猕猴桃酒挥发性风味物质提取方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
酒的风味直接影响酒的感官品质,是反映酒的类型及质量好坏的一个重要指标。挥发性风味物质作为酒中最主要的风味物质,在酒的风味构成方面具重要作用。由于酒中挥发性风味物质组成复杂、含量大多较低,其提取检测工作仍是目前研究工作的一个薄弱环节。我国是猕猴桃生产大国,猕猴桃酒作为猕猴桃深加工产品之一,具很好的发展前景。为了更好的进行猕猴桃酒生产工艺控制及其质量控制,针对猕猴桃酒中挥发性风味物质,本研究引用食品常用的几种挥发性风味物质提取方法,通过方法参数优化及方法针对性、重现性、灵敏度、信息量等指标考察,来探讨不同方法用于猕猴桃酒中挥发性风味物质研究的可能性、适宜性,从而系统建立猕猴桃酒中挥发性风味物质提取方法体系。
     本研究结果表明:
     (1)顶空直接进样法以样品上方平衡体为研究对象,温度、电解质影响-液平衡。经研究优化,该方法最优参数为温度35℃、加盐量3g/8mL。受取样量少以及各组分含量低等因素制约,该方法灵敏度低、重现性较低。猕猴桃酒中挥发性风味物质研究表明,该方法共检出23种化合物,基本包括猕猴桃酒中的主要挥发性物质,风味物质的组成和含量分布较为真实地反映出猕猴桃酒中挥发性风味物质的存在状况。本方法在猕猴桃酒挥发性风味物质主要组分定性及半定量(面积归一化)方面具有一定的应用。
     (2)固相微萃取法为目前应用较多的挥发性物质提取方法,其萃取效果受萃取头类型、萃取温度、萃取时间及电解质等因素影响。经研究优化,对于猕猴桃酒中挥发性风味物质提取,其最优参数为CAR/PDMS萃取头、萃取温度45℃、萃取时间45min、加盐量0.25g/mL。固相微萃取法具很强的吸附、富集、浓缩功能,研究表明,相比顶空直接进样法,该方法灵敏度提高2个数量级左右,方法的稳定性强,重现性好。猕猴桃酒中挥发性风味物质研究表明,该方法共检出52种主要化合物,物质种类增加,含量分布具自身特点。本方法对于猕猴桃酒中低含量挥发性风味物质定量分析具有较好的应用价值,而对于其组成分布研究仍具有缺陷。
     (3)溶剂提取法为最常用的有机化合物提取、分离方法,这种方法遵循相似相溶原理,受溶剂极性、溶解性以及待提取对象理化性质等诸多因素影响。本研究表明,对于猕猴桃酒中挥发性风味物质提取,二氯甲烷体系与戊烷/二氯甲烷混合溶剂体系提取效果接近,但两者比较,还是以二氯甲烷体系为最优。溶剂萃取法可操作性强,重现性好,同时也具有较高的灵敏度。猕猴桃酒中挥发性风味物质研究表明,该方法共检出60种主要化合物,其中包括较多的高沸点挥发性物质,而部分的低沸点挥发性物质萃取效果降低。本方法对于猕猴桃酒中高沸点挥发性风味物质研究具有重要的应用价值。
     (4)同时蒸馏法为常用挥发性物质提取方法,本研究表明,该方法重现性好,灵敏度较差。猕猴桃酒中挥发性风味物质研究表明,该方法共检出37种主要化合物,物质种类较少,其中以低沸点、易挥发物质为主。作为经典的挥发性物质提取方法,本方法在猕猴桃酒易挥发性风味物质提取方面也具有一定的应用价值。
     (5)猕猴桃酒中的挥发性风味物质组成众多,含量高低不等,它的研究与提取方法密切相关。本研究表明,应用不同的提取方法所得物质种类及相对含量分布存在较大差异。
     (6)本研究表明,对于猕猴桃酒中挥发性风味物质研究,溶剂萃取法重现性最好,固相微萃取法与同时蒸馏法重现性次之,顶空直接进样法重现性较差。灵敏度则以固相微萃取法为最高,再依次为溶剂萃取法、同时蒸馏法、顶空直接进样法。
     (7)受方法工作原理及各相关因素制约,不同的方法各有其自身的优缺点、侧重点。从方法的针对性、方法的可操作性、研究的目的等多方面考虑,不同方法具有不同的应用领域及应用价值。同时,不同方法的综合使用更能从不同角度剖析我们的研究对象。本研究表明,对于猕猴桃酒中挥发性风味物质高灵敏度定量分析研究宜采用固相微萃取法;对于样品中高沸点风味物质研究分析则以溶剂萃取法为最好;对于易挥发、高含量物质的研究分析则可采用同时蒸馏法及顶空直接进样法。
     (8)经不同方法对猕猴桃酒中挥发性风味物质研究,从猕猴桃酒中共检出102种挥发性风味物质,其中以醇类物质(24种)、酯类物质(38种)、酸类物质(11种)为主,另有少量的酮类物质(6种)、醛类物质(2种)、酚类物质(3种)、烃类物质(3种)以及部分的含杂原子化合物。本研究较为全面的对猕猴桃酒中挥发性风味物质组成进行了解析。
The wine’s flavor which is one of the important indexes of reflecting wine’s type and quality directly affects its sense and quality. The volatile components as the major flavor substance play significant role in its flavor composition. Due to its complicated ingredients and low content, it is still one weak tache to extract and test in present study. China is a country where produces large amount of kiwifruit which has a sound perspective as one of the products of further processing. In order to better control the producing technics and quality, aiming at the volatile components in kiwifruit wine, referring to several frequently used methods in extracting the volatile substance in food, the article discussed the possibility and feasibility of different ways in studying the volatile substances in kiwifruit wine through some indexes such as optimizing method parameters and method pertinence, repeatability, sensitivity and information content, therefore establishing the extraction system of volatile substance in kiwi fruit wine.
     The study shows:
     (1)HS studies the balanced gas above the sample and how temperature and electrolyte affect the balance of gas and liquid. Through optimizing, the parameters are temperature of 35℃and the amount of salt of 3g/8mL. Restricted by the amount of sample and the content of components, the method has poor sensitivity and repeatability. The study on the volatile components in kiwifruit wine shows that there are 23 compounds including the major volatile substance in the wine. The flavor composition and content, to some extent, truly reflect the existence of the major volatile substance in the wine. The method is applied to determine the nature and semiquantitative area% of the main volatile substance in kiwi fruit wine.
     (2)SPME is often used in extracting the volatile substance at present, which is influenced by such factors as type, temperature, time and electrolyte. Through optimizing, the parameters are the following: CAR/PDMS fiber, the extraction temperature 45℃, the extraction time 45min and the amount of salt added 0.25g/mL. Solid - Phase Microextractionis strong in adsorption, enrichment and concentration. The study shows that this method improved about two degrees of sensitivity and had strong stability and repeatability compared with HS. It altogether examined 52 main compounds, the substance variety increased and the content distribution had its own features. The method is worthy of applying to quantitatively analyze the low content of volatile substance in the kiwi fruit wine, but it is still defective in studying the distribution of its components.
     (3)L-L is frequently used to extract and separate organic compounds. It follows the theory of resemblance and mixture which affected by many factors such as the polarity of impregnant, dissolution and the physiochemical property of distilling objects. The study shows that dichloromethane system has close effect with pentane/ dichloromethane compound. But comparatively speaking, the dichloromethane system is better. L-L has strong maneuverability and repeatability, and high sensitivity at the same time. The method altogether examined 60 main compounds, including many volatile substances at high boiling point, while the effect of volatile substances extraction at low boiling point was decreased. It is worthy of applying to study the volatile flavor substances at high boiling point in kiwi fruit wine.
     (4)SDE is commonly used in extracting the volatile components, which has good repeatability but poor sensitivity. The method examined 37 main compounds, which mainly consist of the substances at low boiling point or substances prone to volatilize. As a typical method, it also plays a certain role in extracting the flavor substance which is easy to volatilize.
     (5)The volatile substances in kiwifruit wine have different contents due to lots of components. So its study is closely related to the extraction method. The study shows that the substance variety and their content distribution differ significantly when applying differnet extraction methods.
     (6)The study shows that to the volatile flavor substance in kiwifruit wine L-L is superior to SPME and SDE repeatability, with HS the poorest. The sensitivity of it follows the order of SPME, L-L, SDE and HS.
     (7) Limited by the working theory and relative factors, different methods have their own pros and cons, and emphasis. Taking the pertinence, maneuverability of methods and the purposes of studies, different methods have different fields of application and values. At the same time, the comprehensive application of different methods can anatomize the targets of studies from different perspectives. The study shows that it is suitable to apply SPME to quantitatively analyze the high sensitivity of volatile flavor substance in kiwifruit wine; and it is better to use L-L to analyze the flavor substance at high boiling point in the samples; to those prone to volatilize and with high content the SDE and HS are preferred.
     (8) From the studies on volatile flavor substances in kiwifruit wine with different methods, there are altogether 102 volatile flavor substances, among which majority of 24 compounds of alcohols , 38 compounds of esters and 11compounds of aids occupied the majority, and 6 compounds of ketones, 2 compounds of aldehydes, 3 compounds of hydroxybenzenes and 3 compounds of hydrocarbon the least, along with part of compounds consisting of mixed atoms. The study parsed the volatile flavor components in kiwifruit wine in a rather comprehensive way.
引文
[1] 黄宏文,龚俊杰,王圣梅, 等. 猕猴桃属(Actindia)植物的遗传多样性[J]. 生物多样性, 2000, 8﹙1﹚: 1-12.
    [2] 攻文红, 李志强, 李汉友. 我国猕猴桃优异资源的评价[J]. 山西果树, 2005, 5: 23-24.
    [3] 徐小彪, 辜青青, 李卫华. 世界猕猴桃产销进展[J]. 现代园艺, 2007, 2: 24-25
    [4] 谢彩云, 范国华. 猕猴桃开发研究进展[M]. 贵州农业科学, 1996, 6: 61-63.
    [5] 陈宾如. 中国猕猴桃源流考[M]. 中国农史, 1984, 1.
    [6] 李明章, 孟爱国. 新西兰猕猴桃科研和产业化状况[J]. 资源开发与市场, 1999, 15﹙6﹚.
    [7] 黄宏文. 猕猴桃研究进展[M]. 北京: 科学出版社, 2000.
    [8] 潘林娜. 猕猴桃的加工和综合利用[J]. 食品工业科技, 1993, 6﹙1﹚: 24-29.
    [9] KUME, HIDE. 日本公开特许,JP 05236931[S]. 1993.
    [10] TELLO-SOLIS S R, VALLE-GUASARRAMA M E, HERNANDEZARANA A. Purification and dichroism studies of multiple forms of actinidin from Actinidia chinesis (kiwifruit) [J]. Plant Science, 1995, 106: 227-232.
    [11] 王满力, 吴英华, 吴惠芳. 从猕猴桃皮渣中提取果胶的工艺研究[J]. 食品科技, 2003(1):85-86.
    [12] 罗桂环. 猕猴桃发展小史[J]. 中国农史, 2002, 21﹙3﹚: 24-26.
    [13] 刘忠义. 猕猴桃酒的低温酿造研究[J]. 酿酒科技, 1995, 1: 44-46.
    [14] 王声淼,柳必盛,徐晓平, 等. 猕猴桃发酵酒加工工艺研究[J]. 酿酒科技, 1998, 3: 71-72.
    [15] 邹锁住. 提高猕猴桃酒质量研究[J]. 酿酒科技, 1999, 2: 48-52.
    [16] 邹锁住. 新西兰猕猴桃酒的加工[J]. 酿酒科技, 1986, 4: 32-34.
    [17] 李加兴,姚茂君,周亚林. 开发猕猴桃酒的若干问题探讨[J]. 酿酒科技. 1999, 6: 81-82.
    [18] 王 华,李维新. 猕猴桃酒优化工艺及质量控制研究[J]. 酿酒科技, 1999, 8﹙4﹚: 71-74.
    [19] 王 华,李维新. 猕猴桃干酒的降酸研究[J]. 食品科学,2000, 21﹙9﹚: 29-31.
    [20] 夏双梅,张春辉. 猕猴桃干酒生产工艺研究[J]. 食品工业,2000, 4: 17-18.
    [21] 李加兴,姚茂君,吴政霞. 提高猕猴桃酒非生物稳定性的工艺研究[J]. 酿酒, 2000, 1: 82-83.
    [22] 倪志祥. 半干型猕猴桃酒的酿制[J]. 酿酒科技,2001, 5: 73-75.
    [23] 胡昌泉,林晓资,何志刚, 等. 果酒香味形成与陈酿工艺[J]. 福建果树, 2001, 4: 12-14.
    [24] 李 华. 现代葡萄酒工艺学[M]. 西安:陕西科学技术出版社,1995.
    [25] 周悦译. 微生物生产风味物质[J]. 食品与发酵工业, 1994, ﹙3﹚: 75-81.
    [26] 边 宾. 微生物在酱香型白酒香味物质形成中的作用[J]. 中国酿造,1997, ﹙1﹚: 13-14.
    [27] Alliata P. Defects in wine aroma caused by sulphurated compounds[J]. Vignevine ﹙Italy﹚, 1995, 22﹙1﹚: 53-58.
    [28] Anocibar Beloqui A, Guedes de Pinho P, Bertrand A. Bis﹙2-hydroxyethyl﹚disulfide,a new sulfur compound found in wine,its influence in wine aroma[J]. Ameri J Enolo Viticul﹙USA﹚, 1995, 46﹙1﹚: 84-87.
    [29] Laurent M H, Henick kling T, Acree T E. Changes in the aroma and odor of chardonnary wine due to malolactic fermentation [J]. Wein Wissenchaft, 1994, 49﹙1﹚: 3-10.
    [30] Miranda-lopezr.Identification of additional odor-active compound in pinot nior wines[J].Am J Enol&Vitic,1992﹙1﹚: 90-92.
    [31] 沈尧绅,冯 谦. 果酒中芳香成分的分析[J]. 食品与发酵工业.1990,﹙4﹚: 35-43.
    [32] Yong H,Paterson V.J., Burn D.J.W.Volatile Aroma Constituents of Kiwifruit[J]. Journal of Science of Food Agriculture, 1983,﹙34﹚: 81-85.
    [33] Yong H, Paterson V.J. The effect of harvest maturity ripeness and storage on kiwifruit aroma [J]. Journal of Science of Agriculture, 1985, ﹙36﹚: 352-358.
    [34] Gary R. Takeoka, Matthinas Guntert, Robert A.Flah, et al. Volatile Constituents of Kiwifruit﹙Actinidia Chinesis Planch﹚[J]. Journal of Agriculture and Food chemistry, 1986, ﹙34﹚: 576-578.
    [35] 陈 雪,韩 琳. 猕猴桃及其皮渣香成分的研究[J]. 化学通报, 1995, ﹙6﹚: 45-47.
    [36] Maria J. Jordan, Carlos A. Margaria, Philip E.Shaw, et al. Aroma active components in aqueous kiwifruit essence and kiwifruit puree by GC-MS and multidimensional GC/GC-O[J]. Journal of Agriculture and Food chemistry, 2002﹙50﹚: 5386-5390.
    [37] Francis I L, Tate M E, Williams P J. The effect of hydrolysis conditions on the aroma released from Semillon grape glycosides [J]. Australian Journal of Grape and Wine Research, 1996, 2﹙2﹚: 70-76.
    [38] Harry Yong, Vivienne J, Paterson,et.al. Volatile aroma constituents of Kiwifruit [J]. J Sci Food Agric, 1983﹙34﹚: 81-85.
    [39] Harry Yong, Conrad O Perera. Idetification of E-Hex-3-enal as an important contributor to the off-flavor aroma in Kiwifruit juice [J]. J Sci Food Agric, 1992, ﹙58﹚: 519-522.
    [40] Harry Yong, Vivienne J Paterson. Characterization of bound flavor components in Kiwifruit[J]. J Sci Food Agric, 1995﹙68﹚: 257-260.
    [41] John P.Bartley, Alan M Schwede. Production of volatile compounds in ripening Kiwi Fruit ﹙Actinidia chinensis﹚[J]. J Agric Food Chem, 1989﹙37﹚: 1023-1025.
    [42] Darriet P, Lavigne V, Boidron J N, et.al. Characterzation of the varietal aroma of Sauvignon wines by coupled gas chromatography[J]. Connassance de la Vigne et du Win, 1991, 25﹙3﹚: 164-174.
    [43] 李剑芳, 张 灏. 发酵猕猴桃汁的研究﹙Ⅱ﹚——香成份鉴定[J]. 食品与发酵工业, 1999, 25﹙6﹚: 14-18.
    [44] Paterson V J, Macrae E A, Young H. Relationships between sensory properties and chemical composition of kiwifruit ﹙Actinidia deliciosa﹚[J]. J Sci Food Agric, 1991, 57﹙2﹚: 235-251.
    [45] 唐 健. 猕猴桃[J]. 北京日化, 2001, 62﹙1﹚: 34-36.
    [46] Soufleros ,E H Pissa, Irini Petridis, et.al.Instrumental analysis of volatile and other compounds of Greek kiwi wine;sensory evalution and optimization of its composition[J]. Food Chemistry, 2001, 75﹙12﹚: 487-500.
    [47] 赵光鳌等译. 葡萄酒酿造学——原理及应用[M]. 北京: 中国轻工业出版社,2001.
    [48] 李华主编.葡萄与葡萄酒研究进展-葡萄酒学院年报[M].西北农林科技大学葡萄酒学院,2000.
    [49] 王声淼,柳必盛,徐晓平, 等. 猕猴桃发酵酒加工工艺[J]. 食品工业科技,1998, 3: 52-53.
    [50] 相良泰行. 食嗜好 のセンシグガら食品感性工业の展开けて[J]. 食品工业, 1997, 40﹙12﹚: 16-32.
    [51] 文瑞明. 香料香精手册[M]. 长沙: 湖南科学技术出版社, 2000: 369-371.
    [52] 葛 伟,庄德艳. 猕猴桃干酒工艺的研究[J]. 酿酒, 1991﹙5﹚: 28-29.
    [53] 刘 倩,周 靖,谢曼丹,等. 榴莲中香成分分析[J]. 分析测试学报, 1999, 18﹙2﹚: 58-60.
    [54] 刘虎威. 相色谱方法及应用[M]. 北京: 化学工业出版社, 2000: 143
    [55] Rapp A,et al. Eine neuo Methode zur Anreichernng von Dampfkomponenten Dargestellt am Beispieldes Weines.Chromatographia,1980,12:698-702
    [56] GB/T5009-2003
    [57] 郭 威,王少云. 顶空相分析技术及其应用[J]. 食品与药品, 2007, 9(10): 47-50.
    [58] 易翠平, 刘玉梅, 姚惠源. 顶空相色谱法测定食品风味物质[J].中国调味品,2003,5:37-40
    [59] 许栋应,刘 珉,梁亚莉,等. 固相微萃取现场流动采样装置[J]. 分析化学, 2002, 30﹙11﹚: 1394-1398.
    [60] Devosa C, Vliegen M, Willaert B,et al.Automated headspace-solid-phase microextraction-retention time locked-isotope dilution gas chromatography-mass spectrome try for the analysis of organotin compounds in water and sediment samples[J]. J Chromatogr A, 2005, 1079﹙1-2﹚: 408-413.
    [61] Namera A, Yashiki M, Kojima T, et al. Automated headspace solid-phase microextraction and in-matrix derivatization for the determination of amphetamine-related drugs in human urine by gas chromatography-mass spectrometry[J]. J Chromatogr Sci, 2002, 40﹙1﹚: 19-29.
    [62] Liu J T, Hara K, Kashimura S, et al. Newmethod of derivatization and headspace solid-phase microextraction for gas chromatographic-mass spectrometric analysis of amphetamines in hair [J]. J Chromatogr B, 2001, 758﹙1﹚: 95-101.
    [63] Camarsu C C, Mezei-Szuts M, Varga G B. Residual solvents determination in pharmaceutical products by GC-HS and GC-MS-SPME[J]. J pharm r Biomed Anal, 1998, 18﹙4-5﹚: 623-638.
    [64] Bruschini C, Dani F R, Pieraccini G, et al. Volatiles from the venom of five species of paper was(Polistesdominulus,P.gallicus,P.nimphus,P.sulcifer and P.olivaceus) [J]. Toxicon, 2006, 47﹙7﹚: 812-825.
    [65] Santos A M, Vasconcelos T, Mateus E, et al. Characterization of the volatile fraction emitted by phloems of four pinus species by solid-phrase microextraction and gas chromatography-mass spectrometry[J]. Chromatogr A, 2006, 1105﹙1-2﹚: 191-198.
    [66] Wajs A, Pranovich A, Reunanen M, et al.Charaterisation of volatile organic compounds in stemwood using solid-phase microestraction[J]. Phytochem Anal, 2006, 17﹙2﹚: 91-101.
    [67] 吴 波, 张寒俊. 固相微萃取-质色谱/质谱测定蔬菜中风味物质的研究[J]. 分析仪器, 2006,﹙2﹚: 25-31.
    [68] Sala C, Busto O, Guasch J, et al. Influence of vine training and sunlight exposure on the 3-alky-2-methoxypyrazines content in musts and wines from the Vitis vinifera variety cabernet sauvignon[J]. Agric Food Chem, 2004, 52﹙11﹚: 3492-3497.
    [69] AlonsoL, Fraga M J. Simple and rapid analysis for quantitation of the most important volatile flavor compounds in yogurt by headspace gas chromatography-mass spectrometry[J]. J Chromatogr Sci, 2001, 39﹙7﹚: 297-300.
    [70] Gomez-Ariza J L, Garcia-Barrera T, Lorenzo F, et al. Use of multiple headspace solid-phase microextraction and pervaporation for the determination of off-flavours in wine[J]. J Chromatogr A, 2006, 1112﹙1-2﹚: 133-140.
    [71] 王 方,王 伟,尹吉泰, 等. 顶空固相微萃取-相色谱/质谱对玫瑰香葡萄酒挥发性成分的研究[J]. 现代仪器, 2007, ﹙3﹚: 66-69.
    [72] 罗 涛,范文来,郭 祥,等. 顶空固相微萃取﹙HS-SPME﹚和相色谱-质谱﹙GC-MS﹚联用分析黄酒中挥发性和半挥发性微量成分[J]. 酿酒科技, 2007, ﹙6﹚: 121-124.
    [73] 张灵枝,王登良,陈维信,等. 不同贮藏时间的普洱茶香成分分析[J]. 园艺学报, 2007, 34﹙2﹚: 504-506.
    [74] 王 立,汪正范. 色谱分析样品处理[M]. 化学工业出版社, 2001: 49-66.
    [75] 宛晓春,汤 坚,汤 逢.哈密瓜中流离态和键合态风味化合物[J]. 南京农业大学学报, 1997, 20﹙4﹚: 94-98.
    [76] 涂正顺,李 华. 猕猴桃果实采后香成分的变化[J]. 园艺学报, 2001, 28﹙6﹚: 512-518.
    [77] 梁新红,赵功玲. 猕猴桃干酒香成分的GC/MS分析[J]. 安徽农业科学, 2006, 34﹙19﹚:5022-5023.
    [78] 何 华. 利用超临界或液态二氧化碳生产食品调味剂的方法.中国调味品,1996﹙4﹚:29-30.
    [79] 刘志伟. 超临界流体技术应用研究[J],2006, 21﹙1﹚: 19-24.
    [80] 王 立, 汪正范. 色谱分析样品处理[M]. 化学工业出版社, 2001: 49-66.
    [81] 王花俊, 张峻松, 刘利锋. 天然植物香料提取加工工艺研究进展[J]. 农产品加工学刊, 2008(3): 65-70.
    [82] 高 静, 刘培勋, 龙 伟. 中药提取技术的研究进展[J]. 医药导报, 2007, 26(9): 1058-1060.
    [83] 秦军, 陈桐, 吕晴.同时蒸馏萃取气质联用法测定花椒挥发油成分[J].2001,30(6):4-18.
    [84] 张 宁,曹劲松,彭志英. 风味物质分离方法研究进展[J]. 中国调味品,1998(7): 7-11.
    [85] Teranishi,R.et al. Steam distillation-solvent extraction recovery of volatiles from fats and oils[J].Agric.Food Chem.1977,25﹙3﹚:464-466.
    [86] 刘岩梅,张树明,赵昌政,等. 浅谈食品风味物质的分离分析方法[J]. 中国食品添加剂, 2004,﹙3﹚: 104-107.
    [87] 安秋荣, 郭志峰. 用GC-MS 法分析春、秋薄荷油成份分析[J]. 化学学报,2000, 19(5): 64-66.
    [88] 林正奎, 华映芳. 刺梨鲜果香成分研究[J]. 四川日化, 1990,(4): 16-21.
    [89] 王 华, 魏东梅, 张艳芳编. 葡萄与葡萄酒实验室技术操作规范[M].葡萄酒实验室, 1998.
    [90] 吴伯乐,吴志广. 猕猴桃栽培技术[M]. 成都: 天地出版社. 1998.
    [91] 吴金中. 香与分子结构关系[J]. 安徽大学学报(自科版), 1990, 14(4): 70-76.
    [92] Fan Gong, Yi-Zeng Liang, Pei-Shan Xie, et al.Information theory applied to chromatographic fingerprint of herbal medicine for quality contol[J]. Journal of Chromatograrphy A, 2003, (1002)25-40.
    [93] Bruno Kolb, Leslie S Ettre. Static Headspace-Gas Chromatography-Theory and Practic[J]. WILEY-VCH, INC. 1997.
    [94] 程丽娟,薛泉宏. 微生物学实验技术[M]. 世界出版社,2000.
    [95] Lord H, Pawliszyn J. Evolution of solid-phase microextrction technology[J]. J Chromatogr A, 2000, 885﹙1-2﹚: 153-193.
    [96] 周 珊, 赵立文, 马腾蛟, 等. 固相微萃取(SPME)技术基本理论及应用进展[J]. 现代科学仪器, 2006,(02).
    [97] Mangani F, Cenciarini R. Solid phase microextraction using fused silica fibers coated with graphitized carbon black Chromatographia[J],1995,(41):678-684.
    [98] Djozan D,Assadi Y. A new porous-layer activated-charcoal-coated fused silica fiber: Application for determination of BTEX compounds in water samples using headspace solid-phase microextraction and capillary gas chromatography[J]. Chromatographia, 1997,(45):183-188.
    [99] 汪立平. 苹果酒酿造中香物质的研究[D]. 无锡: 江南大学, 2004.
    [100] 陈计峦. 梨香成分分析、变化及理化特征指标的研究[D]. 北京: 中国农业大学, 2005.
    [101] Schultz,T.H.et al. Isolation of volatile components from a model system[J].Agric.Food Chem.Vol.25,No.3,1977,446-449.
    [102] 汪秋安,罗俊霞. 香料香精分析技术研究[J]. 中国调味品, 2004,(8): 13-17.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700