汽车电子稳定性系统质心侧偏角估计与控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汽车电子稳定性控制(ESC)作为一项主动安全技术,能够主动抑制汽车的过度转向或不足转向趋势,全面提高汽车行驶时的操纵稳定性和安全性。本文结合国家863计划项目“电子稳定系统(ESP)集成开发及电动转向系统(EPS)一体化控制技术”,以提高稳定性控制系统自主开发能力为目标,以某国产A0级轿车为研究对象,就稳定性控制的系统建模、质心侧偏角估计、控制策略研究、试验平台建设、实车试验等方面开展研究。
     首先,论文建立了用于稳定性控制仿真研究的九自由度非线性车辆动力学模型。其次,以车辆侧向动力学为基础,分析了横摆角速度和质心侧偏角对于车辆稳定性的表征关系。针对质心侧偏角难以直接测量的问题,提出了基于扩展卡尔曼滤波的质心侧偏角估计方法。采用分层模块化思想设计了稳定性控制策略的总体结构以及各子模块的算法,通过多种工况的仿真试验对控制策略的有效性进行验证。最后建立了稳定性控制系统车载试验平台,为稳定性控制系统开发和试验研究提供了试验条件。本文的研究为进行稳定性控制系统的自主开发提供了重要基础。
As an active safety technology, Electronic Stability Control(ESC) can improve the vehicle handling stability completely by monitoring the vehicle’s state in real time and constraining the oversteering or understeering actively. ESC leads the progress of the future active safety technology. So it is essential to master the advanced technology about ESC, which means taking advantages in the competition of automotive safety market in the future. Therefore, studying of the theories and key technologies in developing ESC can not only have a great realistic significance in improving the ability of developing domestic automobile industry and shortening the gap between the technological levels of our country and developed countries, but also greatly accelerate the progress of automotive industry and other related industry. And it leads to applications widely in the future prospects.
     This thesis is associated with the“Integrated Development of Electronic Stability Program ( ESP ) and Integrated Control Technology of Electronic Power Steering(EPS)”subject, supported by the project of National 863 Program“Integrated Development of Advanced Technology for X121 Passenger Car”. Basis on the summary of the domestic and foreign research achievements, this thesis focuses on improving the ability of developing stability control system. And a domestic passenger car in Class A0 is chose as benchmark. The modeling of stability control system, estimation of vehicle sideslip angle, researching of control algorithm, developing of test rig, and real vehicle testing are carried out in detail. The main contents are as follows:
     The first chapter systematically introduces definition, principle and components of ESC. As well as the prospects and the key technologies of ESC are demonstrated. Then the academic background and the application background of topic selecting are elaborated. The first chapter also gives the primary coverage of this thesis.
     The second chapter establishes a vehicle dynamical model for simulating research of stability control. In view of characteristic features of stability control and the benchmark, a 9 degree-of-freedom nonlinear vehicle model is constructed in modularization. It is composed of engine model, powertrain model, brake system model, hydraulic regulator model, wheel dynamics model, tire model, vehicle body model and driver model. And the vehicle model is validated using the handling test data of the target vehicle. The results show that the vehicle model can describe the dynamical characteristics in linear and nonlinear area correctly and accurately. The vehicle model provides a reliable foundation for researching on stability control.
     Based on the vehicle lateral dynamics, the relationships between stability and yaw rate, stability and sideslip angle are studied firstly in the third chapter. And the conclusion is that: 1) Yaw rate can be used to judge vehicle state as oversteering or understeering. Sideslip angle can be used to judge vehicle state as oversteering. 2) Sideslip angle can influences the vehicle stable state greatly. Yaw rate can express the vehicle steering characteristic when sideslip angle is small. And the main point of stability control system is to constrain the sideslip angle when it grows large.
     For that the sideslip angle is difficult to measure directly in practical application, the estimation of sideslip angle in limited steering conditions is studied using state observer and Extended Kalman Filter(EKF). The simulating results of typical operating conditions under different road coefficients show that: 1) Due to the nonlinear characteristic of vehicle dynamics, the nonlinear state estimating methods must be adopted in sideslip angle estimation. 2) The sideslip angle estimating strategy, based on Extended Kalman Filter, can accurately estimate sideslip angle in both linear region and nonlinear region. The sideslip angle estimated is valuable for stability control system. And it provides a reliable foundation for design of stability control algorithm.
     The control algorithm is the key point of developing ESC system. The fourth chapter develops the framework and content of sub-modules of stability control algorithm using the hierarchic method. The control algorithm takes the nominal yaw rate and stable boundary of sideslip angle as references. The yaw moment is decided by combining threshold control method and classical PID control method. And the yaw moment is transformed into the change of longitude slip of the given wheels using the HSRI tire model. Then the yaw moment is achieved by regulating the wheel brake pressure. The control algorithm is simulated in open-loop and close-loop environments under different vehicle speed and different road coefficients. The simulation results show that the control algorithm can improve vehicle stability in various operating conditions. So the validity of the control algorithm is proved.
     Testing research is one of the key techniques in developing ESC system. For the purpose of developing and testing stability control system, a test rig is established in the fifth chapter. The test rig is composed of four parts: sensor, actuator, controller and monitor. The software and hardware of stability controller are designed and developed independently. The functions of sensor module of stability control system and sideslip angle estimating strategy are tested in real vehicle using the test rig. The test results show that: 1) The test rig, established in this thesis, reach the design goal and meet the requirements of developing and testing stability control system. 2) The sensor module can accurately measure vehicle state and provide an reliable information for stability control algorithm. The sensor module meets the requirements of developing stability control system. 3) The sideslip angle estimating strategy, based on Extended Kalman Filter, can accurately estimate sideslip angle in both linear region and nonlinear region. And it gets same conclusion in both simulation and vehicle test. The estimating strategy is validated preliminarily.
     Chapter Six conclude the whole content of this thesis. And it put forward the direction and the keystone for the future.
     For resolving practical issues, this thesis studies the aspects related to developing stability control system. And it has creative works following:
     (1) The issue of estimating sideslip angle in limited steering conditions is studied thoroughly in this thesis. Based on Extended Kalman Filter, a sideslip estimating strategy is put forward. Contrast to linear estimating method, the strategy can greatly improve the accuracy of sideslip angle estimation.
     (2) This thesis develops the framework and content of stability control algorithm using the hierarchic method. The control algorithm is validated by simulating under various operating conditions in open-loop and close-loop.
     (3) The software and hardware of stability controller are designed and developed independently using the embedded technology. Based on the controller, a test rig is established for developing and testing stability control system. And the functions of sensor module of stability control system and sideslip angle estimating strategy are tested in real vehicle using the test rig.
引文
[1]黄安华.现代汽车的主动安全技术[J].商用汽车,2002,24(4):23~24
    [2]赵琢.我国高等级公路交通事故预测及对策研究[J].汽车运输研究,1997,16(2):71~77
    [3]吴龙.近期我国道路交通事故分析[J].汽车运输研究,1997,16(2):82~86
    [4] Glaser.H. Electronic Stability Program ESP, Audi Press Presentation[R]. Lycksele, Sweden, 9.-13. December,1996
    [5] Michael A.Kremer,Ford-Werke AG,K?ln. The Electronic Stability Program (ESP) On The Ford Focus[C]. Vehicle Electronic Systems 2000 European Conference and Exhibition,StratFord Manor,StratFord-upon-Avon,UK,2000
    [6] Sugiyama M., Inoue H., Uchida K., Monzaki S., Inagaki S, and Kido S. Development of VSC (Vehicle Stability Control) System[R]. TOYOTA Technical Review Vol.46,No.2, 61~68,1997
    [7]丁海涛.轮胎附着极限下汽车稳定性控制的仿真研究[D].长春:吉林大学汽车工程学院,2003
    [8]刘巍.轻型汽车转向稳定性控制算法及硬件在环试验台研究[D].长春:吉林大学汽车工程学院,2007
    [9]郭建华.双轴汽车电子稳定性协调控制系统研究[D].长春:吉林大学汽车工程学院,2008
    [10] Sanjay Singh. Design of Front Wheel Active Steering for Improver Vehicle Handling and Stability[C]. SAE Technical Paper,2000-01-1619.
    [11] Wolfgan Reinelt. Active Front Steering (Part 2): safety and functionality[C]. SAE Technical Paper,2004-01-1101.
    [12] Willy Klier. Active Front Steering (Part 1): mathematical modeling and parameter estimation[C]. SAE Technical Paper,2004-01-1102.
    [13] Philip Koehn. Active Steering– the BMW Approach towards modern steering technology[C]. SAE Technical Paper,2004-01-1105.
    [14] Tokihiko Akita,Katsuhiko Satoh,Michael C.Gaunt.Development of 4WS Control Algorithm for a SUV[C]. SAE Technical Paper,2002-01-1216.
    [15] Edward J. Bedner,Jr. and Hsien H. Chen. A Supervisory Control to Manage Brakes and Four-Wheel-Steer Systems[C]. SAE Technical Paper,2004-01-1059.
    [16] Ichiro Kageyama,Heeyoung JO. An Advanced Vehicle Control method using Independent Four-Wheel-Steering System[C]. Proceeding of the Advanced Vehicle Control(AVEC)1996.
    [17] Yoshimi Furukawa,Masato ABE. On-Board-Tire-Model Reference Control for Cooperation of 4WS and Direct Yaw Moment Control for Improving Active Safety of Vehicle Handling[C].Proceeding of the Advanced Vehicle Control(AVEC)1996.
    [18] Masaki Yamamoto. Active Control Strategy for Improved Handling and Stability[C]. SAE Technical Paper,911902.
    [19] Nicholas Cooper,David Crolla,Martin Levesley,Warren Manning. Integration of Active Suspension and Active Driveline to Improve Vehicle Dynamics[C]. SAE Technical Paper,2004-01-3544.
    [20] Abe M. Roll Moment Distribution Control in Active Suspension for Improvement of Limit Performance of Vehicle Handling[C]. Proceeding of the Advanced Vehicle Control(AVEC)1992.
    [21] Cooke R.,Crolla D.,Abe M. Combined Ride and Handling Modeling of a Vehicle with Active Suspension[C]. Proceeding of the Advanced Vehicle Control(AVEC)1996.
    [22] Shibahata,Shimada,Tomari. The improvement of vehicle maueuverability by direct yaw moment control[C]. Proceeding of the Advanced Vehicle Control(AVEC)1992.
    [23] Ken Koibuchi,Masaki Yamamoto,Yoshiki Fukada,Shoji Inagaki. Vehicle stability control in limit cornering by active brake[C]. SAE Technical Paper,960487.
    [24] Anton T.Van Zanten. Evolution of Electronic Control Systems for Improving the Vehicle Dynamic Behavior[C]. Proceeding of the Advanced Vehicle Control(AVEC)2002.
    [25]程军.汽车防抱死制动系统的理论与实践[M].北京:北京理工大学出版社,1999.
    [26] Junjie He,David A Crolla. Integrated Active Rear Steering and Variable Torque Distribution Control for Improving Vehicle Handling and Stability[C]. SAE Technical Paper,2002-09-1026.
    [27] Junjie He,David A Crolla. Coordination of active steering, driveline, and braking for integrated vehicle dynamics control[J]. Automobile Engineering,2006 (220).
    [28] NHSTA. Federal Motor Vehicle Safety Standards No.126:Electronic Stability Control Systems. http://www.nhtsa.dot.gov/,2007.
    [29]韩建保,云志刚,陈厉兵.汽车电子稳定系统ESP的工作原理及应用[J].汽车电器,2004年04期.
    [30]陈祯福.汽车底盘控制技术的现状和发展趋势[J].汽车工程,2006(2):105~113
    [31] Anton T.Van Zanten,Rainer Erhardt,Georg Pfaff. VDC the Vehicle Dynamics Control System of Bosch[C]. SAE Technical Paper,950759
    [32] Anton T.Van Zanten,Rainer Erhardt,Georg Pfaff,Friedrich Kost,Uwe Hartmann. Control Aspects of the Bosch-VDC[C]. Proceeding of the Advanced Vehicle Control(AVEC)1996.
    [33] Anton T.Van Zanten,Rainer Erhardt,Klaus Landesfeind,Georg Pfaff. VDC System Development and Perspective[C]. SAE Technical Paper,980235
    [34] Kraft H. The Integrate Brake and Stability Control System of the New BMW850i[C]. SAE Technical Paper,9002009.
    [35] Heinz Leffler. Consideration of Lateral and Longitudinal Vehicle Stability by Function Enhanced Brake and Stability Control System[C]. SAE Technical Paper,940832
    [36]原田宏.汽车控制技术[M].中国第一汽车集团公司技术中心科技信息部资料,2002
    [37] Alfred Straub. DSC (Dynamic Stability Control) in BMW 7 Series Cars[C]. Proceeding of the Advanced Vehicle Control(AVEC)1996.
    [38]裴锦华,李以农.汽车电子稳定程序控制系统的研究现状及发展趋势[J].天津汽车,2005(02):14~17
    [39]李亮,宋健,祁雪乐.汽车动力学稳定性控制系统的发展现状和研究趋势[J].农业机械学报,2006(2):141~144
    [40]黄炳华,陈祯福. ESC的最新动向和发展趋势[J].汽车工程,2008(1):1~9
    [41] M.Lutz,W.Golderer,J.Gerstenmeier,J.Marek,D.Schubert. A Precision Yaw Rate Sensor in Silicon Micromachining[C]. SAE Technical Paper,980267.
    [42] Noritaka Yamada,Akira Nagae,Yuji Taki. Development of Brake Control System for Driving Hills applying Active Wheel Speed Sensor[C]. Proceeding of the Advanced Vehicle Control(AVEC)2000.
    [43] Seiichiro Otake,Michitoshi Onoda,Kazuyoshi Nagase. Automotive High Pressure Sensor[C]. Proceeding of the Advanced Vehicle Control(AVEC)1998.
    [44] H.Cherouat. Vehicle lateral motion control using lateral acceleration feedback[C]. Proceeding of the American Control Conference(ACC)2006
    [45] A.EI Haijaji,M.Chadli,M.Oudghiri,O.Pages. Observer-based robust fuzzy control for vehicle lateral dynamics[C]. Proceeding of the American Control Conference(ACC)2006
    [46] Motoki Shino,Pongsathorn Raksincharoensak,Masao Nagai. Vehicle Handling and Stability Control by Integrated Control of Direct Yaw Moment and Active Steering[C]. Proceeding of the Advanced Vehicle Control(AVEC)2002
    [47] Youseok Kou,Wanil Kim,SangHo Yoon,JeongWoo Lee,Dongshin Kim. Integration Chassis Control (ICC) Systems of Mando[C]. SAE Technical Paper,2004-01-2044.
    [48] Peter E.Rieth,Ralf Schwarz. ESC II~ESC with active steering intervention[C]. SAE Technical Paper,2004-01-0260
    [49] SangHo Yoon,JiHyun Jung,BonKyung Koo,DongShin Kim. Development of Rollover Prevention System Using Unified Chassis Control of ESP and CDC Systems[C]. SAE Technical Paper,2006-01-1276.
    [50] Philip Koehn,Michael Eckrich,Hendrikus Smakman,Arnd Schaffert. Integrated Chassis Management:Introduction into BMW’s Approach to ICM[C]. SAE Technical Paper,2006-01-1219
    [51]祁雪乐,宋健,王会义,李亮.基于AMESim的汽车ESP液压控制系统建模与分析[J].机床与液压,2005(8):115~116
    [52]李亮,宋健,韩宗齐,孔磊.用于电子稳定程序(ESP)在线控制的液压模型和反模型[J].机械工程学报,2008(2):139~144
    [53]贾豫东,宋健,孙群.用于电子稳定性程序的汽车模型和控制策略[J].公路交通科技,2004(5):132~136
    [54]李亮,宋健,于良耀.汽车动力学稳定控制系统仿真平台研究[J].系统仿真学报, 2007(4):1597~1600
    [55]王会义,宋健.汽车电子稳定程序的控制算法[J].清华大学学报(自然科学版), 2007(2):224~227
    [56]于良耀,宋健,王学辉.汽车动力学稳定性控制系统试验平台[J].江苏大学学报(自然科学版), 2007(3):115~118
    [57]于良耀,宋健,李亮,王学辉.汽车动力学稳定性控制系统冬季试验[J].农业机械学报, 2007(11):4~8
    [58]皮大伟,陈南,王金湘.模糊逻辑在车辆稳定性控制系统中的应用[J].东南大学学报(自然科学版),2008(1):43~48
    [59]王金湘,陈南,皮大伟.基于横摆角速度变门限值的车辆稳定性控制策略及实车场地试验[J].汽车工程,2008(3):222~226
    [60]郭孔辉,丁海涛.轮胎附着极限下差动制动对汽车横摆力矩的影响[J].汽车工程,2002(2):101~104.
    [61]丁海涛,郭孔辉,张建伟,付皓,吕济明.汽车ESP硬件与驾驶员在回路仿真[J].汽车工程,2006(4):346~350
    [62]李静,徐斌,张英峰,刘巍,刘曼远.车辆电子稳定性程序神经网络PID控制算法[J].吉林大学学报(工学版),2007(4)
    [63]李幼德,刘巍,李静,赵健,宋大凤,沙宏亮.汽车稳定性控制系统硬件在环仿真[J].吉林大学学报(工学版),2007(4):737~740
    [64]刘巍,赵向东,李幼德,李静等. ESP硬件在环试验平台的研究与开发[J].汽车工程, 2007(9)
    [65]余卓平,高晓杰,张立军.用于车辆稳定性控制的直接横摆力矩及车轮变滑移率控制[J].汽车工程,2006(9):844~848
    [66]高晓杰,余卓平,张立军.基于车辆状态识别的AFS与ESP协调控制研究[J].汽车工程,2007(4):283~291
    [67]冯金芝,喻凡,李君.基于混合仿真技术的车辆横向稳定性控制系统[J].汽车工程,2004(2):187~192
    [68]陶建民.车辆稳定性控制策略之比较[J].湖北汽车工业学院学报,2005(1):1~5
    [69]周红妮,陶建民.车辆稳定性控制策略研究[J].湖北汽车工业学院学报,2007(3):26~31
    [70]李晔.汽车ESP控制策略及其硬件实现研究[D].南京:东南大学机械工程系,2006
    [71] H.E.Tseng,D.Madau,B.Ashrafi,T.Brown,D.Recker. Technical Challenges in The Development of Vehicle Stability Control System[C]. Proceedings of the 1999 IEEE International Conference on Control Applications.
    [72]朱忠伦.典型车辆动力学稳定性控制系统及关键技术[J].轻型汽车技术,2006(11):4~7
    [73]陈胜金,陈飚,黄妙华.简析汽车稳定控制系统(ESP)的ECU的性能要求[J].北京汽车,2004(6):21~23
    [74]宋昆鹏,唐厚君,李昌刚.汽车稳定性控制系统电控单元(ECU)的开发[J].工业控制计算机,2007(5):71~73
    [75]刘兆勇,陈晓青.商用车稳定性控制器的研究与设计[J].湖北汽车工业学院学报,2007(3):32~34
    [76]谢伯元,朱西产,朱赟,唐国强. ESC试验方法研究[J].天津汽车,2007(6):32~34
    [77] E.Silani, S.M.Savaresi and S.Bittanti, A.Visconti and F.Farachi. The Concept of Performance-Oriented Yaw-Control System: Vehicle Model and Analysis[C]. SAE Technical Paper, 2002-01-1585
    [78] Chinar Ghike and Taehyun Shim. 14 Degree-of-Freedom Vehicle Model for Roll Dynamics Study[C]. SAE Technical Paper, 2006-01-1277
    [79]谢剑辉.汽车ESP液压调节器建模与仿真策略分析[D].长春:吉林大学汽车工程学院,2008
    [80]刘溧.汽车ABS仿真试验台的开发与液压系统动态特性的研究[D].长春:吉林工业大学汽车工程学院,2000
    [81] Bakker E, Nyborg L, Pacejka H B. Tyre modeling for use in vehicle dynamics studies[C]. SAE Technical Paper, 870421
    [82] Bakker E, Pacejka H B, Linder L. A New Tire Model with an Application in Vehicle Dynamics Studies[C]. SAE Technical Paper, 890087
    [83] Pacejka H B and Bakker E. The magic formula tyre model[J]. Vehicle System Dynamics, 1991, 21(supplement)
    [84] Pacejka H B and Besselink I J M. Magic Formula tyre model with transient properties[J]. Vehicle System Dynamics, 1997, 27(supplement):65~79
    [85]郭孔辉.汽车操纵动力学[M].长春:吉林科学技术出版社,1991
    [86]郭孔辉.纵滑与侧偏联合工况下的轮胎力学模型[R].长春汽车研究所研究报告,1986
    [87]郭孔辉.轮胎侧偏特性的一般理论模型[J].汽车工程,1990,12(3):1~12
    [88]郭孔辉.轮胎侧倾力学特性模型[J].汽车技术,1993,(10):1~4
    [89]郭孔辉.用于汽车全工况动力学分析的非稳态轮胎六分力模型[R].汽车动态模拟国家重点实验室内部报告.长春:吉林工业大学,1997
    [90] Guo K and Ren L. A unified semi-emipirical tire model with higher accuracy and less parameters[C]. SAE Technical Paper, 1999-01-0785
    [91] Guo K and Ren L. A non-steady and non-linear tire model under large lateral slip condition[C]. SAE Technical Paper, 2000-01-0358
    [92] KONGHUI GUO, DANG LU, SHIN-KEN CHEN, WILLIAM C.LIN, XIAO-PEI LU. UniTire Model—non-linear and non-steady tire model for vehicle dynamic simulation[C]. TMVDA, 2004
    [93]袁忠诚. UniTire轮胎稳态模型研究[D].长春:吉林大学汽车工程学院,2006
    [94]郭孔辉.各向摩擦系数不同条件下轮胎力学特性的统一理论模型[J].中国机械工程,1996,7(4)
    [95] Guo K,Ren L. Final Report for the GM Joint R&D Project:Non-linear Dynamics Tire Model[R]. Jilin University of Technology,1999
    [96]李宁.复杂工况下轮胎侧偏特性仿真模型研究[D].长春:吉林大学汽车工程学院,2007
    [97]程颖.基于误差分析法的驾驶员模型及其在ADAMS中的应用[D].长春:吉林大学汽车工程学院,2003
    [98]李英.方向与速度综合控制驾驶员模型及在ADAMS中的应用[D].长春:吉林大学汽车工程学院,2008
    [99]余志生.汽车理论(第四版)[M].机械工业出版社,2007
    [100] Thomas D.Gillespie.车辆动力学基础[M].清华大学出版社,2006
    [101] Dr A Hac. Evaluation of Two Concepts in Vehicle Stability Enhancement Systems[J]. 98ME031
    [102] Aleksander Hac, Mark O.Bodie. Improvements in Vehicle Handling Through Intergrated Control of Chassis System[J]. Int.J.of Vehicle Design, Vol.29, 2002
    [103]程军.车辆动力学控制的模拟[J].汽车工程,1999,21 (2):199~205
    [104] Y. Shibahata, K. Shimada and T. Tomari. Improvement of Vehicle Maneuverability by Direct Yaw Moment Control[J]. Vehicle System Dynamics, 22 (1993) pp.465~481
    [105] Shoji Inagaki, Ikuo Kshiro, Masaki Yamamoto. Analysis on Vehicle Stability in Critical Cornering Using Phase-Plane Method[C]. Proceeding of the Advanced Vehicle Control(AVEC)1994
    [106] Young Eun Ko, Jang Moo Lee. Estimation of the stability region of a vehicle in plane motion using a topological approach[J]. Int.J.of Vehicle Design, Vol.20, No.3, 2002
    [107] Ken’ichi KITAHAMA. Analysis of vehicles’handling behavior using a phase plane[C]. Proceeding of the Advanced Vehicle Control(AVEC)2002
    [108] Jihan Ryu, Eric J.Rossetter, J.Christian Gerdes. Vehicle Sideslip and Roll Parameter Estimation Using GPS[C]. Proceeding of the Advanced Vehicle Control(AVEC)2002
    [109] Rusty Anderson, David M.Bevly. Estimation of Slip Angles using a Model Based Estimator and GPS[C]. Proceeding of the American Control Conference(ACC)2004
    [110] Sven A.Beiker, Karl Heinz Gaubatz, J.Christian Gerdes, Kirstin L.Rock. GPS Augmented Vehicle Dynamics Control[C]. SAE Technical Paper, 2006-01-1275
    [111] David M.Bevly, Robert Daily, Willian Travis. Estimation of Critical Tire Parameters Using GPS Based Sideslip Measurements[C]. SAE Technical Paper, 2006-01-1965
    [112]王宪彬.用于ESP系统的车辆状态参数软测量方法研究[D].长春:吉林大学交通学院,2006
    [113] Hideaki Sasaki, Takatoshi Nishimaki. A Side-slip Angle Estimation Using Neural Network for a Wheeled Vehicle[D]. SAE Technical Paper, 2000-01-0695
    [114]施树明, Henk Lupker, Paul Bremmer, Joost Zuurbier.基于模糊逻辑的车辆侧偏角估计方法[J].汽车工程,2005,27(4):426~470
    [115] A.T. van Zanten. Bosch ESP Systems: 5 Years of Experience[C]. SAE Technical Paper, 2000-01-1633
    [116] Masugi Kaminaga, Genpei Naito. Vehicle Body Slip Angle Estimation Using an Adaptive Observer[C]. Proceeding of the Advanced Vehicle Control(AVEC)1998
    [117] Yoshiki Fukada. Estimation of Vehicle Slip-angle with Combination Method of Model Observer and Direct Integration[C]. Proceeding of the Advanced Vehicle Control(AVEC)1998
    [118] Yoshiki Fukada. Slip-Angle Estimation for Vehicle Stability Control[C]. Vehicle System Dynamics, 32(1999), pp.375-388
    [119] Aleksander Hac, Melinda D.Simpson. Estimation of Vehicle Side Slip Angle and Yaw Rate[C]. SAE Technical Paper, 2000-01-0696
    [120] Damrongrit Piyabongkarn, Rajesh Rajamani, John A.Grogg, Jae Y.Lew. Development and Experimental Evaluation of A Slip Angle Estimator for Vehicle Stability Control[C]. Proceeding of the American Control Conference(ACC)2006
    [121]张勇,殷承良,张建武.车辆质心侧向速度实时估计方法[J].机械工程学报,2008,44(2):219~222
    [122] Pei-shih Huang, Henk Smakman, Jurgen Guldner. Design of a Vehicle State Observer for Vehicle Dynamics Control Systems[C]. Proceeding of the Advanced Vehicle Control(AVEC)2000
    [123]姚国成.汽车稳定性控制策略的仿真分析[D].长春:吉林大学汽车工程学院,2007
    [124]胡寿松.自动控制原理(第3版)[M].国防工业出版社,2000
    [125] Katsuhiko.现代控制工程(第四版)[M].电子工业出版社,2003
    [126]耿聪,崛洋一,青木良文.电动汽车稳定性控制中的车体侧偏角观测器研究[J].河北工业大学学报,2007(1):14-18
    [127] S.M.鲍奇克.数字滤波和卡尔曼滤波[M].科学出版社, 1984
    [128] Simon Haykin.自适应滤波器原理(第四版)[M].电子工业出版社,2003
    [129]齐志权,刘昭度,时开斌,等.基于汽车ABS/ASR/ACC集成化系统的ABS参考车速确定方法的研究[J].汽车工程,2003,25(6):617~620.
    [130]王仁广,刘昭度,齐志权,等.汽车ABS参考车速确定方法的研究[J].农机化研究,2006, (3):198~200.
    [131] U Kiencke, A Daiβ. Estimation of Tire Friction for enhanced ABS-Systems[C]. Proceeding of the Advanced Vehicle Control(AVEC)1994
    [132] Wim R.Pasterkamp, Hans B.Pacejka. The Tyre As A Sensor To Estimate Friction[C]. Proceeding of the Advanced Vehicle Control(AVEC)1996
    [133] Masayoshi Ito, Kenneth Yoshioka, Takeshi Saji. Estimation of Road Surface Conditions Using Wheel Speed Behavior[C]. Proceeding of the Advanced Vehicle Control(AVEC)1998
    [134] Rajesh Rajamani, Damrongrit Piyahongkarn, Jae Y.Lew, John A.Grogg. Algorithms for Real-Time Estimation of Individual Wheel Tire-Road Friction Coefficients[C]. Proceeding of the American Control Conference(ACC)2006
    [135] Nitin Patel, Christopher Edwards, Sarah K Spurgeon. A sliding mode observer for tyre friction estimation during braking[C]. Proceeding of the American Control Conference(ACC)2006
    [136] Youssef A. Ghoneim, William C. Lin, David M. Sidlosky, Hsien H. Chen, Yuen-Kwok Chin, Michael J. Tedrake. Integrated chassis control system to enhance vehicle stability[J]. Int. J. Vehicle Design, Vol.23, Nos. 1/2, 2000
    [137]潘定海.汽车稳定性控制(VSC– Vehicle Stability Control)[R].汽车动态模拟国家重点实验室学术交流资料,1999年7月
    [138]王德平,郭孔辉,宗长富.车辆动力学稳定性控制的仿真研究[J].汽车技术,1999(2):8~10
    [139]王德平,郭孔辉,宗长富.车辆动力学稳定性控制的理论研究[J].汽车工程,2000,22(1):7~9
    [140]王德平,郭孔辉.车辆动力学稳定性控制的控制原理与控制策略研究[J].机械工程学报,2000,36(3):97~99
    [141] V.Alberti, E.Babbel. Improved Driving Stability by Active Braking of the Individual Wheels[C]. Proceeding of the Advanced Vehicle Control(AVEC) 1996
    [142] Masao Nagai, Yutaka Hirano, Sachiko Yamanaka. Integrated Control of Active Rear Wheel Steering and Direct Yaw Moment Control[C]. Vehicle System Dynamics, 27(1997), pp.357-370
    [143] Sergey V.Drakunov, Behrouz Ashrafi, Alessandro Rosiglioni. Yaw Control Algorithm via Sliding Mode Control[C]. Proceeding of the American Control Conference(ACC)1999
    [144] Kenneth R.Buckholtz. Use of Fuzzy Logic in Wheel Slip Assignment– Part I: Yaw Rate Control[C]. SAE Technical Paper, 2002-01-1221
    [145] Kenneth R.Buckholtz. Use of Fuzzy Logic in Wheel Slip Assignment– Part II: Yaw Rate Controlwith Sideslip Angle Limitation[C]. SAE Technical Paper, 2002-01-1220
    [146] H. Cherounat, M.Lakehal-Ayat, S.Diop. An integrated braking and steering control for a cornering vehicle[C]. Proceeding of the Advanced Vehicle Control(AVEC) 2004
    [147] A.El Hajjaji, M.Chadli, M.Oudghiri, O.Pages. Observer-based robust fuzzy control for vehicle lateral dynamics[C]. Proceeding of the American Control Conference(ACC)2006
    [148]许良.后驱轻型客车ESP免疫PI控制及车速估算方法研究[D].长春:吉林大学汽车工程学院,2007
    [149]罗俊.汽车稳定性控制策略研究与仿真[D].武汉:武汉科技大学车辆工程系,2006
    [150]周红妮.车辆稳定性控制方法与策略的比较研究[D].武汉:武汉科技大学车辆工程系,2007
    [151]庞迪.基于变结构滑模控制理论的汽车操纵稳定性控制策略研究[D].重庆:重庆大学机械工程学院,2005
    [152]裴锦华.汽车ESP控制系统研究[D].重庆:重庆大学机械工程学院,2005
    [153]涂志祥.基于模糊控制的汽车动力学稳定性控制(VDC)研究[D].长沙:长沙理工大学汽车与机械工程学院,2007
    [154]曾光奇.模糊控制理论与工程应用[M].华中科技大学出版社,2006
    [155]郭孔辉,丁海涛.轮胎附着极限下差动制动对汽车横摆力矩的影响[J].汽车工程,2002,24(2):101~104
    [156] Howard Dugoff,Francher P.S,Leonard Segel. An analysis of tire traction properties and their influence on vehicle dynamic performance[D]. SAE Technical Paper,700377
    [157] International Standard, ISO/FDIS 3888-1,“Passenger cars– Test track for severe lane-change manoeuvre– Part 1: Double-lane change”
    [158]丁海涛,郭孔辉,张建伟,付皓,吕济明.汽车ESP硬件与驾驶员在回路仿真试验台的开发与应用[J].汽车工程,2006 (4):346-350
    [159]郭孔辉,付皓,丁海涛,卢荡,金凌鸽.基于Carsim RT的车辆稳定性系统控制器开发[J].汽车技术,2008 (3):1~4
    [160]郭孔辉,付皓,胡进,丁海涛.车辆稳定性控制试验与评价方法的仿真应用.汽车技术,2008(10):1~3
    [161]付皓.汽车牵引力控制系统轮速识别与电子节气门控制[D].长春:吉林大学汽车工程学院,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700