osteogenic sarcoma:noninvasive in vivo assessment of tumor necrosis with diffusion-weighted MR imaging.Radiology 1998;206:227-235.
    11.蒋朝霞,彭卫军,李文涛,等.表观扩散系数在肝癌动脉化疗栓塞后早期监测中的价值.肝脏,2006,12(6):399-402.
    12.Herneth AM,Guccione S,Bednarski M.Apparent diffusion coefficient:a quantitative parameter for in vivo tumor characterization.EJR 2003;45:208-213.
    13.Thoeny HC,De Keyzer F,Vandecaveye V,et al.Effect of vascular targeting agent in rat tumor model:dynamic contrast-enhanced versus diffusion-weighted MR imaging.Radiology,2005,237:492-499.
    14.Bammer R.Basic principles of diffusion-weighted imaging.Eur J Radiol,2003,45:169-184.
    15.Kim T,Murakami T,Takahashi S,et al.Diffusion-weighted single-shot echoplanar MR imaging for liver disease.Am J Roentgenol,1999,173:393-398.
    16.Yamada I,Aung W,Himeno Y,et al.Diffusion coefficients in abdominal organs and hepatic lesions:evaluation with intravoxel incoherent motion echo-planarMR imaging.Radiology,1999,210:617-623.
    17.Geschwind JF,Artemov D,Abraham S,et al.Chemoembolization of liver tumor in a rabbit model:assessment of tumor cell death with diffusion- weighted MRimaging and histologic analysis.J Vasc Interv Radiol,2000,11:1245-1255.
    18.Jiang Z,Peng W,Li W,et al.Effect of b value on monitoring therapeutic response by diffusion-weighted imaging.World Journal of Gastroenterology,2008,14(38):5893-5899.
    19.Le Bihan D,Breton E,Lallemand D,et al.Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging.Radiology,1988,168:497-505.
    20.Morvan D.In vivo measurement of diffusion and pseudo-diffusion in skeletal muscle at rest and after exercise.Magn Reson Imaging,1995,13:193-199.
    21.Wheeler-Kingshott CA,Thomas DL,Lythgoe MF,et al.Burst excitation for quantitative diffusion imaging with multiple b-values.Magn Reson Med 2000;44:737-745.
    22.Hayashida Y,Yakushiji T,Awai K,et al.Monitoring therapeutic responses of primary bone tumors by diffusion-weighted image:initial results.Eur Radiol 2006;16:2637-2643.
    23.Dzik-Jurasz A,Domenig C,George M,et al.Diffusion MRI for prediction of response of rectal cancer to chemoradiation.Lancet 2002;360:307-308.
    24.DeVries AF,Kremser C,Hein PA,et al.Tumor microcirculation and diffusion predict therapy outcome for primary rectal carcinoma.Int J Radiat Oncol Biol Phys 2003;56:958-965.
    25.Seierstad T,Folkvord S,Ree K,et al.Early changes in apparent diffusion coefficient predict the quantitative antitumoral activity of capecitabine, oxaliplatin,and irradiation in HT29 xenografts in athymic nude mice.Neoplasia 2007;9:392-400.
    26.Mardor Y,Pfeffer R,Spiegelmann R,et al.Early detection of response to radiation therapy in patients with brain malignancies using conventional and high b-value diffusion-weighted magnetic resonance imaging.J Clin Oncol 2003;21:1094-1110.
    27.Roth Y,Tichler T,Kostenich G,et al.High-b-value diffusion-weighted MR imaging for pretreatment prediction and early monitoring of tumor response to therapy in mice.Radiology 2004;232:685-692.
    28.Provenzale JM,Engelter ST,Petrella JR,et al.Use of MR exponential diffusion-weighted images to eradicate T2“shine-through”effect.AJR,1999,172:537-539.
    1.Ramsey DE,Kemagis LY,Soulen MC,et al.Chemoembolization of hepatocellular carcinoma.J Vase Interv Radiol,2002,13:S211-S221.
    2.王建华,邵国良,颜志平,等.经皮穿脾门静脉插管技术及其在肝癌介入治疗中的应用[J].临床放射学杂志,2001,20(5):385-387.
    3.Folkman J.Role of angiogenesis in tumor growth and metastasis.Semin Oncol,2002,29:15-18.
    4.Brasch R,Turetschek K.MRI characterization of tumors and grading angiogenesis using macromolecular contrast media:status report.Eur J Radiol,2000,34:148-155.
    5.Weidner N.Current pathologic methods formeasufing intratumoral microvessel density within breast carcinoma and other solid tumor[J].Breast Cancer Res Treat,1995,36(2):169 - 180.
    6.Follkman J.What is the evidence that tumors are angiogensis dependent?[J].J Natl Cancer Inst,1990,82(1):4 - 6.
    7.Cockeril GW,Gamble JR,Vadas MA.Angiogenesis:models and modulators[J].Int Rev Cytol,1995,159:113 - 160.
    8.Semela D,Dufour JF.Angiogenesis and hepatocellular carcinoma[J].J Hepatol,2004,41:864.
    9.Hanahan D,Folkman J.Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis.Cell,1996,86:353.
    10.Hasan J,Byers R,Jayson GC.Intratumoural microvessel density in human solid tumours.Br J Cancer,2002,86:1566.
    11.Tropres I,Lamalle L,Peoch M,et al.In vivo assessment of tumoral angiogenesis.Magn Reson in Medicine,2004,51:533-541.
    12.Kuhl CK,Bieling H,Gieseke J,et al.Breast neoplasms:T2~* susceptibilitycontrast,first-pass perfusion MR imaging.Radiology,1997,202(1 ):87-95.
    13.Kvistad KA,Lundgren S,Fjosne HE,et al.Differentiating benign and malignant breast lesions with T2~*-weighted first pass perfusion imaging.Acta Radiol,1999,40(1):45-51.
    14.Jackson A,Haroon H,Zhu XP,et al.Breath-hold perfusion and permeability mapping of hepatic malignancies using magnetic resonance imaging and a firstpass leakage profile model.NMR Biomed,2002,15(2):164-173.
    15.Ichikawa T,Haradome H,Hachiya J,et al.Characterization of hepatic lesions by perfusion-weighted MR imaging with an echo planar sequence.Am J Roentgenol,1998,170(4):1029-1034.
    16.Ichikawa T,Arbab AS,Araki T,et al.Perfusion MR imaging with a superparamagnetic iron oxide using T2-weighted and susceptibility-sensitive echo planar sequence:evaluation of tumor vascularity in hepatocellular carcinoma.Am J Roentgenol,1999,173(1):207-213.
    17.Ostergaard L.Principles of cerebral perfusion imaging by bolus tracking.Magn Reson Imaging,2005,22(6):710-717.
    18.Delorme S,Knopp MV.Non-invasive vascular imaging:assessing tumour vascularity.Eur Radiol,1998,(8):517-527.
    19.Paola Bossi,Giuseppe V,Arthur K.C.L,et al.Angigensis in colorectal tumors:microvessel quantitation in adenomas and carcinomas with clinicopathological co rrelations[J].Cancer Res,1995,55:5049-5053.
    20.Weidner N.Intratumor microvessel density as a prognostic factor in cancer [J].Am J Pathol,1995,147:9.
    21.Byrne KJ,Dalgleish AG,Browning MJ,et al.The relationship between an giogenesis and the immune response in carcinogenesis and the progression of malignant diseasel Eur J Cancer,2000,36(2):151-169.
    22.Su MY,Cheung YC,Fruehauf JP,et al.Correlation of dynamic contrast enhancement MRI parameters with microvessel density and VEGF for assessment of angiogenesis in breast cancer.J Magn Reson Imaging,2003,18(4):467-477.
    23.Pandharipande PV,Krinsky GA,Rusinek H,et al.Perfusion imaging of the liver:current challenges and future goals[J].Radiology,2005,234(3):661 - 673.
    24.王丽,翟仁友,蒋涛,等.乳腺疾病动态增强MRI半定量参数与微血管密度的相关性.中国医学影像技术,2007,23(3):388-392.
    25.Kwak BK,Shim HJ,Park ES,et al.Hepatocellular carcinoma:correlation between vascular endothelial growth factor level and degree of enhancement by multiphase contrast-enhanced computed tomography.Invest Radiol,2001,36:487.
    26.Kanematsu M,Osada S,Amaoka N,et al.Expression of vascular endothelial growth factor in hepatocellular carcinoma and the surrounding liver and correlation with MRI findings.AmJ Roentgenol,2005,184:832.
    27.邵国良,王建华,周康荣,等.肝癌化疗栓塞术后残癌组织微血管密度及血管内 皮细胞生长因子表达的研究[J].中华肝脏病杂志,2002,10(3):170-173.
    28.Eurvilaichit C,Chuapetcharasopon C.Hepatic arterial collaterals after transcatheter oily chemoembolization of hepatocellular carcinoma[J].J Med Assoc Thai,2001,84(1):75-84.
    29.王滨,徐辉,曹贵文,等.肝动脉化疗栓塞对肝癌肿瘤新生血管生成及血管内皮细胞生长因子表达的影响[J].中华放射学杂志,2005,39(2):204-206.
    30.Kim YB,Park YN,Park C,et al.Increased proliferation activities of vascular endothelial cells and tumor cells in residual hepatocellular carcinoma following transcatheter arterial embolization[J].Histopathology,2001,38(2):160-166.
    1.Henriksen O.MR Spectroscopy in clinical research.Acta Radiol,1994,35:96-116.
    2.Cousins JP.Clinical MR spectroscopy:fundamentals,current applications,and future potential.AJR,1995,164:1337-1347.
    3.Tarasow E,Sjergiejczyk L,Panasiuk A,et al.MR proton spectroscopy in liver examinations of healthy individuals in vivo.Med Sci Monit,2002 ,8(2):36-40.
    4.Ackerstafif E.Pflug BR,Nelson JB,et al.Detection of increased choline compounds with proton nuclear magnetic resonance spectroscopy subsequent to malignant transformation of human prostatic epithelial cells.Cancer Res,2001,61(9):3599-3603.
    5.Katz-Brull R,Rofsky NM,Lenkinski RE.Breathhold abdominal and thoracic proton MR spectroscopy at 3T.Magn Reson Med,2003,50 (3) :461-467.
    6.Kwock L ,Smith JK,Castillo M,et al .Clinical applications of proton MR spectroscopy in oncology.Technol Cancer Res Treat,2002,1(1):17-28.
    7.Swindle P,McCredie S,Russell P,et al.Pathologic characterization of human prostate tissue with proton MR spectroscopy[J].Radiology,2003,228(1):144-151.
    8.Ramsey DE,Kernagis LY,Soulen MC,et al.Chemoembolization of hepato- cellular carcinoma.J Vasc Interv Radiol,2002,13:S211-S221.
    9.Stanwell P,Gluch L,Clark D,et al.Specificity of choline metabolites for in vivo diagnosis of breast cancer using 1H MRS at 1.5 T.Eur Radiol,2005,15:1037-1043.
    10.Aboagye EO,Bhujwalla ZM .Malignant transformation alters membrane choline phospholipids metabolism of human mammary epithelial cells.Cancer Res,1999,59:80-84.
    11.Li CW,Kuo YC,Chen CY,et al.Quantification of choline compounds in human hepatic tumors by proton MR spectroscopy at 3 T.Magn Reson Med,2005,53(4):770-776.
    12.Marshall I,Bruce SD,Higinbotham J,et al.Choice of spectroscopic lineshape model affects metabolite peak areas and area ratios.Magn Reson Med,2000,44:651-657.
    13.Bakken IJ,Gribbestad IS,Singstad TE,et al.External standard method for the in vivo quantification of choline-containing compounds in breast tumors by proton MR spectroscopy at 1.5 Tesla.Magn Reson Med,2001,46:189-192.
    14.Bottomley PA (1987) Spatial localization in NMR spectroscopy in vivo.Ann NY Acad Sci 508:333-348.
    15.Gajewicz W,PapierzW,Szymczak W,et al.The use of proton MRS in the differential diagnosis of brain tumors and tumor-like processes.Med Sci Monit,2003,9:MT97.
    16.程流泉,蔡幼铨,高元桂,等.脑质子磁共振波谱检查PRESS与STEAM序列的对比.解放军医学杂志,2000,25:349.
    17.Hasse A,Frahm J,Hanicke W,Mattaei.1H NMR chemical shift selective (CHESS) imaging.Phys Med Biol,1985,30:431.
    18.Doddrell DM,Galloway G,BrooksW,Filed J,Bulsing J,Irving M,Baddeley H.Water signal elimination in vivo,using suppression by mistimed echo andrepetitive gradient episodes.J Magn Reson,1986,70:176-180.
    19.Barker PB.Quantification of proton MRS of the human brain using water as an internal concentration reference.NMR Biomed,1993 ,6 :89~94.
    20.Hennig J ,Pfister H ,Ernst T ,et al.Direct absolute quantification of metabolites in the human brain with in vivo localized proton spectroscopy.NMR Biomed ,1992 ,5:193-199.
    21.Kreis R ,Ernst T ,Ross BD.Development of the human brain:in vivo quantification of metabolite and water content with proton MRS.Magn Reson Med,1993 ,30 :424-437.
    22.Okusaka T,Okada S,Ueno H,et al.Evaluation of therapeutic effect of transcatheter arterial embolization for hepatic carcinoma.Oncology,2000,58:203-299.
    23.Choi BI,Kim HC,Han JK,et al.Therapeutic effect of transcatheter oily chemoembolization therapy for encapsulated hepatocellular carcinoma:CT and pathologic findings.Radiology,1992,182:709-713.
    24.Pacella CM,Bizzarri G,Cecconi P,et al.Hepatocellular carcinoma:long-term results of combined treatment with laser thermal ablation and transcatheterarterial chemoembolization.Radiology,2001,219:669-678.
    25.Podo F.Tumour phospholipid metabolism.NMR Biomed 1999;12:413-439.
    26.Negendank W.Studies of human tumors by MRS:a review.NMR Biomed 1992;5:303-324.
    27.Mackinnon WB,Barry PA,Malycha PL,et al.Fine-needle biopsy specimens of benign breast lesions distinguished from invasive cancer ex vivo with proton MR spectroscopy.Radiology,1997,204:661-666.
    1.Szczepaniak LS,Nurenberg P,Leonard D,et al.Magnetic resonance spectroscopy to measure hepatic triglyceride content:prevalence of hepatic steatosis in the general population.Am J Physiol Endocrinol Metab2005;288:E462-468
    2.Fluck CE,Slotboom J,Nuoffer JM,et al.Normal hepatic glycogen storage after fasting and feeding in children and adolescents with type 1 diabetes.Pediatr Diabetes 2003;4:70-76
    3.Roser W,Beckmann N,Wiesmann U,et al.Absolute quantification of the hepatic glycogen content in a patient with glycogen storage disease by 13C magnetic resonance spectroscopy.Magn Reson Imaging 1996;14:1217-1220
    4.Kanazawa Y,Umayahara K,Shimmura T,et al.19F NMR of 2-deoxy-2-fluoro-D-glucose for tumor diagnosis in mice.An NDP-bound hexose analog as a new NMR target for imaging.NMR Biomed 1997;10:35-41
    5.Corbin IR,Buist R,Volotovskyy V,et al.Regenerative activity and liver function following partial hepatectomy in the rat using (31)P-MR spectroscopy.Hepatology 2002;36:345-353
    6.Mann DV,Lam WW,Hjelm NM,et al.Human liver regeneration:hepatic energy economy is less efficient when the organ is diseased.Hepatology 2001;34:557-565
    7.Kooby DA,Zakian KL,Challa SN,et al.Use of phosphorous-31 nuclear magnetic resonance spectroscopy to determine safe timing of chemotherapy after hepatic resection.Cancer Res 2000;60:3800-3806
    8.Meyerhoff DJ,Karczmar GS,Valone F,et al.Hepatic cancers and their response to chemoembolization therapy.Quantitative image-guided 31P magnetic resonance spectroscopy.Invest Radiol 1992;27:456-464
    9.Kettelhack C,Wickede M,Vogl T,et al.31 Phosphorus-magnetic resonance spectroscopy to assess histologic tumor response noninvasively after isolated limb perfusion for soft tissue tumors.Cancer 2002;94:1557-1564
    10.Sterin M,Cohen JS,Mardor Y,et al.Levels of phospholipid metabolites in breast cancer cells treated with antimitotic drugs:a 3IP-magnetic resonance spectroscopy study.Cancer Res 2001 ;61:7536-7543
    11.Taniguchi K,Kaminaga T,Sakon M,et al.[The change of hepatic energy status after transcatheter arterial embolization (TAE) for hepatocellular carcinoma--a study using 31P-MRS].Gan To Kagaku Ryoho 1997;24:1632-1634
    12.Kuo YT,Li CW,Chen CY,et al.In vivo proton magnetic resonance spectroscopy of large focal hepatic lesions and metabolite change of hepatocellular carcinoma before and after transcatheter arterial chemoembolization using 3.0-T MR scanner.J Magn Reson Imaging 2004;19:598-604
    13.Port R,Hanisch F,Becker M,et al.Local disposition kinetics of floxuridine after intratumoral and subcutaneous injection as monitored by [19F]-nuclear magnetic resonance spectroscopy in vivo.Cancer Chemother Pharmacol 1999;44:65-73
    14.Okuno K,Hirai N,Lee YS,et al.Superiority of hepatic arterial infusion in preventing catabolism of 5-FU compared with portal vein infusion revealed by an in vivo 19F NMR study.Cancer Chemother Pharmacol 1998;42:341-344
    15.Presant CA,Wolf W,Waluch V,et al.Enhancement of fluorouracil uptake in human colorectal and gastric cancers by interferon or by high-dose methotrexate:An in vivo human study using noninvasive (19)F-magnetic resonance spectroscopy.J Clin Oncol 2000;18:255-261
    16.Ikehira H,Girard F,Obata T,et al.A preliminary study for clinical pharmacokinetics of oral fluorine anticancer medicines using the commercial MRI system 19F-MRS.Br J Radiol 1999;72:584-589
    17.van Laarhoven HW,Klomp DW,Kamm YJ,et al.In vivo monitoring of capecitabine metabolism in human liver by 19fluorine magnetic resonance spectroscopy at 1.5 and 3 Tesla field strength.Cancer Res 2003;63:7609-7612
    18.Dresselaers T,Theys J,Nuyts S,et al.Non-invasive 19F MR spectroscopy of 5-fluorocytosine to 5-fluorouracil conversion by recombinant Salmonella in tumours.Br J Cancer 2003;89:1796-1801
    19.Paczkowska A,Toczylowska B,Nyckowski P,et al.High-resolution 1H nuclear magnetic resonance spectroscopy analysis of bile samples obtained from a patient after orthotopic liver transplantation:new perspectives.Transplant Proc 2003;35:2278-2280
    20.Taouli B,Vilgrain V,Dumont E,et al.Evaluation of liver diffusion isotropy and characterization of focal hepatic lesions with two single-shot echo-planar MR imaging sequences:prospective study in 66 patients.Radiology 2003;226:71-78
    21.Bammer R.Basic principles of diffusion-weighted imaging.Eur J Radiol 2003;45:169-184
    22.Hunsche S,Moseley ME,Stoeter P,et al.Diffusion-tensor MR imaging at 1.5 and 3.0 T:initial observations.Radiology 2001;221:550-556
    23.Moteki T,Horikoshi H,Oya N,et al.Evaluation of hepatic lesions and hepatic parenchyma using diffusion-weighted reordered turboFLASH magnetic resonance images.J Magn Reson Imaging 2002;15:564-572
    24.Murtz P,Flacke S,Traber F,van den Brink JS,Gieseke J,Schild HH.Abdomen:diffusion-weighted MR imaging with pulse-triggered single-shot sequences.Radiology 2002;224:258-264
    25.Kim T,Murakami T,Takahashi S,et al.Diffusion-weighted single-shot echoplanar MR imaging for liver disease.AJR Am J Roentgenol 1999;173:393-398
    26.Yamada I,Aung W,Himeno Y,et al.Diffusion coefficients in abdominal organs and hepatic lesions:evaluation with intravoxel incoherent motion echo-planar MR imaging.Radiology 1999;210:617-623
    27.Roth Y,Tichler T,Kostenich G,et al.High-b-value diffusion-weighted MR imaging for pretreatment prediction and early monitoring of tumor response to therapy in mice.Radiology 2004;232:685-692
    28.Mardor Y,Pfeffer R,Spiegelmann R,et al.Early detection of response to radiation therapy in patients with brain malignancies using conventional and high b-value diffusion-weighted magnetic resonance imaging.J Clin Oncol2003;21:1094-1100
    29.Chiu FY,Jao JC,Chen CY,et al.Effect of intravenous gadolinium-DTPA on diffusion-weighted magnetic resonance images for evaluation of focal hepatic lesions.J Comput Assist Tomogr 2005;29:176-180
    30.Ichikawa T,Haradome H,Hachiya J,et al.Diffusion-weighted MR imaging with a single-shot echoplanar sequence:detection and characterization of focal hepatic lesions.AJR Am J Roentgenol 1998;170:397-402
    31.Herneth AM,Guccione S,Bednarski M.Apparent diffusion coefficient:a quantitative parameter for in vivo tumor characterization.Eur J Radiol 2003;45:208-213
    32.Chenevert TL,McKeever PE,Ross BD.Monitoring early response of experimental brain tumors to therapy using diffusion magnetic resonance imaging.Clin Cancer Res 1997;3:1457-1466
    33.Lyng H,Haraldseth O,Rofstad EK.Measurement of cell density and necrotic fraction in human melanoma xenografts by diffusion weighted magnetic resonance imaging.Magn Reson Med 2000;43:828-836
    34.Geschwind JF,Artemov D,Abraham S,et al.Chemoembolization of liver tumor in a rabbit model:assessment of tumor cell death with diffusion-weighted MR imaging and histologic analysis.J Vasc Interv Radiol 2000;11:1245-1255
    35.Kamel IR,Bluemke DA,Ramsey D,et al.Role of diffusion-weighted imaging in estimating tumor necrosis after chemoembolization of hepatocellular carcinoma.AJR Am J Roentgenol 2003;181:708-710
    36.Folkman J.Role of angiogenesis in tumor growth and metastasis.Semin Oncol 2002;29:15-18
    37.Brasch R,Turetschek K.MRI characterization of tumors and grading angiogenesis using macromolecular contrast media:status report.Eur J Radiol 2000;34:148-155
    38.Ichikawa T,Arbab AS,Araki T,et al.Perfusion MR imaging with a superparamagnetic iron oxide using T2-weighted and susceptibility-sensitive echoplanar sequences:evaluation of tumor vascularity in hepatocellular carcinoma.AJR Am J Roentgenol 1999;173:207-213
    39.Tsui EY,Chan JH,Cheung YK,et al.Evaluation of therapeutic effectiveness of transarterial chemoembolization for hepatocellular carcinoma:correlation of dynamic susceptibility contrast-enhanced echoplanar imaging and hepatic angiography.Clin Imaging 2000;24:210-216.
    40.Zhao JG,Feng GS,Kong XQ,et al.Assessment of hepatocellular carcinoma vascularity before and after transcatheter arterial chemoembolization by using first pass perfusion weighted MR imaging.World J Gastroenterol 2004;10:1152-1156.
    41.Pandharipande PV,Krinsky GA,Rusinek H,et al.Perfusion imaging of the liver:current challenges and future goals.Radiology 2005;234:661-673.
    42.Robinson SP,Rijken PF.J.W,Howe FA,et al.Tumor vascular architecture and function evaluated by non-invasive susceptibility MRI methods and immunohistochemistry.J Magn Reson Imaging 2003;17:445-454.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700