高热安定性吸热型碳氢燃料合成的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
飞行器的热管理是提高超音速推进系统研制和开发中的技术难题。吸热型碳氢燃料是解决问题的基本途径,它既是飞行必不可少的推进剂,也可利用自身物理热沉和化学反应吸收热量,同时生成具有优异点火性能的小分子化合物。高热安定性吸热型碳氢燃料是吸热燃料在高超音速推进系统应用中产生的新概念,它既具有吸热燃料的技术优势,又具有优异的热安定性,从而有效降低焦炭沉积,保障飞行安全。因此,研制高热安定性吸热型碳氢燃料是高超音速推进系统研制中必需解决的关键技术之一。
     本工作首先利用GC/MS分析了80个吸热燃料样品的烃族化学组成,将其分为正构烷烃、异构烷烃、环烷烃、芳烃、十氢萘五大类,并测定了燃料的密度、苯胺点、热值、冰点、闪点及沸程等主要理化性质。考察了吸热燃料的烃族组成及沸程对各种主要性质的影响。结合Cookson等的理论,建立了八个模型方程,通过多元线性回归得到了模型参数。采用Cookson方程与新模型方程进行预测,结果表明新模型的相关系数明显提高。
     根据燃料组成和性质关系图,结合高热安定性吸热型碳氢燃料的基本理化性质要求,确定符合吸热型碳氢燃料基本理化性质(密度、闪点、冰点、热值)的正构烷烃、异构烷烃、环烷烃、芳烃的组成区域。从确定区域选取燃料样品JF-1、JF-2、JF-3、JF-4、JF-5和RP-3进行超临界热裂解反应,比较研究燃料的组成与热安定性的关系。JF-1、JF-2和JF-3的积炭量、产气率和裂解液中焦炭前驱体的总量低于RP-3,热安定性优于RP-3,而JF-4、JF-5的积炭量、产气率和裂解液中焦炭前驱体的总量高于RP-3,热安定性劣于RP-3。根据JF-1、JF-2、JF-3、JF-4、JF-5的化学组成可以推断:随着异构烷烃和正构烷烃的含量减少,环烷烃的含量增加,燃料的热安定性升高。
Heat management of an aircraft is a crucial technique in the development of the hypersonic propellant system. Endothermal hydrocarbon fuels (EHF) is a basic solution on this problem. EHF not only are the necessary propellant for the hypersonic flight, but also can remove heat through physics heat sink and chemical cracking reaction which also yields lower molecular compounds with better ignition performance. High thermal-stable endothermal hydrocarbon fuel has both advantages of EHF and excellent thermal stability depressing the formation of deposition. It is a new conception and a key technique in developing hypersonic propellant aircraft.
     The relationships of composition-properties of 80 jet fuel samples concerning chemical compositions and several physical properties including density, flash point, freezing point, heat value and boiling range were studied. The chemical compositions of the jet fuel samples were determined by GC/MS, and grouped into five categories of hydrocarbon compounds, including n-paraffins, isoparaffins, cyclo paraffins, hydroaromatic and decalin. Physical properties of fuels were measured by the GB methods. Based on the Cookson’s models, 8 new models considering chemical compositions and boiling range were developed to gain the model parameters by multiple linear regressions. Property prediction with the Cookson’s and new models, showed that the developed models is significant improvements on the correlations reported in the literatures
     Based on ternary diagram of jet fuel chemical composition- property relations and the basic physical property, the composition ranges of n-paraffins, isoparaffins, cyclopraffins and aromatics were established. Five fuels chosen from defined-ranges and RP-3 were evaluated from thermal cracking experiment under supercritical conditions to study the relationships of compositions and thermal stability. The solid deposits, mass fraction of gas products and deposition precursor of JF-1, JF-2 and JF-3 are less than RP-3, showing better thermal stability, while that of JF-4 and JF-5 were more than RP-3, displaying worse thermal stability. Based on the chemical composition of JF-1, JF-2 , JF-3, JF-4 and JF-5,it is concluded the increase of n-paraffins and isoparaffins content is favorable for the thermal stability improvement, but the contrary trend were observed for the cycloparaffins.
引文
[1] Edwards T, USAF Supercritical hydrocarbon fuels interests, AIAA-93-0807
    [2]杰尼索夫E. T.,柯瓦列夫Г.И.,喷气燃料的氧化及其抑制(常汝楫译),北京:烃加工出版社, 1987: 4~11
    [3]刘治中,许世海,姚如杰,液体燃料的性质及应用,北京:中国石化出版社, 2000, 59~94
    [4]黄毅,当今喷气燃料研究的几个热点问题,国际航空, 1998, 2: 70~71
    [5] Kay I W, Peschke W T, Guile R N, Hydrocarbon-fueled scramjet combustor investigation, Journal of Propulsion and Power, 1992, 18(2): 507~512
    [6] Striebich R C, Lawrence J, Thermal decomposition of high-energy density materials at high pressure and temperature, Journal of Analytical and Applied Pyrolysis, 2003(70): 339~352
    [7]朱岳鳞,刘慧丛,熊常健,航空燃料中的腐蚀性物质研究, 2000年中国材料年会论文集,北京, 2000
    [8] Grant E, Jones W, Balster J, Aviation fuel recirculation and surface fouling, Energy & Fuels, 1997, 11(6): 1303~1308
    [9] Richard B N, Freejet test of the AFRL HySET scramjet engine model at mach 6.5 and 4.5, AIAA-2001-3196
    [10] Goetzinger J W, Ripley D L, French C, Jet fuel thermal stability problems related to incompatibility, Symposium on future jet fuels II, Presented before the Division of Petroleum Chemistry Inc, American Chemical Society, Miami Beach Meeting, September 10-15, 1989, 34(4): 804~808
    [11] Deepak D, Jeenu R, Endothermic fuels for supersonic ramjet, Journal of the Indian Chemical Society, 2003 80(5): 535~543
    [12] Edwards, Tim, Recent research results in advanced fuels, Symposium on structure of jet fuels IV, Presented before the Division of Petroleum Chemistry, Inc. 211th National Meeting, American Chemical Society, New Orleans, LA, March 24-29, 1996, 41(2): 481~489
    [13] Ianovski, Leonid S (Russia), Endothermic fuels for hypersonic aviation, Presented at an AGARD Meeting on Fuels and Combustion Technology for Advanced Aircraft Engines, 1993, 44: 1~7
    [14] Heinrich B, Luc-Bouhali A, Endothermic liquid fuels: some chemical considerations on the cooling process, AIAA-2001-1785
    [15] Cook R T, Rockwell, Advanced cooling techniques for high pressure hydrocarbon-fueled rocket engines, AIAA-80-1266
    [16] Robert F F, Pratt W, Hydrocarbon scramjet propulsion system development, Demonstration and Application, AIAA-99-4922
    [17] Ruhl R C, Stephen H, Kenyon M R, Endothermic reaction process, US Patent, 5565009, 1996-10-15
    [18] Smith J Q, Fabuss B M, Borsanyi A S, et al. Evaluation of Materials as Endothermic Aviation Fuels, ASD TR 60-841, PartⅡ,Dec. 1961, and WADD TR 60-841, PartⅢ, Oct. 1962
    [19] Fabuss B M, Smith J Q, Lait R I, et al. Rapid Thermal Cracking on n-Hexadecane at Elevated Pressures, I&EC Process Design and Development, 1962, 1 (4): 293-299
    [20] Fabuss B M, Kafesjian R, Smith J Q, et al. Thermal Decomposition Rates of Saturated Cyclic Hydrocarbons, I&EC Process Design and Development, 1964, 3 (3): 248-254
    [21] Morris H E, Fabuss B M, Smith J Q, et al, Thermal Cracking of Pure Saturated Hydrocarbons, In: Mcketta, J. J.,eds., Advanced in Petroleum Chemistry and Refining, New York, 1964, Vol. IX.
    [22] Lander H, Nixon A C, Endothermic Fuels for Hypersonic Vehicles, Journal of Aircraft, 1971, 8 (4) : 200-207
    [23] Nixon A C, Ackerman G H, Vaporization and Endothermic Fuels for Advanced Engine Applications, 1964, AFAPL TDR 64-100, PartsⅠ,Ⅱ, andⅢ
    [24] Nixon A C, Ackerman G H, Faith L E, et al. Vaporization and Endothermic Fuels for Advanced Engine Applications, 1967, AFAPL TDR 67-100, PartsⅠ,Ⅱ, andⅢ
    [25] Edwards T, Anderson S D, Results of High Temperature JP-7 Cracking Assessment, AIAA-93-0806
    [26] Linne D L, Meyer M L, Edwards T, et al. Evaluation of Heat Transfer and Thermal Stability of Supercritical JP-7 Fuel, AIAA-97-3041
    [27] Edwards T, Zabarnick S, Supercritical Fuel Deposition Mechanisms, Ind. Eng. Chem. Res., 1993, 32: 3117-3122
    [28] Sheu J C, Zhou N, Krishnan A, Thermal Cracking of Norpar-13 under Near-Critical and Supercritical Conditions, AIAA-98-3758
    [29] Yu J, Eser S, Thermal Decomposition of C10-C14 Normal Alkanes in Near-Critical and Supercritical Regions: Product Distributions and Reaction Mechanisms, Ind. Eng. Chem. Res., 1997, 36: 574-584
    [30] Yu J, Eser S, Kinetics of Supercritical-Phase Thermal Decomposition of C10-C14 Normal Alkanes and Their Mixtures, Ind. Eng. Chem. Res., 1997, 36: 585-591
    [31] Yu J, Eser S., Thermal Decomposition of Jet Fuel Model Compounds under Near-Critical and Supercritical Conditions. 1. n-Butylbenzene andn-Butylcyclohexane, Ind. Eng. Chem. Res., 1998, 37: 4591-4600
    [32] Yu J , Eser S, Thermal Decomposition of Jet Fuel Model Compounds under Near-Critical and Supercritical Conditions. 2. Decalin and Tetralin, Ind. Eng. Chem. Res., 1998, 37: 4601-1608
    [33] Ianovskj L S, Clifford M, Endothermic fuels for hypersonic aviation, GARD-c P-536, 1993
    [34] Zhou N, Krishnan A, A Numerical Model for Endothermic Fuel Flows with Heterogeneous Catalysis, AIAA-96-0650
    [35] Heinrich B, Luc-Bouhali A, Ser F, et al. Endothermic Liquid Fuels: Some Chemical Considerations on the Cooling Process, AIAA-2001-1785
    [36] Cookson D J, Lloyd C P, Smith B E, Investigation of the chemical basis of kerosene (Jet Fuel) specification properties, Energy & Fuels, 1987, 1: 438~447
    [37] Cookson D J, Smith B E. Calculation of jet and diesel fuel properties using 13C NMR spectroscopy, Energy & Fuels, 1990, 4: 152~156
    [38] Cookson D J, Lloyd C P, Smith B E, Investigation of the Chemical Basis of Diesel Fuel Properties, Energy & Fuels 1988, 2: 854-860
    [39] Cookson D J, Latten J L, Shaw L M, et al. Property-composition relationships for diesel and kerosene fuels, Fuel, 1985, 64 (8): 509-519
    [40] Cookson D J, Smith B E, Shaw L M, Determination of hydrocarbon compound class abundances in kerosene and diesel fuels, Fuel, 1987, 66(7): 758-765
    [41] Cookson D J, Iliopoulos P, Smith B E, Composition-property relations for jet and diesel fuels of variable boiling range, Fuel, 1995, 74 (1): 71~78
    [42] ?mer Gül, Rudnick L R, Schobert H H, The Effect of Chemical Composition of Coal-Based Jet Fuels on the Deposit Tendency and Morphology, Energy & Fuel, 2006, 20(6): 2478-2485
    [43]方文军,雷群芳,林瑞森.吸热型碳氢燃料的核磁共振和色谱/质谱分析及热力学性质.分析化学研究报告, 2004, 3(6): 283-288
    [44]刘治中,许世海,姚如杰.液体燃料的性质与应用,中国石化出版社,2000. 68-79。
    [45] Liu G Z, Wang L, Qu H J, et al. Artificial neural network approaches on composition-property relations of jet fuels based on GC-MS, Fuel(2007), doi: 10.1016/j.fuel.2007.02.023
    [46] Suchada B.. Thermally stable coal-based jet fuel: Chemical composition, Thermal stability, Physical properties and their relationships, PhD Dissertation. America: The Pennsylvania State University, 2003. 56-58
    [47]刘治中,许世海,姚如杰,液体燃料的性质与应用,中国石化出版社,2000,84-90
    [48] Tim E., Liquid Fuel and Propellants for Aerospace Propulsion: 1903-2003, Journal of Propulsion and Power, 2003, vol.19,no.6
    [49]范启明,米镇涛,高超音速推进用吸热型烃类燃料的热稳定性研究Ⅰ.热氧化与热裂解沉积,燃料化学学报,2002,30(1):78-82
    [50] Figueiredo J L, Reactivity of Coke Deposited on Metal Surface, Materials and Corrosion, 1999, 50, 696-699
    [51] Wickham D T, Atria J V, Engel J R, Formation of Carbonaceous Deposits in a Model Jet Fuel under Pyrolysis Conditions, Prepr. Pap.–Am. Chem. Soc., Div. Pet. Chem, 1998, 43(3): 428-432
    [52]范启明,米镇涛,提高航空燃料热安定性的研究进展,石化技术与应用,2002,20(4):261-263,272
    [53] Binns K E, Dioterle G L, Evaluation of the JP-8+100 Additive Candidates in the Extended Duration Thermal Stability Test System, Prepr. Pap.–Am. Chem. Soc., Div. Pet. Chem, 1996, 41(2): 457-460
    [54] Zabarnick S, Whitacne S D, Ielesnic P, Further Studies of JP-8+100 Additive Candidates in the QCM, Prepr. Pap.–Am. Chem. Soc., Div. Pet. Chem, 1996, 41(2): 438-441
    [55] Zabarnick S, Investigation of Fuel Additives for a JP-8+225 Jet Fuel Using the Quartz Crystal Microbalance, Prepr. Pap.–Am. Chem. Soc., Div. Pet. Chem, 2000, 45(3): 440-443
    [56]余彩香,碳氢燃料热安定性的研究,[硕士学位论文],天津:天津大学,2006
    [57] Yu J, Eser S, Thermal Decomposition of n-Alkandes under Supercritical Condition, Prepr. Pap.–Am. Chem. Soc., Div. Pet. Chem, 1996, 41(2): 488-492
    [58] Eser S, Schobert H H., et al. Pyrolytic Degradation Studies of a Coal-Derived and a Petroleum Derived Aviation Jet Fuel, Energy Fuels, 1993, 7 (2): 234-243
    [59]邹仁鋆,石油化工裂解原理与技术,北京:化学工业出版社,1982,51-128
    [60]范启明,高超音速推进用吸热型烃类燃料的氧化与裂解过程研究:[博士学位论文],天津:天津大学,2002
    [61] Goel P, Bochman A L, Bridging Batch and Flow Reactor Studies of Jet Fuel Degradation, Prepr. Pap.–Am. Chem. Soc., Div. Pet. Chem, 1998, 43(3): 82-386
    [62] Edwards T, Cracking and Deposition Behavior of Supercritical Hydrocarbon Aviation Fuels, Combust Sci Technol, 2006, 178(1-3): 307~334
    [63] Atria J V., Cermignani W, Schobert H H , Nature of High Temperature Deposits from n-Alkanes in Flow Reactor Tubes, Prepr. Pap.–Am. Chem. Soc., Div. Pet. Chem, 1996, 41(2): 493-497
    [64] Glassman I, Brezinsky K, Fuels Combustion Research, AFOSR Final Report for Grant 91-0431
    [65] Wickham D T, Engel J R, Karpuk M E, Additives to Prevent FilamentousCoke Formation in Endothermic Heat Exchangers, Prepr. Pap.–Am. Chem. Soc., Div. Pet. Chem, 2000, 45(3): 459-464
    [66] Towfighi J, Sadrameli M, Niaei A, Coke Formation Mechanisms and Coke inhibiting methods in pyrolysis Furnaces, Journal of Chemical Engineering of Japan, 2002, 35(10): 923-937
    [67] Gergoua K, Arumugam R, Chang P, et al. Effects of Solid Carbon Surfaces on Thermal Decomposition of n-Dodecane, Prepr. Pap.–Am. Chem. Soc., Div. Pet. Chem, 1996, 41(2): 513-517
    [68] Andresen J J, Strohm J J, Song C, Study on The Formation of Aromatic Compounds during Thermal Degradation of Naphthenic Jet Fuel in the Pyrolytic Regime by NMR and HPLC. Prepr. Pap.–Am. Chem. Soc., Div. Pet. Chem, 2000, 45(3): 478-483
    [69] John M, James J, Song C, et al. Relationship between the Formation of Aromatic Compounds and Solid Deposition during Thermal Degradation of Jet Fuels in the Pyrolytic Regime, Energy Fuel, 2001, 15(3): 714-723
    [70] Minus D K., Corporan E, Aromatic Species Formation in Thermally Stressed Jet fuel, Prepr. Pap.–Am. Chem. Soc., Div. Pet. Chem, 2000, 45(3): 484-487
    [71] Daisuke N, Tomoya S, Kinetic Study of Model Reaction in the Gas Phase at Early Stage of Coke Formation, Ind.Eng.Chem.Res, 1992, 31: 14-19
    [72] Spadaccini L, Sobel D R, Huang H, Deposit Formation and Mitigation in Aircraft Fuels, ASME paper 99-GT-217
    [73] Yu J,Eser S,Determination of Critical Properties (Tc,Pc) of Some Jet Fuels,Ind. Eng. Chem. Res., 1995,34,404-409
    [74] Maurice L Q, Lander H, Advanced Aviation Fuels: A Look Ahead Via A Historical Perspective, Fuel, 2001, 80: 747-756
    [75] Maurice L, Edwards T , Liquid Hydrocarbon Fuels for Hypersonic Propulsion,Progress in Astronautics and Aeronautics, 2000, 189: 757-775
    [76] Edwards T, Zabarnick S, Supercritical Fuel Deposition Mechanisms, Ind. Eng. Chem. Res., 1993, 32: 3117-3122
    [77] Schobert H H, Beaver B, Rudnick L R, Progress Toward Development of Coal-based JP-900 Jet Fuel, Prepr. Pap.–Am. Chem. Soc., Div. Pet. Chem , 2004, 49(4): 493-497
    [78] Edwards T, Zabarnick S, Supercritical Fuel Deposition Mechanisms,Ind. Eng. Chem. Res, 1993, 32 (12): 3117-3122.
    [79] Bruno C, Filippi M, Hydrocarbon Fuels Reforming for Hypersonic Propulsio, ISABE papers, 14th, Florence, Italy, 1999, 314-324
    [80]周震寰,甲基环己烷和十氢萘的超临界可控吸热过程研究:(博士学位论文),天津:天津大学,2003
    [81]朱玉红,吸热燃料超临界热裂解过程抑焦技术研究:(硕士学位论文),天津:天津大学,2007
    [82] Altin O, Eser S, Analysis of solid deposits from thermal Stressing of a JP-8 Fuel on Different Tube Surfaces in a Flow Reactor, Ind Eng Chem Res, 2001, 40(2): 642– 648

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700