混合动力轿车驱动工况下防滑与侧向稳定性控制算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
节能、环保与安全是汽车工业发展永恒的主题。混合动力轿车作为节能与新能源汽车的典范,具有良好的市场前景。在车辆主动安全方面,混合动力轿车对电子稳定性控制系统的需求同传统汽车是一致的。电子稳定性控制系统(Electronic StabilityControl,ESC)作为一种汽车主动安全控制系统,能够在驱动、滑行和制动过程中提高车辆在极限行驶工况下的侧向稳定性,对减少车辆事故发生率有突出的效果。
     混合动力汽车的稳定性控制面临着许多新的问题。混合动力汽车在滑行或制动过程中需要实现电子稳定性控制系统同再生制动系统的协调控制,国内学者对此已经开展了广泛的研究;驱动工况的防滑与侧向稳定性控制算法是电子稳定性控制算法的重要组成部分,如何协调控制驱动系统输出转矩与驱动轮制动力矩、以及协调发动机与电机的输出转矩来实现驱动工况下对车辆的防滑与侧向稳定性控制,也是当前的研究热点之一。
     开展混合动力轿车稳定性控制系统的研究对我国汽车行业自主研发能力的提升和节能与新能源汽车产业的发展都具有重要的意义。本文结合吉林省科技支撑计划重大专项,与中国第一汽车集团股份有限公司技术中心密切合作,以并联式混合动力轿车为研究对象,针对驱动工况下的防滑与侧向稳定性控制算法进行研究。论文内容围绕整体算法结构设计、混合动力轿车的驱动防滑控制算法研究、驱动工况的侧向稳定性控制算法研究和混合动力总成控制与稳定性控制协调控制算法研究四个方面进行,算法的有效性通过软件在环仿真和硬件在环平台试验进行了验证。论文主要包括以下内容:
     (1)混合动力轿车防滑与侧向稳定性控制算法架构设计。根据模块化与层次化的设计思想,首先将算法分为了防滑与侧向稳定性控制和混合动力总成控制与稳定性控制协调控制两部分。防滑与侧向稳定性控制算法位于稳定性控制器中,混合动力总成控制与稳定性控制协调控制算法位于混合动力整车控制器中,两部分算法通过总线通讯进行数据交换;防滑与侧向稳定性控制算法中,侧向稳定性控制算法作为上层模块对车辆目标横摆力矩进行计算,驱动防滑控制算法作为下层模块对驱动系统的目标驱动转矩和车轮的目标制动力矩进行计算。
     (2)混合动力轿车驱动防滑控制算法研究。在完成对算法结构设计的基础上,设计了最佳驱动转矩估算算法,并以驱动轮平均轮速和驱动轮轮速差为控制变量,基于模糊PID和有限状态机理论,设计了混合动力轿车驱动防滑控制算法。
     (3)驱动工况的侧向稳定性控制算法研究。首先利用相平面分析法分析了驱动工况对车辆侧向稳定性的影响,并修正了驱动工况下目标横摆角速度和质心侧偏角的计算方法,提出了侧向稳定性控制的控制策略;针对横摆力矩控制设计了基于二次型最优理论的横摆力矩控制算法;针对驱动工况的不足转向问题,将驾驶员的意图引入到模糊决策中去,设计了基于模糊自适应PD理论的驱动系统输出转矩控制算法,对加速行驶不足转向工况的驱动系统输出转矩进行控制。对驱动防滑同侧向稳定性控制的协调控制算法进行了研究,提出了基于驱动轮目标滑转率的协调算法;对驱动防滑和侧向稳定性控制的驱动力矩控制协调算法进行了研究。
     (4)混合动力总成控制与稳定性控制协调控制算法研究。针对稳定性控制过程中混合动力总成控制的转矩需求、工作模式确定和转矩分配设计了协调策略和分配算法。工作模式协调策略用来防止由于稳定性控制目标值变化造成的混合动力总成工作模式频繁切换。同发动机相比,电机对转矩控制的响应更快,根据这一特点,在不同的工作模式下,以电机响应转矩需求中的动态部分和发动机响应转矩需求中的稳态部分为原则,设计了基于低通滤波原理的电机和发动机的转矩分配算法。
     (5)控制算法离线仿真验证。首先在Matlab/Simulink环境下建立了混合动力轿车驱动工况下的防滑与侧向稳定性控制系统离线仿真平台。基于该平台,分别在均一路面、分离路面和跃变路面条件下对驱动防滑控制算法进行了仿真验证;分别在阶跃转向加速工况和正弦延迟加速工况下对稳定性控制算进行了驾驶员开环验证;分别在双移线加速工况和200米半径定圆转向加速工况下对稳定性控制算法进行了驾驶员闭环仿真验证。验证结果表明,通过对混合动力总成控制与稳定性控制的协调控制,本文所开发的混合动力轿车防滑与侧向稳定性控制算法能够提高车辆驱动工况的加速性能和侧向稳定性能。
     (6)控制算法硬件在环试验验证。在基于Matlab/xPC的混合动力轿车硬件在环试验平台上,对控制算法的实时性和有效性进行了验证。该平台以离线仿真平台为基础,还包括基于Matlab/xPC Target实时系统平台,数据采集与处理部分和硬件台架部分,其中硬件台架包括液压制动系统台架、电机台架及操纵台架等三部分。基于该平台,分别在均一路面、分离路面和跃变路面条件下对驱动防滑控制算法进行了仿真验证;在阶跃转向加速工况下对稳定性控制算进行了驾驶员开环验证;在双移线加速工况下对稳定性控制算法进行了驾驶员闭环仿真验证。验证结果进一步表明,本文所开发的算法能够有效提高混合动力轿车驱动工况的加速性能和侧向稳定性能。
Safety and environmental protection is the eternal theme of the automobile industry.Hybrid cars, as a model of energy-saving and new energy vehicles, have good marketprospects. In the aspect of the vehicle active safety, the demand of electronic stability controlsystem for hybrid cars is consistent with conventional cars. Electronic stability controlsystem (ESC), as a vehicle active safety control system, can improve the vehicle's lateralstability under extreme working conditions such as driving condition, coasting condition andbraking condition, which can prominently reduce vehicle accidents occurring rate. It is aninevitable trend that ESC will be combined with the hybrid cars.
     Many new problems exist in achieving hybrid vehicle stability control. The electronicstability control system needs to be coordinated with regenerative braking system while thehybrid car is coasting or braking, which has been conducted in extensive research bydomestic scholars; at the same time, the traction control and lateral stability controlalgorithm under driving conditions are important parts of the electronic stability controlalgorithm, how to implement the vehicle lateral stability control and anti spin control underdriving conditions while achieving the coordination of the motor and engine torque controlwith the hybrid control system effectively and reasonablely, is also one of the currentresearch focus.
     Researching of stability control for hybrid cars has important significance not only inenhancing R&D capabilities of China's automotive industry, but also in developingenergy-saving and new energy automotive industry.This paper bases on the major projects ofthe Technology Support Program of Jilin Province, in close cooperation with China FAWGroup Corporation Technology Center,focusing on the development of anti spin and lateralstability control algorithm under the driving condition for parallel hybrid vehicle. The paperfocuses on four aspects, which are designing of overall algorithm structure, the tractioncontrol algorithm, the lateral stability under the driving condition and the coordinating control algorithm of the hybrid powertrain with stability control,the effectiveness ofalgorithm has been validated through simulation with software-in-loop and bench test withhardware-in-loop. The main works of this paper are as follows:
     (1) Structural design of anti spin and lateral stability control algorithm of hybrid car:According to the modular and hierarchical design principle, the algorithm is divided into twoparts, the traction and lateral stability control and the coordination control between hybridpowertrain control and stability control. The anti spin and lateral stability control algorithmexists in the stability controller, the coordination control between hybrid powertrain controland stability control algorithm exists in the hybrid vehicle controller, the two algorithm partsexchange data via bus communication; the lateral stability control algorithm, as the upperlayer module, calculates the vehicle target yaw moment, while the anti spin controlalgorithm, as the lower module, calculates the target driving torque and the target brakingtorque.
     (2) Study on anti spin control algorithm for hybrid car. On the basis of the designedalgorithm structure, optimum drive torque estimation algorithm is designed and the averagewheel speed of two drive wheels and the wheel speed difference of two drive wheels aretaken as control variables, the control algorithm is designed base on Fuzzy PID and finitestate machine.
     (3) Study on the lateral stability control algorithm under driving condition. The controlalgorithms are designed respectively for the yaw moment control and drive system torquecontrol to improve the vehicle lateral stability under driving condition. Firstly, the impactionof driving condition on the vehicle lateral stability is analyzed with the vehicle sideslip angleand phase plane method; secondly, a control algorithm of correcting the calculation of targetyaw angular rate and sideslip angle under drive condition is proposed; thirdly,for yawmoment control, the lateral stability controller is designed based on quadratic optimal theory;fourthly,for the under steering under driving condition, the fuzzy PD controller is designed tocontrol the output torque of the hybrid drive system. The coordination method based on thetarget slip ratio of the driving wheel is proposed during the study on the coordinationbetween the anti spin control and lateral stability control algorithm; the coordination ofdriving torque between the anti spin control and lateral stability control algorithm has beenstudied.
     (4) Study on the coordination control algorithm between hybrid powertrain control andstability control. The work modes coordinate strategies and torque allocation algorithm aredesigned respectively for hybrid powertrain torque demand, working mode and torquedistribution during stability control process. Working mode coordinating strategy can preventfrequent switching of operating mode of the hybrid powertrain due to the changes of targetvalue in stability control. Making use of that the motor responses faster than the enginethrottle control, under different mode, with the principle of allocating the dynamic portion oftorque demand to motor and allocating the static portion of torque demand to engine,torquedemand distribution algorithm is designed for different modes of operation based on theprinciple of low-pass filter.
     (5) Software-in-loop verification of control algorithm. Firstly, a stability control systemoffline simulation platform has been established in Matlab/Simulink environment. With thisplantform,the anti spin control algorithm has been verified on the homogeneous road, theμ-split road and μ-jump road conditions; the open-loop verifications of stability controlalgorithm has been implemented by step steering and sine with dwell steering underaccelerating condition; the closed-loop verification of stability control algorithm has beenimplemented by double lane and the steering in a circle with a radius of200meters underaccelerating condition. The validation results show that, through the coordinate control of thehybrid powertrain control and stability control, the developed anti spin and lateral stabilitycontrol algorithm for hybrid cars can improve the acceleration and lateral stability of thevehicle under acceleration condition.
     (6) Hardware-in-loop verification of control algorithm. The real-time performance andeffectiveness of the control algorithm are verified on the hardware in the loop test bentch forhybrid cars based on Matlab/xPC. The test platform bases on offline simulation platform,including Matlab/xPC Target real-time system platform, data acquisition and processingsystem, and system hardware bench, of which the hardware bench includes a hydraulic brakesystem bench, a motor bench and a control desk. With the platform, the verifications of antispin control algorithm on the homogeneous road, the μ-split road and μ-jump roadconditions, the open-loop verifications of stability control algorithm on step steering underaccelerating condition, the closed-loop verification of stability control algorithm on thedouble lane under accelerating condition. The validation results show that the developed stability control algorithm for hybrid cars in this paper can improve the acceleration andlateral stability of the vehicle on driving condition.
引文
[1]余志生.汽车理论[M].机械工业出版社.北京,2006.5
    [2] Manfred Mitschke,Henning Wallentowitz.汽车动力学(第4版)[M].陈荫山,于强译,清华大学出版社.北京.2009.12
    [3]初亮.混合动力总成的控制算法和参数匹配研究[D].吉林大学博士学位论文.2002
    [4]赵健.轻型越野汽车牵引力/制动力控制系统[D].吉林大学博士学位论文,2007.
    [5]孙万峰.商用车牵引力与制动力集成控制算法研究[D].吉林大学博士学位论文,2010.
    [6]庒继德.汽车轮胎学[M].北京理工大学出版社.1995.
    [7] JONG HYEON PERK and CHAN YOUNG KIM Wheel Slip Control in Traction Control System forvehicle Stability. Vehicle System Dynamics,31(1999),pp.263-278.
    [8] Dugoff, H.Tire performance characteristics affecting vehicle response to steering and braking controlinputs. Final report.1969.
    [9]宋年秀.汽车列车轴偏角对行驶性能影响分析及其检测的研究[D].吉林大学博士学位论文,2010.
    [10]欧阳.轿车稳定性控制系统轮缸压力控制和估算算法研究[D].吉林大学博士学位论文,2010.
    [11]卢文博.基于滑移率的液压ABS控制算法研究[D].吉林大学硕士学位论文,2010.
    [12]姚亮.混合动力轿车再生制动与液压制动协调控制策略研究[D].吉林大学硕士学位论文,2009.
    [13]王鹏宇.混合动力轿车再生制动系统研究[D].吉林大学博士学位论文,2009.
    [14]史新民.轿车ESP系统试验平台的软件开发[D].吉林大学硕士学位论文,2007
    [15]孙洋.轻型客车低附着路面转向驱动工况防滑与稳定性控制方法研究.[D].吉林大学硕士学位论文,2009
    [16]张俊智,陈鑫,张彪.一种混合动力汽车的驱动防滑控制系统及其控制方法[P].发明专利,201010113837.2010年2月24日.
    [17]初亮,欧阳,张永生等.一种混合动力轿车再生制动系统的电子制动操纵系统:中国,101423055[P].2009-05-06.
    [18]李志远,张彪,侯顺艳.转向加速工况下汽车驱动防滑控制系统滑转率算法研究[J].设计与计算2009.9.
    [19]刘金琨.先进PID控制MATLAB仿真(第二版)[M].电子工业出版社.北京.2007.5.
    [20]陈家瑞.汽车构造[M].机械工业出版社.北京.2009.6.
    [21]朱庆林.基于瞬时优化的混合动力汽车控制策略研究[D].吉林大学博士学位论文,2009.
    [22][ADVISOR2.1-A User-Friendly Advanced Powertrain Simulation Using a CombinedBackward-Forward Approach].
    [23]雷雨成.汽车系统动力学及仿真[M].北京:国防工业出版社,1997.
    [24][ISO8855:1991Road vehicles--Vehicle dynamics and road-holding ability--Vocabulary].
    [25][MODELING AND CONTROL OF A HYBRID ELECTRIC DRIVETRAIN FOR OPTIMUM FUELECONOMY, PERFORMANCE AND DRIVEABILITY].
    [26]赵峰,罗禹贡,李克强,张文明.混合动力汽车牵引力分层控制与硬件在环试验[J].农业机械学报,第42卷(第4期).
    [27] Sven A. Beiker Renate C. Vachenauer. The Impact of Hybrid-Electric Powertrain on Chassis Systemsand Vehicle Dynamics2009-01-0442.
    [28] Marcus Nuessle. Ruediger Rutz. Objective Test methods to assess active safety benefits of ESP.
    [29]陈柳钦.欧盟支持新能源汽车发展的政策举措.
    [30]赵治国,顾君,余卓平.四轮驱动混合动力轿车驱动防滑控制研究[J].机械工程学报,第47卷(第14期).2011年7月.
    [31] Robert Bosch GmbH.魏春源等译.汽车安全性与舒适性系统[M].北京理工大学出版社.2009.2.
    [32] Ansgar Traè chtler. Integrated vehicle dynamics control using active brake, steering and suspensionsystems. Int. J. Vehicle Design, Vol.36, No.1,2004.
    [33]房永.三轴半挂汽车列车稳定性控制算法研究[D].吉林大学博士学位论文.20010
    [34]刘明辉,刘东秦. FAW-TMHTM强混和动力系统平台开发[J].2010中国汽车工程学会年会优秀论文.
    [35]周磊,罗禹贡等.混联式混合动力车多能源动力控制系统的开发[J].机械工程学报2007,4.
    [36] Liang Chu, Li Bo Chao, Zhan Wu, Tong Bo Wu. Research on Traction Slip Control Algorithm forParallel Hybrid Cars[C].2011International Conference on Mechatronic Science, Electric Engineering andComputer. August19-22,2011, Jilin, China.
    [37] Sunao Hano, Motomu Hakiai. New Challenges for Brake and Modulation Systems in Hybrid ElectricVehicles (HEVs) and Electric Vehicles (EVs)[C]. SAE Paper NO.2011-39-7210.
    [38] Stefan Solyom, Anders Rantzer&Jens Lüdemann Synthesis of a Model-Based Tire Slip ControllerVolume41, Issue6, pages475-499.2004.
    [39] http://www.tandfonline.com/doi/pdf/10.1080/004231105123313868.
    [40] Christian von Albrichsfeld and Jürgen Karner. Brake System for Hybrid and Electric Vehicles [C].SAE Paper NO.2009-01-1217.
    [41] H. B. Pacejka.Tyre and vehicle dynamic(Second Edition)[M].Elsevier.2006
    [42]董明海.混合动力轿车主动真空助力装置特性及控制算法研究[D].吉林大学硕士学位论文.2012
    [43]欧健,熊峰.并联混合动力汽车起步过程TCS研究[J].重庆理工大学学报, Vol(2).11.2011.11.
    [44]武汉元丰汽车电控系统有限公司简介[I]http://www.youfin.cn/cn/about/electronic.aspx
    [45]付皓.汽车TCS轮速识别与电子节气门控制[D].吉林大学硕士学位论文,2005.
    [46]吕济明.汽车TCS系统建模与控制逻辑研究[D].吉林大学硕士学位论文,2005.
    [47]郭健.汽车稳定性控制系统控制策略与评价方法研究[D].吉林大学博士学位论文,2011.
    [48]王伟.车用永磁同步电机的参数设计、协调控制与性能评价方法研究.[D].吉林大学博士学位论文,2010.
    [49]李静,李幼德,赵健,宋大凤,,刘巍.汽车硬件在环试验平台研究[J].汽车工程,vol27(1)2005,P64~67.
    [50] Rolf Maier-Landgrebe. Method and device for regulating the drive torque following a load change inhybrid vehicles [P]. United States Patent:740092B2. Jul.15,2008.
    [51]苑绍志.轻型机械自动变速越野汽车牵引力控制系统研究[D].吉林大学汽车工程学院,2008.
    [52]赵峰,罗禹贡,李克强,张文明.混合动力汽车牵引力分层控制与硬件在环试验[J].农业机械学报. Vol42(4),2011.
    [53]孙万峰.商用车牵引力与制动力集成控制算法研究[D].吉林大学汽车工程学院,2010.
    [54]杨财,宋健,李亮,黄全安,李红志.牵引力控制系统中最优驱动力矩控制[J].清华大学学报(自然科学版) vol48(11)2008.
    [55]杨财,宋健,周艳霞.车辆转向时牵引力控制系统前轮滑转率算法[J].农业机械学报vol39(8),2008.
    [56]杨财,宋健,李红志.基于路面条件判断的牵引力控制系统压力控制策略[J].农业机械学报vol39(10),2008.
    [57] Qingyuan Li, Keith W. Beyer and Quan Zheng,A Model-Based Brake Pressure Estimation Strategyfor Traction Control System[C]2001-01-0595SAE2001World Congress Detroit, Michigan March5-8,2001.
    [58] Dejun Yin,Yoichi Hori,Yoichi Hori,A Novel Traction Control for EV Based on MaximumTransmissible Torque Estimation,[C]IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL.56, NO.6, JUNE2009,P2086~2094.
    [59] Naoki Ishikawa.Hybrid vehicle and control method thereof [P]. United StatesPatent:2010/0006358A1.Jan.14,2010.
    [60] Quan-Zhong Yan, John M. Williams and Jim Li,Chassis Control System Development UsingSimulation: Software in the Loop, Rapid Prototyping, and Hardware in the Loop[C]2002-01-1565, SAEAutomotive Dynamics and Stability Conference and Exhibition Detroit, Michigan May7-9,2002.
    [61] Masato Abe.Vehicle handling dynamic [M]. Published by Elsevier Ltd.2009
    [62] Jürgen Gehring and Herbert Schütte,A Hardware-in-the-Loop Test Bench for the Validation ofComplex ECU Networks[C]2002-01-0801,SAE2002World Congress Detroit, Michigan March4-7,2002.
    [63] Ryan A. McGee, Model Based Control System Design and Verification for a Hybrid ElectricVehicle[C]2003-01-2308, Future Transportation Technology Conference Costa Mesa, California June23-25,2003.
    [64] Herbert Schuette and Peter Waeltermann,Hardware-in-the-Loop Testing of Vehicle DynamicsControllers–A Technical Survey[C]2005-01-1660,2005SAE World Congress Detroit, Michigan April11-14,2005.
    [65]李亮,康铭鑫,宋健,李红志,韩宗奇,杨财.汽车牵引力控制系统的变参数自适应PID控制[J].机械工程学报.
    [66] Jianlong Zhang, Deling Chen and Chengliang Yin.Adaptive Fuzzy Controller for Hybrid TractionControl System based on Automatic Road Identification.[C]. Proceeding of the2006IEEE InternationalConference on Automation Science and Engineering Shanghai, China, October7-10,2006.
    [67] Stefan Solyom, Anders Rantzer, Jens Ludemann, Synthesis of a Model-Based Tire slip Controller [J].Vehicle System Dynamics,Vol.41.No.6,pp.275~499.
    [68] Dr.-Ing. Roger Graaf, Dr.-Ing. Peter Zegelaar, Dipl.-Ing. Oliver Nehls,Dipl.-Ing. Gilberto Burgio,Dipl.-Ing. Otto Hofmann Integrierte Fahrdynamikregelung mit Lenkung und Bremse[C].AachenerKolloquium Fahrzeug-und Motorentechnik2006,pp735~758.
    [69] Forkenbrock, Garrick J., Elsasser, Devin H., O’Harra, Bryan C.,“NHTSA’s Light VehicleHandlingand ESC Effectiveness Research Program,”ESV Paper Number05-0221, June2005.
    [70] Office of Regulatory Analysis and Evaluation. National Center for Statistic and Analysis.FVMSSNO.126Electronic stability control systems. National Highway Traffic safety administration.U.S.Department of Transportation,2007.3.
    [71] Jianlong Zhang, Deling Chen and Chengliang Yin. Adaptive Fuzzy Controller for Hybrid TractionControl System based on Automatic Road Identification[C] Proceeding of the2006IEEE InternationalConference on Automation Science and Engineering Shanghai, China, October7-10,2006.pp524~529.
    [72] Wanki Cho, JangyeolYoon, Jeongtae Kim, Jaewoong Hur and KyongsuYi.An investigation intounified chassis control scheme for optimised vehicle stability and manoeuvrability.[J] Vehicle SystemDynamics Vol.46, Supplement,2008, pp87–105.
    [73] Quan-Zhong Yan, Frank C. Thompson, Russell E. Paul and Jim J. Bielenda.Hardware in the Loop forDynamic Chassis Control Algorithms Test and Validation[C] SAE Automotive Dynamics, Stability&Controls Conference and Exhibition May4-6,2004.2004-01-2059.
    [74] Hiroshi Fujimoto, Kiyoshi Fujii, and Naoki Takahashi.Traction and Yaw-rate Control of ElectricVehicle with Slip-ratio and Cornering Stiffness Estimation.[C] Proceedings of the2007American ControlConference Marriott Marquis Hotel at Times Square New York City, USA, July11-13,2007.pp5742~5747.
    [75]李剑峰,高利.车辆质心纵向位置变化对车辆侧向响应的影响[J].现代制造工程2006年第3期.pp112~115.
    [76] KYONGSU YI.KARL HEDRICK.SEONG-CHUL LEE. Estimation of Tire-Road Friction UsingObserver Based Identifiers [J]. Vehicle System Dynamics,31.1999. pp.233–261.
    [77] JONG HYEON PARK1and CHAN YOUNG KIM.Wheel Slip Control in Traction Control Systemfor Vehicle Stability [J]. Vehicle System Dynamics,31.1999., pp.263–278.
    [78] Jianlong Zhang, Chengliang Yin and Jianwu Zhang.Use of Fuzzy Controller for Hybrid TractionControl System in Hybrid Electric Vehicles[C]. Proceedings of the2006IEEE International Conferenceon Mechatronics and Automation June25-28,2006, Luoyang, China.pp1351~1356.
    [79] Hyoun-Chul Choi,Suk-Kyo Hong.Hybrid control for longitudinal speed and traction of vehicles[C],IEEE200228th Annual Conference of the Industrial Electronics Society.pp1676~1680.
    [80] Susan R. Cikanek. Electric vehicle regenerative antiskid braking and traction control system[P].US5450324.1995.12.
    [81]周磊,罗禹贡,杨殿阁,李克强,连小珉.混联式混合动力车多能源动力控制系统的开发[J].机械工程学报Vo l.4(3) No.4.2007.3.pp125~131.
    [82]朱明方.并联混合动力汽车控制策略和软件设计的研究[D].吉林大学硕士学位论文.2004.4.
    [83]苏红.并联式混合动力汽车能量管理策略研究[D].重庆大学博士学位论文,2008.11.
    [84]于远彬.车载复合电源设计理论与控制策略研究[D].吉林大学博士学文论文.2008.6.
    [85]张翔.电动汽车建模与仿真的研究[R].合肥工业大学博士后研究工作报告。2004.10.
    [86] Henk Smakman, BMW Technik Gmbh, Munich,Germany. Functional integration of activesuspension with slip control for improved lateral vehicle dynamics.
    [87]丁海涛.轮胎附着极限下汽车稳定性控制的仿真研究[D].吉林大学博士学位论文,2003.
    [88]付皓.汽车电子稳定性系统质心侧偏角估计与控制策略研究[D].吉林大学博士论文,2008.
    [89]刘巍.轻型汽车转向稳定性控制算法及硬件在环试验台研究[D].吉林大学博士学位论文,2007.
    [90]郭建华.双轴汽车电子稳定性协调控制系统研究[D].吉林大学博士学位论文,2008.
    [91]玄圣夷.面向主动安全的汽车底盘行驶稳定性控制策略研究[D].吉林大学博士论文,2010.
    [92]杨秀建.极限工况下汽车转向失稳的非线性动力学特性与主动控制研究[D].山东大学博士学位论文,2009.
    [93]张永生.轿车稳定性控制系统的状态参数估算及控制算法研究[D].吉林大学博士学位论文,2010.
    [94]徐明法.基于最优滑膜控制理论的车辆稳定性控制策略研究.[D].吉林大学硕士学位论文,2011.
    [95]邹伯敏.自动控制理论[M].机械工业出版社,2004.
    [96] http://www.kxcad.net/cae_MATLAB/toolbox/slcontrol/gs/bqkvccz-1.html
    [97] HUIBERT KWAKERNAAK, Linear Optimal Control Systems RAPHAEL SIVAN1972, by JohnWiley&Sons, Inc.
    [98] US Patent5668724Method For Improving the Controllability of Motor Vehicles.
    [99] Tim Gordon, Mark Howell and Felipe Brandao, integrated control methodologies for road vehicles.Vehicle System Dynamics.2003, Vol.40, Nos.1-3, pp.157-190.
    [100] Ansgar Traè chtler.Integrated vehicle dynamics control using active brake, steering and suspensionsystems. Int. J. Vehicle Design, Vol.36, No.1,2004
    [101] Hongtei Eric Tseng, Behrouz Ashrafi, Member, Madau. The Development of Vehicle StabilityControl at Ford. IEEE/ASME TRANSACTIONS ON MECHATRONICS, VOL.4, NO.3, SEPTEMBER1999
    [102] Test of vehicle dynamic controllers, technical report.
    [103]李道飞.基于轮胎力最优分配的车辆动力学集成控制研究[D].上海交通大学博士论文,2008.
    [104]童毅.并联式混合动力系统动态协调控制问题的研究[D].清华大学博士论文.2004.4.
    [105]尚明利.混合动力汽车再生制动与稳定性集成控制算法研究[D].吉林大学博士论文.20011.12.
    [106]谢伯元,朱西产. ESC试验方法研究[J].天津汽车,2007年第6期.
    [107]李亮,宋健,余良耀.汽车动力学稳定性控制系统仿真平台研究[J].系统仿真学报,2007(第19卷)第7期.
    [108]郭孔辉,付皓,丁海涛.车辆电子稳定性控制试验与评价方法的仿真应用[J].汽车技术,2008年第10期.
    [109]余卓平,高晓杰,张立军.用于车辆稳定性控制的直接横摆力矩及车轮变滑移率联合控制研究[J].汽车工程,2006(第28卷)第9期.
    [110] Kim, Donghyun; Kim, Chulsoo; Hwang, Sung-Ho; Kim, Hyunsoo. Hardware in the LoopSimulation of Vehicle Stability Control using Regenerative Braking and Electro Hydraulic Brake forHybrid Electric Vehicle [C]. Proceedings of the17th World Congress, International Federation ofAutomatic Control, IFAC.
    [111] Donghyun Kim,Hyunsoo Kim Vehicle Stability Control with Regenerative Braking and ElectronicBrake Force Distribution for a Four-Wheel Drive Hybrid Electric Vehicle[C] Proceedings of theInstitution of Mechanical Engineers, Part D: Journal of Automobile Engineering June1,2006vol.220no.6683-693
    [112] Donghyun Kim, Sungho Hwang, Hyunsoo Kim.Vehicle Stability Enhancement ofFour-Wheel-Drive Hybrid Electric Vehicle Using Rear Motor Control[C]. Vehicular Technology, IEEETransactions on March2008Volume:57Issue:2pp:727–735.
    [113] Ossama Mokhiamar, Masato Abe. Simultaneous optimal distribution of lateral and longitudinal tireforces for the model following control [J]. Journal of Dynamic Systems, Measurement, and Control,December2004, Vol,126/753.
    [114] Ossama Mokhiamar and Masato Abe. Combined lateral force and yaw moment control to maximizestability as well as vehicle responsiveness during evasive maneuvering for active vehicle handling safety[J]. Vehicle System Dynamics, Supplement37(2002), pp.246-256.
    [115] Joel R. Anstrom. Model development for hybrid electric vehicle stability assists systems [D].Pennsylvania State University,2002.
    [116] A. T. Van Zanten. VDC–the Bosch vehicle dynamics control system[C]. SAE Paper,950759.
    [117]杨财,宋健. ABS/TCS/AYC中参考车速和滑移率算法研究[J].汽车工程,2009,31(1):24-27.
    [118]任国新.商用车ABS/TCS集成控制系统硬件在环仿真试验技术研究[D].长春:吉林大学,2008.
    [119] Active safety-Regenerative Braking Systems.[OL]http://www.bosch-kraftfahrzeugtechnik.de/en/de/component/SF_PC_AS_Regenerative-Braking-Systems_SF_PC_Active-Safety_2575.html
    [120]刘志茹.混合动力汽车动态过程主动控制研究[D].吉林大学博士论文.2006
    [121] Anton T. Van Zanten, Rainer Erhardt, Georg Pfaff, Friedrich Kost, Uwe Hartmann, Thomas Ehret.Control Aspects of the Bosch-VDC[C] International Symposium on Advanced Vehicle Control.June,1996
    [122]刘建宏.商用车防抱死制动系统的电子控制单元研究与开发[D].长春:吉林大学,2008.
    [123]童毅,张俊智,欧阳明高.混合动力汽车扭矩管理策略[J].清华大学学报(自然科学版).2003年第43卷第8期.pp1134~1142.
    [124] LI Liang, LI Hongzhi, ZHANG Xiaolong, HE Lin, and SONG Jian.RealtimeTire ParametersObserver for Vehicle Dynamics Stability Control[J].Chinese Journal of Mechanical Engineering. Vol.23.No. x.2010年05期.
    [125] HATTORI H, KOIBUCHI K, YOKOYAMA T. Force and moment control with nonlinear optimumdistribution for vehicle dynamics[C].The6th International Symposium on Advanced Vehicle Control,Hiroshima, Japan,2002:595–600.
    [126]朱余清,雷克萨斯GS430VDIM系统浅析[OL].. http://www.chebrake.com.
    [127] TRW. Electronic stability control-regenerative (ESC-R).[OL].2011, http://www.trw.com.
    [128]赵峰.深度混合动力汽车牵引力控制策略研究[D]北京科技大学博士论文.2010.
    [129] Joerg Schaeuffele, Thomas Zurawka. Automotive Software Engineering [M].SAE International.2005.
    [130]一汽技术中心.乘用车ESC系统评价标准.2009.
    [131]浙江亚太机电股份有限公司打破国外对ABS技术封锁[I].2008.http://www.qiyeku.com/xinwen/68466.html.
    [132] Joseph William Anthony, Ming Lang Kuang.Traction control system for a hybrid electric vehicle [P].United States Patent:6263267.May.9.2000.
    [133]滕艳琼,王艳,陈富国.最小二乘法在计算汽车动力性中的应用[J].机械2001年第28卷增刊.
    [134] Peter Willem Anton ZEGELAAR.THE DYNAMIC RESPONSE OF TYRES TO BRAKETORQUE VARIATIONS AND ROAD UNEVENNESSES [D]. Delft University of Technology,1998.
    [135] SEONGHO CHOI, DONG WOO CHO. Control of Wheel Slip Ratio Using Sliding ModeController with Pulse Width Modulation [J]. Vehicle System Dynamics,32(1999), pp.267–284.
    [136] Fan Yu; Dao-Fei Li; Crolla, D.A.Integrated Vehicle Dynamics Control—state-of-the art review.Vehicle Power and Propulsion Conference,2008. VPPC '08. IEEE.pp1~6.
    [137] TRW. Electronic stability control-regenerative (ESC-R)[OL].2011, http://www.trw.com.
    [138]邓堃,李开军,何乐,夏群生.用于车辆紧急制动仿真的动态轮胎模型[J].农业机械学报38卷12期.pp11~15
    [139] Brad Schofield. Model Based Vehicle Dynamics Control for Active Safety [D]. Department ofAutomatic Control Lund University Lund, September2008.
    [140] On Drive Force Distribution and Road Vehicle Handling-A Study of Under steer and LateralGrip[R]. Chalmers University of Technology&Volvo Car Corporation.2007-12-20.
    [141] WILLIAM PASILLAS-LéPINE. Hybrid modeling and limit cycle analysis for a class of five-phaseanti-lock brake algorithms [D]. Vehicle System Dynamics. Vol.44, No.2, February2006,173–188.
    [142] Dogan Ibrahim. Microcontroller Based Applied Digital Control [M]. John Wiley&Sons Ltd.England.2005.
    [143] GEORG RILL.A Modified Implicit Euler Algorithm for Solving Vehicle Dynamic Equations [J].Multibody System Dynamics (2006)15: pp1–24.
    [144] V. IVANOVI C, J. DEUR, M. KOSTELAC, Z. HEROLD, M. TROULIS,C. MIANO, D. HROVAT§,J. ASGARI, D. HIGGINS, J. BLACKFORD and V. KOUTSOS. Experimental identification of dynamictire friction potential on ice surfaces [J]. Vehicle System Dynamics. Vol.44, Supplement,2006, pp93–103
    [145] C. SIERRA, E. TSENG, A. JAIN, H. PENG. Cornering stiffness estimation based on vehicle lateraldynamics [J]. Vehicle System Dynamics.Vol.44, Supplement,2006, pp24–38.
    [146] RATTAPON CHUMSAMUTR, TAKEHIKO FUJIOKA and MASATO ABE. Sensitivity analysis ofside-slip angle observer based on a tire model [J]. Vehicle System Dynamics. Vol.44, No.7, July2006,pp513–527.
    [147] T. A. WENZEL, K. J. BURNHAM, M. V. BLUNDELL and R. A. WILLIAMS.Dual extendedKalman filter for vehicle state and parameter estimation [J]. Vehicle System Dynamics. Vol.44, No.2,February2006, pp153–171
    [148] Vincent Nguyen.VEHICLE HANDLING, STABILITY, AND BIFURCATION ANALYSIS FORNONLINEAR VEHICLE MODELS [D]. University of Maryland,2005.
    [149] Ashish tewari.Modern control desing with Matlab and Simulink[M].John Wiley&Sons.LTD.2002
    [150]张永生,初亮,时艳茹,徐明法,刘宏伟.基于UKF滤波算法的汽车质心速度估算[J].吉林大学学报(工学版).Vol.40. Sup.2010. pp85~90.
    [151]郑智忠,李良,杨财.基于扩展卡尔曼滤波的汽车质心侧向速度观测器[J].农业机械学报,2008,39(5):pp1~9.
    [152]赵林辉,刘志远,陈虹.一种车辆状态的非线性估计方法研究[J].系统仿真学报,2009,21(6):pp1710~1718.
    [153]李幼德,刘巍,李静,赵健,宋大凤,沙宏亮.汽车稳定性控制系统硬件在环仿真[J].吉林大学学报(工学版).Vol.37.No.4:pp737~740.
    [154] Vittore Cossalter, Alberto Doria, Roberto Berritta.IDENTIFICATION OF THE LATERAL ANDCORNERING STIFFNESS OF SCOOTER TYRES USING IMPEDANCE MEASUREMENTS[C].Proceedings of the Second International Conference held in Swansea, March1999,pp669~678.
    [155] Sven A. Beiker, Renate C. Vachenauer. The Impact of Hybrid-Electric Powertrains on ChassisSystems and Vehicle Dynamics[C]. SAE World Congress&Exhibition: Advancements inhardware-in-the-loop systems, driving simulators, and stability control systems2009-01-0442.
    [156] Paul F. Smith, Sameer M. Prabhu and Jonathon Friedman.Best Practices for Establishing aModel-Based Design Culture[C].2007World Congress. Detroit, Michigan. April16-19,2007.2007-01-0777.
    [157] YOSHIMI FURUKAWA, MASATO ABE.Advanced Chassis Control System for Vehicle Handlingand Active Safety[C].Vehicle System Dynamics.28(1997),pp59~86.
    [158] Dean Karnopp.Vehicle Stability [M]. Marcel Dekker, Inc.2004.
    [159] Dr.Ing. Rainer Busch, Dr.-Ing. Klaus Webers, Dipl.-Ing. Achim Seibertz. Ford Integrated VehicleDynamics Control: Concept.Research&advanced engineering, Ford Motor Company.
    [160] Dr.Ing. Rainer Busch, Dr.-Ing. Klaus Webers, Dipl.-Ing. Achim Seibertz. Ford Integrated VehicleDynamics Control: Realization. Research&advanced engineering, Ford Motor Company.
    [161] Guillaume Baffet, AliCharara, Danie Lechner. Estimation of vehicle sideslip, tire force and wheelcornering stiffness [J] Control Engineering Practice17(2009)1255–1264.
    [162] D.Li, X.SHEN and F.YU.INTEGRATED VEHICLE CHASSIS CONTROL WITH AMAIN/SERVO-LOOP STRUCTURE [J]. International Journal of Automotive Technology, Vol.7,No.7,PP.803~812(2006).
    [163] N.K. Msirdi, A. Rabhi, L.Fridman, J. Davila and Y. Delanne. Second Order Sliding Mode Observerfor Estimation of Velocities, Wheel Sleep, Radius and Stiffness[C]. Proceedings of the2006AmericanControl Conference Minneapolis, Minnesota, USA, June14-16,2006.pp3316~3321.
    [164] Ossama Mokhiamar, Masato Abe. Simultaneous Optimal Distribution of Lateral and LongitudinalTire Forces for the Model Following Control [J]. Journal of Dynamic Systems, Measurement, and Control.DECEMBER2004, Vol.126pp753~763.
    [165] PAUL J.TH. VENHOVENS and KARL NAAB. Vehicle Dynamics Estimation Using KalmanFilters [J]. Vehicle System Dynamics,32(1999), pp.171–184.
    [166] Alfred Eckert, Thomas Kranz. Driving Stability Control System with Selective Brake Actuation [P].US5711025.1995.
    [167]李亮,宋健,韩宗奇,孔磊.用于电子稳定程序(ESP)在线控制的液压模型和反模型[J].机械工程学报, Vo l.44No.2,2008,pp139~144
    [168] FMVSS No.126Electronic Stability Control Systems [I]. http://www.nhtsa.gov/Research/Data-bases+and+Software/FMVSS+No.+126+Electronic+Stability+Control+Systems
    [169]节能与新能源汽车产业发展规划(2012-2020)[I]. http://www.gov.cn/zwgk/2012-07/09/content_2179032.htm
    [170]. Kazunari Moriya, Yoshiaki Ito, Yukio Inaguma. Design of the Surge Control Method for theElectric Vehicle Powertrain[C]2002Future Car Congress Arlington, Virginia June3-5,2002
    [171]王庆年,冀尔聪,王伟华.并联混合动力汽车模式切换过程的协调控制[J].吉林大学学报(工学版),Vol38,No.1,2008
    [172]严运兵.并联混合动力电动汽车的动态控制研究[D]武汉理工大学博士学位论文.2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700