质量体附着航天器模型参数辨识及姿态跟踪耦合控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
航天器携带着质量特性未知的物体(称为质量体附着航天器)进行轨道机动和姿态稳定跟踪控制是未来高级空间任务经常遇到的问题。例如航天器将空间垃圾清理到废弃轨道或送入大气层、航天器从外天体采样返回等,均需要姿轨耦合控制操作。与传统任务的航天器不同,质量体附着航天器构型和质量特性参数变化较大、轨道动力学和姿态动力学强烈耦合、姿态控制系统的稳定跟踪控制面临巨大挑战。因此,对质量体附着航天器这类复杂非线性不确定系统的动力学和控制问题进行研究具有重要的理论意义和实际应用价值。本文以附着未知质量体的航天器变轨推进过程中的姿态跟踪稳定控制为背景,重点研究这一复杂系统的数学模型建立、质量特性参数辨识和姿态跟踪耦合控制等问题,主要包括以下几部分:
     研究质量体附着航天器的数学模型问题。任何系统的研究分析都是基于正确描述系统的数学模型开展的,建立质量体附着航天器的数学模型是本文研究工作的基础和关键所在。针对质量体附着航天器的特点,本文将其抽象为一个平台和附着在平台周围的子体组成的多体系统。针对航天器和子体为常质量或变质量、子体相对平台运动或锁定等情况,给出了质量体附着航天器的一般数学模型。分析了质量体附着航天器参数干扰和输入干扰的产生机理,此二种干扰对姿态的稳定跟踪会产生严重影响。
     针对参数干扰问题,采用辨识理论估计大范围变化的质量特性参数,以便在控制中进行补偿。质量体附着航天器的质量特性参数均未知,而这些参数的联合辨识目前尚未完全解决。通过对数学模型中待辨识参数和可选信号源的分析,选取摇摆发动机的摆动运动为信号源、角速度和加速度为观测量,在此基础上,提出了质量特性参数辨识方案。鉴于质量体附着航天器参数变化大,为确保算法收敛,基于敏感器测量数据,并考虑初始角动量可能不为零和数据存在噪声等情况提出一套质量特性参数初值解算方法。基于解算的参数初值,采用Levenberg-Marquardt算法对质量特性参数进行迭代估计。利用数值仿真手段分析影响辨识精度的因素如仪器误差、发动机摆动周期、发动机摆动幅值和发动机与航天器的质量比等,验证质量特性参数联合估计问题的解决方法。
     研究质量体附着航天器在变轨推进过程中的姿态跟踪耦合控制问题。针对参数干扰问题,通过构造拟欧拉角和拟欧拉角速度将参数确定后的质量体附着航天器动力学模型转换为摄动双积分系统,采用滑模变结构理论设计了控制律,分析了输入干扰以及辨识偏差情况下闭环姿态控制系统的稳定性。针对变轨过程中轨控发动机带来的强输入干扰问题,提出利用发动机摆动使得推力方向穿过航天器质心以消除推力干扰的策略,建立了发动机摆动指令与航天器质心位置之间的关系。为确保推力方向指向变轨要求方向,根据发动机相对平台的状态和制导方向,利用四元数理论建立了变轨过程中航天器的耦合控制指令姿态。数值仿真结果验证了文中提出的策略和控制系统能够克服参数变化带来的强干扰,解决质量体附着航天器的姿态跟踪耦合控制问题。
For future advanced space mission, it would be a general problem for spacevehicle which carries unknown characteristic body (can be called as Mass BodyAttached Spacecraft MBAS) to implement orbit maneuver and attitude tracking. Forexample, during the missions of cleaning space junk to derelict orbit or atmosphere,executing samples return; spacecraft vehicles all need orbit maneuver to implementmissions. Different from the traditional spacecraft, these attached masses willchange the spacecraft system characters on its configuration and parameters,resulting in strong couple between orbit and attitude dynamics, and bringingenormous challenges for the control system to stay stable. Hence, it’s of importanttheoretical significance and wide application prospects to implement research onthe dynamics and control of such complicated nonlinear uncertain system as MBAS.Based on background of the attitude tracking stability control during the orbitpropulsion of the MBAS, this dissertation focuses on the mathematical model, masscharacteristic parameters identification and attitude tracking coupled controlproblem. The major contents of this dissertation are consisted the following parts.
     Firstly, the mathematical model of the MBAS is studied. As is known, anyresearch and analysis to system should be stretched out under correct mathematicalmodel. Hence, to establish the mathematical model of the MBAS is the basis andkey to the science research. According to the characteristics of the MBAS, thispaper abstract it as a multi-body system which considered the spacecraft as theplatform and the attached mass bodys as daughter bodys around the platform. Thegeneral mathematical models of the MBAS are proposed, in case that the quality ofthe spacecraft is constant or variable, and the relative movement of the attachedmass bodys is motorial or locked and etc. The mechanism of two interference suchas parameter interference and input interference caused by the attached mass bodysare analyzed in this paper, which will impact the stability of the attitude trackingcontrol system.
     Secondly, for parameter interference problem, the identification theory isadopted to estimate the mass characteristic parameters for the compensation in thecontrol system. The mass characteristic parameters of the MBAS are all unknown,and the perfect approach to identify these parameters is still studied. Through theanalysis of the unknown parameters and the optional signal source in themathematic models, the swing motion of the swivel engine is choosed as the signal source, angular velocity and acceleration are considerd as observed quantity. Onthis basis, the scheme for mass characteristic parameters identification is proposed.Because of the large change in parameters of the MBAS, a set of initial valuecalculating method is proposed to make the results convergence, considering theinitial momentum maybe not zero and noise in measured data. With the calculatedinitial value, the Levenberg-Marquardt algorithm is used for estimation of the masscharacteristics parameters. Furthermore, the numerical simulation is used to analyzethe affected factors to the accuracy of estimation, such as instrument error, engineoscillation time, engine oscillation amplitude and engine mass ratio, etc; andvalidate the algorithms and theory to solve the union identification problem for themass characteristic parameters.
     Finally, the attitude tracking coupled control problem during the propulsion ofthe MBAS is studied. For the parameters interference, the quasi-Euler angles andquasi-Euler angular velocities are proposed to convert the dynamics system of theMBAS with identified parametes into a perturb double-integral system. The controllogic is designed by the slide variable structure control theory. The stability of theclosed loop control system is anyalyed with input interference and identificationerrors. For the input interference problem caused by the engine during the orbitpropulsion, a strategy is proposed by using the swing of engine to make the thrustpoint to the platform centroid to avoid thrust interference. The command angles ofthe engine during the swing motion are derived. To make the thrust point theguidance direction, the coupled control attitude is establied with the quaterniontheory; on account of the relative state between the swivel engine and platform andthe guidance direction. Numerical simulation has verified that the proposed strategyand control logic can overcome the strong coupling interference and solve attitudetracking coupling control problem of the MBAS during the orbit propulsion.
引文
[1] Sullivan B R, Akin D L. A survey of serviceable spacecraft failures[R]. Reston:AIAA,2001:-4540.
    [2] Tafazoli M. A study of on-orbit spacecraft failures[J]. Acta Astronautica,2009,64(2/3):195-205.
    [3]崔乃刚,王平,郭继峰等.空间在轨服务技术发展综述[J].宇航学报,2007,28(4):805-811.
    [4]张平,刘佑轩.适用于空间机器人遥操作系统数据通信的纠错编码[J].机器人,2007,29(6):528-533.
    [5]洪在地,贠超,陈力.柔性臂漂浮基空间机器人建模与轨迹跟踪控制[J].机器人,2007,29(1):92-96.
    [6] Hirzinger G, Landzettel K, Brunner B, et al. DLR’s robotics technologies foron-orbit servicing[J]. Advanced Robotics,2004,18(2):139-174
    [7]童雄辉,才满瑞,齐艳丽等.美俄空间攻防武器装备的发展趋势[J].导弹与航天运载技术,2004,273(6):49-56.
    [8] Childs D A. Movable mass attitude stabilization system for artificial spacestations[J]. Journal of Spacecraft and Rockets,1974,8(9):11-15.
    [9] Kunciw B, Kaplan M. Optimal space station detumbling by internal massmotion[J]. Automatica,1976,12(5):45-51.
    [10]Salimov G. Stability of rotating space station containing a moving element[R].Nauk: MIT,1975:52-56.
    [11]Lengyel A. Design of a small spacecraft to perform on-orbit servicing tasks[C].AIAA Space2001Conference and Exposition,2001:305-360.
    [12]Hibbard R L. Satellite on-orbit refueling: a cost effectiveness analysis[D].Monterey: Naval Postgraduate School,1996:55-70.
    [13]Smith S. Preliminary analysis of the benefits derived to US Air ForceSpacecraft from on-orbit refueling[C].6th Annual Workshop on SpaceOperations Applications and Research,1992:637-655.
    [14]Molgaard D A. Payload on-orbit refueling using the space transportationsystem(STS)[C]. Proceedings of SPIE-The International Society for OpticalEngineering,1984:132-139.
    [15]Christine H, Juergen S, Andreas F, et al. Explore: an experiment for on-orbitrefueling on a sounding rocket[C].62nd International Astronautical Congress2011,2011:9118-9127.
    [16]Christine H, Juergen S, Andreas F, et al. Explore: Technology and processdemonstration for orbital refueling on a sounding rocket[C]. Proceedings of the20th ESA Symposium on European Rocket and Balloon Programmes andRelated Research,2011:121-128.
    [17]Kauffman D. Analysis of bipropellant neutralization for spacecraft refuelingoperations[R]. NASA: Johson Space Center,1986:1-14.
    [18]张龙,段广仁,张永安.在轨加注航天器的姿态动力学模型[J].哈尔滨工业大学学报,2011,43(5):20-24.
    [19]欧阳琦,姚雯,陈小前.地球同步轨道卫星群在轨加注任务规划[J],宇航学报,2010,31(12):2629-2634.
    [20]Coene S, Spieksma F R, Dutta A, et al. On the computational complexity ofpeer to peer satellite refueling strategies[J]. Information Systems andOperational Research,2012,50(2):88-94.
    [21]Li J H, Tan J G, Chen X Q, et al. Simulation and analysis of propellant transfercontrol in on-orbit refueling[C].3rd International Symposium on Systems andControl in Aeronautics and Astronautics,2010:51-54.
    [22]金国光,刘又午,王树新等.带有空间伸展机构的复杂航天器柔性多体动力学分析[J].中国机械工程,2000,11(6):650-653.
    [23]白圣建,黄新生.快速机动大型挠性航天器的动力学建模[J].航空学报.2009,30(10):1985-1992.
    [24]刘云平.航天器多体系统姿态动力学与控制的研究[D].南京:南京航空航天大学,2009:17-28.
    [25]陈志煌,陈力.闭链双臂空间机器人动力学建模及变结构控制[J].力学季刊.2012,33(4):565-570.
    [26]胡庆雷,王永智,石忠.自由漂浮空间机器人力矩最优轨迹规划算法[J].哈尔滨工业大学学报.2011,43(11):20-24.
    [27]Agrawal S K, Pathak K, Franch J, et al. Design of a differentially flat open-chain space robot with arbitrarily oriented joints and two momentum wheels atthe base[C]. Proceedings2006IEEE International Conference on Robotics andAutomation,2006:3867-3872.
    [28]Abiko S, Hirzinger G. Computational efficient algorithms for operational spaceformulation of branching Armsona Space Robot[C]. IEEE/RSJ InternationalConference on Intelligent Robots and Systems,2008:3312-3317.
    [29]Hafezipour M, Saffari E, Zarafshan P, et al. Manipulation control of multi-bodyfree-floating space robot based on software combination[C].2013First RSI/ISMInternational Conference on Robotics and Mechatronics.2013:271-276.
    [30]Uyama N, Nakanishi H, Nagaoka K, et al. Impedance-based contact control ofa free-flying space robot with a compliant wrist for non-cooperative satellitecapture[C].2012IEEE/RSJ International Conference on Intelligent Robots andSystems,2012:4477-4482.
    [31]Yoshida K, Nakanishi H. Impedance matching in capturing a satellite by aspace robot[J]. Intelligent Robots and Systems,2003,3(1):3059-3064.
    [32]Fisher R A. On the mathematical foundation of theoretical statistcs[J].Philosophical Transactions of the Royal Society of London,1921,30(1):309-368.
    [33]Morelli E A. System identification programs of aircraft[C]. AIAA AtmosphericFilght Mechanics Conference,2002:56-63.
    [34]崔平远,杨涤,吴瑶华等.极大似然法及在有控飞行器气动参数辨识中的应用[J].航空学报,1991,12(11):644-649.
    [35]张旭,崔平远,杨涤等.有控飞行器气动参数辨识研究[J].飞行力学,1998,16(4):76-81.
    [36]章胜,程文科,王华等.利用整流罩抛离信息的火箭二级飞行参数辨识[J].导弹与航天运载技术,2010,1(4):6-9.
    [37]Casilla A R, Kruse W, Solbes A. Delivered flight performance of dual mode-liquid apogee egine[C].30th AIAA/ASME/SAE/ASE Joint PropulsionConference,1994:2742-2749.
    [38]林佳伟,王平.基于STLS的卫星质量质心在轨估计[J].中国空间科学技术,2010,4(2):76-82.
    [39]刘兴堂,万少松.一种估计飞行器运动特性的实用极大似然法[J].飞行力学,1999,17(1):65-70.
    [40]于雪梅,程伟,谷伟岩.极大似然法在飞机起飞性能参数辨识中的应用[J].飞行力学,2012,30(3):201-205.
    [41]Wald A. Note on the consistency of the maximum likelihood estimate.Ann.Math.Stat.1949,20(1):595-601.
    [42]Wiktor P J. On-orbit thruster calibration[J]. Journal of Guidance, Control andDynamics,1996,19(4):934-940.
    [43]李恒年,李济生,黄永宣.轨道机动过程中推力加速度的在线最小方差估计[J].空间科学学报,2002,22(4):357-362.
    [44]Roland H, Gabriel S. Identification for control: Optimal input intended toidentify a minimum variance controller[J]. Automatica,2007,43(5):758-767.
    [45]Howard R T, Carrington C K. Multi-sensor Testing for Automated Rendezvousand Docking[C]. NASA Marshall Space Flight Center,2008:55-62.
    [46]Dariusz H. Minimum variance adaptive control of a servo drive with unknownstructure and parameters[J]. Asian Journal of Control,2013,15(1):120-131.
    [47]黄琳.非线性滤波理论在航天器姿态确定中的应用[D].哈尔滨:哈尔滨工业大学,2007:76-89.
    [48]Kenji F, Akinori S, Shuichi F. System identification based on variational Bayesmethod and the invariance under coordinate[C]. Proceedings of the IEEEConference on Decision and Control,2011:3882-3888.
    [49]Ronald M. On multitarget jump-Markov filters[C].15th InternationalConference on Information Fusion,2012:149-156.
    [50]Kawahara Y, Yairi T, Machida K. Diagnosis method for spacecraft usingdynamic Bayesian networks[C]. Proc. of ‘The8th International Symposium onArtifical Intelligence, Robotics and Automation in Space–iSAIRAS’,2005:1-8.
    [51]Lee D J. Nonlinear bayesianfiltering with applications to estimationandnavigation[D]. Texas A&M University,2005:77-90.
    [52]Wang D D. Improving satellite leaf area index estimation based on variousintegration methods[D].University of Maryland, College Park,2009:85-93.
    [53]Jennifer M. Development and application of spaceflight performance shapingfactors for human reliability analysis[D].University of Colorado Boulder,2012:65-87.
    [54]Oliver J A, Kosmatka J B. Statistical damage identification by frequencyresponse function based residual force minimization[C]. Collection ofTechnical Papers-AIAA/ASME/ASCE/AHS/ASC Structures, StructuralDynamics and Materials Conference,2009:125-130.
    [55]于君彩.飞行数据处理与气动参数辨识[D].西安:西北工业大学,2007:72-94.
    [56]夏丹.空间机器人动力学参数辨识及其软件设计[D].哈尔滨:哈尔滨工业大学,2009:24-46.
    [57]李保丰.六自由度空间机器人的工作空间分析与参数辨识[D].北京:北京邮电大学,2011:45-59.
    [58]Luiz C G D. Inertia parameter experimental estimation of a satellitesimulator[J].Advances in the Astronautical Sciences.2008,130(1):969-979.
    [59]Xing Q, Zhang J, Qian M, Jia Z Y, et al. Design calibration and error analysisof a piezoelectric thrust dyna-mometer for small thrust liquid pulsed rocketengines[J]. Measurement,2011,44:338-344.
    [60]唐江河,付振宪,邓正隆.基于灵敏度分析的惯导平台参数分步辨识方法[J].宇航学报,2008,29(6):1845-1851.
    [61]Chowdhary G, Jategaonkar R. Aerodynamic parameter estimation from flightdata applying Extended and Unscented Kalman Filter[C]//AIAA AtmosphericFlight Mechanics Conference and Exhibit,2006:1-18.
    [62]张友民,戴冠中,张洪才.基于SVD的推广卡尔曼滤波及其在飞行状态和参数估计中的应用[J].控制理论与应用,1996,13(1):106-114.
    [63]朱向东,崔平远,吴瑶华.飞行器参数辨识的最优方波形输入信号设计[J].飞行力学,1993,11(2):57-63.
    [64]吴志刚,王天舒,王本利.动力学系统局部非线性参数辨识的动态规划法[J].振动工程学报,1998,11(3):298-304.
    [65]Ali N, Ella M A, llya V K. Conflict resolution and collaborative fault detectionusing stochastic dynamic programming[C]//IEEE Aerospace ConferenceProceedings,2012:115-121.
    [66]丁峰.系统辨识(3):辨识精度与辨识基本问题[J].南京信息工程大学学报(自然科学版),2011,3(3):193-226.
    [67]Papadopoulos G, Fallon M, Leonard J, et al. Cooperative localization of marinevehicles using nonlinear state estimation[C]. Proceedings of IEEE/RSJInternational Conference on Intelligent Robots and System,2010:4874-4879.
    [68]宁晓琳,房建成.航天器自主天文导航系统的可观测性及可观测度分析[J].北京航空航天大学学报,2005,31(6):673-677.
    [69]Reif K, Gunther S. Stochastic stability of the discrete-time extended Kalmanfilter[J]. Automatic Control, IEEE Transactions,1999,44(4):714-728.
    [70]房新鹏,严卫生,李俊兵.基于距离量测的主从式AUV协同定位系统观测性研究[J].西北工业大学学报,2012,30(4):547-552.
    [71]Gadre A, Stiwell D. Underwater navigation in the presence of unknowncurrents based on range measurements from a single beacon[C]//Proceedingsof2005American Control Conference,2005:656-661.
    [72]Zhou X, Roumeliotis S. Robot to robot relative pose estimation from rangemeasurements[J]. IEEE Transactions on Robotics,2008,24(6):1379-1393.
    [73]Antonelli G, Arrichiello F, Chiaverini S, et al. Observability analysis of relativelocalization for AUVs based on ranging and depth measurements[C].Proceedings of2010IEEE International Conference on Robotics andAutomation,2010:4874-4879.
    [74]孔星炜,郭美凤,董景新. MINS/GPS组合导航系统车载试验误差特性分析[J].中国惯性技术学报,2009,17(3):297-301.
    [75]Goshen-Meskin D, Bar-Itzhack I Y. Observability analysis of piece-wiseConstant system, part I: theory[J]. IEEE Transactions on Aerospace andElectronic Systems,1992,28(4):1056-1067.
    [76]王超,朱海,高大远,等.旋转捷联惯导系统的可观测性分析[J].大连海事大学学报,2010,36(4):23-26.
    [77]刘准,陈哲.条件数在系统可观性分析中的应用研究[J].系统仿真学报,2004,16(7):1552-1555.
    [78]严涛,王跃钢,杨波等. SINS/DR组合导航系统可观测性研究[J].现代防御技术,2012,40(3):83-87.
    [79]汪凤林,蔡体菁,王东霞.惯性/重力匹配组合导航系统可观测性研究[J].安徽大学学报(自然科学版),2008,32(6):27-31.
    [80]杨小霞,黄一.外场标定条件下捷联惯导系统误差状态可观测性分析[J].中国惯性技术学报,2008,16(6):657-664.
    [81]Ham F M, Brown T G. Observability eigenvalues, and Kalman filtering[J].IEEE Transactions on Aerospace and Electronic Systems,1983,19(2):269-272.
    [82]杨晓霞,阴玉梅.可观测度的探讨及其在捷联惯导系统可观测性分析中的应用[J].中国惯性技术学报,2012,20(4):405-409.
    [83]张庆,高延滨,张勤拓.机载战术武器传递对准可观性分析[J].华中科技大学学报(自然科学版),2010,38(11):68-71.
    [84]赵琳,李亮,孙明等.基于SVD的SINS多位置对准可观测性分析[J].中国惯性技术学报,2008,16(5):523-528.
    [85]马艳红,胡军.基于SVD理论的可观测度分析方法的几个反例[J].中国惯性技术学报,2008,16(4):448-453.
    [86]Poppen R F, Mathis D L.Integration of GPS with dead-reckoning and mapmatching for vehicular navigation[C]. Proceedings of the1993NationalTechnical Meeting of the Institute of Navigation,1993:21-24.
    [87]王新龙.惯导系统可观测性及最佳可观测子空间的定量研究[J].宇航学报,2006,27(3):345-348.
    [88]Wilson E, Lages C, Mah. On-line, gyro-based mass property identification forthruster controlled spacecraft using recursive least squres[C].Proceedings of the45thIEEE International Midwest Symposium on Circuits and Systems, Tulsa,Oklahoma, Aug,2002.
    [89]Wilson E, David W S, Robert W M. Motion-based mass and thruster propertyidentification for thruster controlled spacecraft[C]. AIAA2005-6907.
    [90]Tanygin S, Williams T. Mass property estimation using coasting maneuvers[J].Journal of Guidance, Control and Dynamics,1997,20(1):625-632.
    [91]Bergmann E, Dzielski J. Spacecraft mass property identification with torquegenerating control[J]. Journal of Guidance, Control, and Dynamics,1990,13(2):99-103.
    [92]Wilson E, Rock S M. Reconfigurable control of a free flying space robot usingneural networks[C].In Proceedings of the1995American Control Conference,1995:1355-1359.
    [93]Wilson E, Lages C R, Mah R W. Gyro-based maximum-likelihood thruster faultdetection and identification[C].In Proceedings of the2002American ControlConference,2002:4525-4530.
    [94]Berkovitz, D S. System characterization and online mass property identificationof the spheres formation flight testbed [D]. Cambridge: Massachusetts Instituteof Technology,2007:45-57.
    [95]Julie K T. Estimation of spacecraft inertia parameters[C]. AIAA,2008-6454.
    [96]Chaturvedi N A. Globally convergent adaptive tracking of angular velocity andinertia identification for a3DOF rigid body[J]. IEEE Transactions on ControlSystems Technology,2006,14(5):841-852.
    [97]Luquette R J. Nonlinear control design techniques for precision formationflying at Lagrange Points[D]. Maryland:University of Maryland,2006:78-93.
    [98]王书廷,曹喜滨.卫星质量特性的在线辨识算法研究[C].第25届中国控制会议,2006:7-11.
    [99]徐文福,何勇,王学谦,等.航天器质量特性参数的在轨辨识方法[J].宇航学报,2010,31(8):1906-1914.
    [100]王本利,廖鹤,韩毅.基于MME/EKF算法的卫星质心在轨标定[J].宇航学报,2010,31(9):2150-2156.
    [101]林伟佳,王平.基于STLS的卫星惯量矩阵在轨估计[J].中国空间科学技术,2010,(6):31-38.
    [102]林伟佳,王平.基于STLS的卫星质量质心在轨估计[J].中国空间科学技术,2010,(4):76-82.
    [103]刘伟霞,熊智,郁丰,等.组合航天器转动惯量在轨两步辨识标定[J].中国空间科学技术,2013,(2):32-40.
    [104] Jason A K, AcikmeseA B, Joel F S. Spacecraft inertia estimation viaconstrained least squares[C]. IEEE Aerospace Conference Proceedings.2006:78-53.
    [105]逄海萍.不确定时滞非线性系统的最优滑模控制[D].青岛:中国海洋大学,2007:1-16.
    [106] Black H S. Stabilized feedback amplifiers[P]. U. S. patent2,102,671,1934.
    [107] Bode H W. Network Analysis and Feedback Amplifier Design[J]. Princeton.NJ.1945(1):1-10.
    [108] Cruz J B, Perkins W R. A New Approach to the Sensitivity Problem inMultivariable Feedback System Design[J]. IEEE Transactions on AutomaticControl,1964,9(3):216-223.
    [109] Khargonekar P P, Doyle J C, Glover K. State-space Solutions to Standard andControl Problem [J]. IEEE Transactions on Automatic Control,1989,34(8):831-847.
    [110] Zames G. Feedback and optimal sensitivity: Model reference transformations,multiplicative seminorms, and approximate inverses[J]. IEEE Transactions onAutomatic Control,1981,26(2):301-320.
    [111]殷传军.一类不确定非线性系统的鲁棒自适应控制研究[D].南京:南京信息工程大学,2007:1-16.
    [112] Bernstein D S. OPUS: Optimal projection for uncertain systems[J]. Air ForceOffice of Scientific Research,1988,18(5):354-361.
    [113] Gadelha L C. Dynamics and robust control for uncertain flexible spacesystems[J]. Cranfield Institute of Technology,1992,261(6):707-712.
    [114] Chen W H. Robust control of uncertain flexible spacecraft using disturbanceobserver based control strategies[C]. Proceedings of the6th International ESAConference on Guidance, Navigation and Control Systems,2006:603-608.
    [115] Huang G S. Uang, Huey-Jian. Robust adaptive PID tracking control design foruncertain spacecraft systems: A fuzzy approach[C]. IEEE Transactions onAerospace and Electronic Systems,2006,42(4):1506-1514.
    [116] Chakrabortty A, Arcak M, Tsiotras P. Robust design of a spacecraft attitudetracking control system with actuator uncertainties[C]. Proceedings of the IEEEConference on Decision and Control,2008:1587-1592.
    [117]高为炳,程勉,吴东南,等.不确定动力学系统的控制问题[C].第三届全国控制与决策系统学术会议论文集,1991:1-12.
    [118]邹广瑞.空间技术中的控制理论与应用的现状及发展.航天控制[J].1994,(4):1-7.
    [119]陈晓华,林岩,孙秀霞等.变结构鲁棒自适应控制的在线实现[C].1997中国控制与决策学术年会论文集,1997:163-167.
    [120]秦靖.不确定线性奇异摄动系统鲁棒控制研究[D].杭州:浙江大学,2007:1-50.
    [121]周凤岐,韩艳铧,周军.空间飞行器姿态控制设计和鲁棒性分析[J].中国空间科学技术,2007,4(2):36-41.
    [122]张军,张新.高超声速飞行器的再入非线性鲁棒控制[C].第三十一届中国控制会议论文集C卷,2012:4344-4349.
    [123] Yang X B, Gao H J, Shi P. Robust orbital transfer for low earth orbitspacecraft with small thrust[J]. Journal of the Franklin Institute,2010,347(10):1863-1887.
    [124]赵长安,王子才.鲁棒控制系统[M].北京:宇航出版社.1990:1-5.
    [125] Yoon H A, Brij N. Adaptive control of uncertain Hamiltonian multi-inputmulti-output systems: With application to spacecraft control[C]. Proceedings ofthe2008American Control Conference,2008:2969-2974.
    [126] Singla P, Subbarao K, Junkins J L. Adaptive output feedback control forspacecraft rendezvous and docking under measurement uncertainty[J]. Journalof Guidance, Control, and Dynamics,2006,29(4):892-902.
    [127] Alonge F, Ippolito D F, Raimondi F M. Globally convergent adaptive androbust control of robotic manipulators for trajectory tracking[J]. ControlEngineering Practice,2004,12(9):1091-1100.
    [128] Queiroz M S, Kapila V, Yan Q G. Adaptive nonlinear control of multiplespacecraft formation flying[J]. Journal of Guidance, Control and Dynamics,2000,23(3):385-390.
    [129] Lima H C, Bang H. Adaptive control for satellite formation flying underthrust misalignment[J]. Acta Astronautica,2009,65(1-2):112-122.
    [130]苗双全,丛炳龙,刘向东.基于输入成形的挠性航天器自适应滑模控制[J].航空学报.2013,34(3):1-9.
    [131]杨永.不确定性非线性系统的自适应鲁棒控制及其应用[D].杭州:浙江大学.1997:58-67.
    [132]朱永红.非线性不确定系统鲁棒自适应控制研究[D].南京:南京航空航天大学.2003:12-60.
    [133]刘燕斌,陆宇平,何真.高超音速飞机鲁棒自适应控制的研究[J].宇航学报,2006,27(4):620-629.
    [134]陈力,刘延柱.空间机器人姿态与末端抓手协调运动的鲁棒自适应控制[J].工程力学.2002,19(2):165-170.
    [135]董晓光,曹喜滨,张锦绣,等.卫星编队飞行的鲁棒自适应控制方法[J].自动化学报,2012,38(9):1-10.
    [136] Jasim N F, Jasim I F. Robust adaptive control of spacecraft attitude systemswith unknown dead zones of unknown bounds. Journal of Systems and ControlEngineering,2012,226(7):947-955.
    [137] Hu, Q L. Robust adaptive backstepping attitude and vibration control with L2-gain performance for flexible spacecraft under angular velocity constraint[J].Journal of Sound and Vibration,2009,327(4):285-298.
    [138] Di Gennaro S. Adaptive robust stabilization of rigid spacecraft in presence ofdisturbances[C].Proceedings of the IEEE Conference on Decision and Control,1995:1147-1152.
    [139] Huang C S, Ruan R Y. Robust adaptive control of a class of uncertainnonlinear systems[J]. Acta Automatica Sinica,2001,27(1):82-88.
    [140] Stepanyan V, Kurdila A. Adaptive control of uncertain systems using functionapproximations and adaptive bounding[C].Mediterranean Conference onControl and Automation,2007:1-6.
    [141] Hale A L, Lisowski R J, Dahl W E. Optimal simultaneous structural andcontrol design of maneuvering flexible spacecraft[J]. Journal of Guidance,Control and Dynamics,1985,8(1):86-93.
    [142] Lorell K R, Lange B O. An automatic mass-trim system for spinningspacecraft[J]. AIAA Journal,1972,10(8):1012-1015.
    [143] Kim J J, Agrawal B N. Automatic mass balancing of air-bearing-based three-axis rotational spacecraft simulator[J]. Journal of Guidance, Control, andDynamics.2009,32(3):1005-1017.
    [144] Wilson E, Mah R W, Guerrero M C, et al. Imbalance identification andcompensation for an airborne telescope[C].Proceedings of the1998AmericanControl Conference,1998:856-860.
    [145] Small D, Zajac F. A linearized analysis and design of an autoumatic balancingsystem for the three axis air bearing table[R]. NASA TM-X-50177, GoddardSpace Flight Center, April1963.
    [146] Peck M A, Miller L, Cavender A R, et al. An airbearing-based testbed formomentum control systems and spacecraft line of sight[C]. AAS Paper03-127,Feb.2003.
    [147] Dimitrov D N, Yoshida K. Momentum distribution in a space manipulator forfacilitating the post-impact control[C].IEEE International Conference onIntelligent Robots and Systems,2004:80-88.
    [148]戴路,金光.三轴姿态控制仿真系统快速自动精确调平方法研究及仿真[J].清华大学学报(自然科学版),2011,51(8):1063-1071.
    [149] Li Y B, Gao Y H. Equations of motion for the automatic balancing system of3-DOF spacecraft attitude control simulator[C]. ISSCAA2010-3rd InternationalSymposium on Systems and Control in Aeronautics and Astronautics,2010:248-251.
    [150]蔡洪亮,高永明,邴启军,卢昱.国外空间非合作目标抓捕系统研究现状与关键技术分析[J].装备指挥技术学院学报,2010,21(6):71-77.
    [151]贾沛然.远程火箭弹道学[M].长沙:国防科技大学出版社,1993:4-56.
    [152] Uosat12参数.http://www.ee.surrey.ac.uk/SSC/CSER/UOSAT/missions/uo12/
    [153] Sun W, Sweeting M N. In-orbit results from UoSAT-12Earth observationminisatellite mission[C].Proceedings of the3rd International Symposium ofIAA,2001:79-82.
    [154] Ljung L. Convergence analysis of parametric identification methods[J]. IEEETransactions on Automatic Control,1978,23(5):770-783.
    [155] Ma O. On-orbit identification of inertia properties of spacecraft using arobotic arm[J]. Journal of Guidance, Control and Dynamics,2008,31(6):1761-1771.
    [156] J.R.Yim. Autonomous Spacecraft Orbit Navigation[D]. Texas: Texas A&MUniversity.2002:28~32.
    [157]张凤宁,余薛浩,王鹏等.多星发射上面级姿态变结构控制方法研究[J].上海航天,2011,(2):38-42.
    [158]徐辉,易琪,钟徐等.10kN双向摇摆再生冷却发动机技术研究[J].火箭推进,2009,35(5):8-12.
    [159]张贤达.矩阵分析与应用[M].北京:清华大学出版社,2004:108-130.
    [160]田富洋,吴洪涛,赵大旭,等.在轨空间机器人参数辨识研究[J].中国空间科学技术,2010,30(1):10-17.
    [161]马昌凤.最优化方法及其Matlab程序设计[M].北京:科学出版社,2010:87-96.
    [162] Jing W X, McInnes C R. Memorized time-fuel suboptimal feedback control ofperturbed double integrator[J]. Automatica,2002,38(8):215-223.
    [163]中国人民解放军总装备部军事训练教材编辑加工委员会.运载火箭推进系统[M].北京:国防工业出版社,2002:60-108.
    [164]蒋伟.运载火箭推进剂利用系统数字化建模与仿真[D].成都:电子科技大学,2007:28-42.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700