脉冲放电处理硝基苯废水的实验研究和机理分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了脉冲高电压放电条件下采用尖—板电极反应器对硝基苯废水的处理效果。用数值计算的方法,计算分析了反应器在通气、不通气等条件下的电场情况。通过一系列的对比实验考察了放电时间、施加电压、溶液电导率、废水溶液PH值、溶液初始浓度、以及通入的气体成分等因素对硝基苯溶液降解率的影响。通过对比直流放电和脉冲放电的质谱图,研究和推断了反应产物和反应机理。
     反应器及其放电方式的电场分析比较表明:水中气泡的存在在一定程度上畸变提高了区域电场强度。与气中喷雾的电场分布情况相比,其电场畸变的趋势正好相反。当针管部分绝缘之后,在相同电压下,电场强度明显提高。在反应器的选择与改进上,考虑以水中气泡的放电方式进行水处理实验,同时对针电极针管部分予以绝缘措施。
     脉冲放电降解硝基苯模拟废水的实验结果表明:酸性条件有利于硝基苯的降解;电压脉冲的幅值越大或频率越高,降解效果越好;往反应器中通入氧气的降解效果要远胜于通入空气或氮气;硝基苯废水的初始浓度越高,降解效率越高;反应后的溶液温度可作为反应器内脉冲放电激烈程度的一个表征量,良好的放电条件下,硝基苯的降解与溶液温升成正比。
     质谱检测的结果表明:在放电形式的选择上,脉冲放电处理能对硝基苯分子深度降解,但相应的降解率不高;而直流电晕处理的降解率高,但对硝基苯的降解深度不够。
This article studied the nitrobenzene waste water under pulse plasma, using needle-to-plane electrode reactor. With the numerical calculation, analyzed the electric field situation in both aerate and airproof conditions. The influence of voltage, solution conductivity, PH value, initial density, as well as gas import of the solution on the efficiency of nitrobenzene are explored through a series of contrast experiment. Through contrast the mass spectrum picture of direct current and pulse plasma discharge, deduce the reaction mechanism.
     The electric field analysis of the reactor and the electric discharge way indicated: the existence of air bubble in water enhanced the electric field intensity in a certain degree which is just opposite to the EHD situation. Under the same voltage, the electric field improved significantly after needlepoint partial insulations. In the reactor choice and the improvement, considered the air bubble electric discharge in water and partial insulations.
     The experimental result of using pulse plasma to dispose nitrobenzene simulation waste water indicated that, the acidic condition, higher voltage pulse, import the oxygen toward the reactor and higher initial density is advantageous to the nitrobenzene degeneration. The solution temperature after the reaction can been an attribute quantity about the pulse electric discharge intense degree. Under the good electric discharge condition, the nitrobenzene degeneration and the finally solution temperature have the direct ratio.
     The GC/MS analysis indicated that, in the choice of the form of electric discharge, pulse electric discharge have deeper processing and lower efficiency than direct current discharge.
引文
[1]黄润华,贾振邦.环境学基础教程[M].北京:高等教育出版社, 1997, 144.
    [2]钱易等.水体颗粒物和难降解有机物的特性与控制技术原理[M].北京:中国环境科学出版社, 2000, 6.
    [3]孙云明,刘会峦.海洋中的主要化学污染物及其危害[J].化学教育, 2001: (7-8).
    [4]范美坤,陈宇春.赤潮·水体富营养化[J],化学教育, 1999: (5).
    [5]赵天,关晓梅,杨春生.水体污染物的种类、来源及对人体的危害[J].黑龙江水利科技, 2004: (2).
    [6]薛冬霞,张骥东.水中硝基苯类污染物的危害与控制方法.
    [7]王连生.有机污染化学[M].北京:科学出版社, 1990.
    [8]樊金红等.铁内电解法处理硝基苯类废水的机理与展望[J].环境保护科学, 2004. (30). 9-12.
    [9]赵德明等. Fe-C微电解法+H2O2组合工艺处理对氯硝基苯废水[J].城市环境与城市生态, 2002. 15(1). 32-34.
    [10] H. W. Prengle, Experimental rate constants and reactor considerations for the destruction of micropollutants and trihalomethane precursors by ozone with rltraviolet radiation, Environ. Sci. Technol., Vol. 17, 1983, pp 743-747.
    [11] Erika Lubkowitz Bailey, Nancy G.Love, Treatment of a Wastewater Containing Nitrification-Inhibiting Oxides Using a Single-Sludge Notrogon Removal Treatment systerm, Water Environ.Res., 71, 94(1999).
    [12]李玉平等.硝基苯在温和条件下的电化学还原[J].环境科学, 2005. 26(1). 117-121.
    [13] G. B. Cannelli and E. D’Ottavi, Proceedings of Oceans Engineering for Today’s Technology and Tomorrow’s Preservation, Brest, France, Sept. 13–16, 1994, Vol 1, pp. 750–755.
    [14]马军等. O3/H2O2氧化工艺去除水中硝基苯的研究[J].环境科学, 2002. 23(5).67-71.
    [15] Gregory J. Daviero, A. M. ASCE, Marine Wastewater Discharges from Multiport Diffusers. III: Stratified Stationary Water, JOURNAL OF HYDRAULIC ENGINEERING, 2006, 404-410.
    [16] David R. Grymonpre, Amit K. Sharma. The role of Fenton’s reaction in aqueous phase pulsed steamer corona reactors[J].Chemical Engineering Journal, 2001, 82: 189-207.
    [17] Semyon Bocharov. Andrew V. Teplyakov. Adsorption. Ordering. and Chemistry of Nitrobenzene on Si(100)-2@1[J]. Surface Science, 2004(573). 403-412.
    [18]靳强等.硝基苯水溶液的超声波降解动力学[J].环境化学, 2003. 22(3). 154-158.
    [19]熊宜栋.硝基苯类制药废水的超声处理研究[J].工业水处理, 2003. 23(1). 44-46.
    [20] Stephane Ung. Annie Falguieres, Alain Guy. Clotilde Ferroud. Ultrasonically activated reduction of substituted nitrobenzenes to corresponding N-arylhydroxylamines[J]. Tetrahedron Letters, 2005(46). 5913-5917.
    [21]葛渊数等.阳-非离子有机膨润土对水中硝基苯的吸附作用[J].中国环境科学, 2004. 24(2). 192-195.
    [22] Semyon Bocharov. Andrew V. Teplyakov. Adsorption.ordering and chemistry of nitrobenzene on Si(100)-2*1[J]. Surface Science, 2004(573). 403-412.
    [23] Dong Soo Lee a. Sang Do Park. Decomposition of nitrobenzene in supercritical water[J]. Journal of hazardous materials, 1996(15). 67-76.
    [24] Idil Arslan-Alaton. John L. Ferry. H4SiW12O40-catalyzed oxidation of nitrobenzene in supercritical water: kinetic and mechanistic aspects[J]. Applied Catalysis B: Environmental, 2002(38). 283-293.
    [25]孙剑辉等.厌氧折流板反应器处理硝基苯废水的研究[J].工业水处理, 2005. 25(7). 69-71.
    [26] L. S. Bell. J.F. Devlin. R.W. Gillham. P.J. Binning. A sequential zero valent iron and aerobic biodegradation treatment system for nitrobenzene[J]. Journal of ContaminantHydrology, 2003(66). 201-217.
    [27]曾苏等.硝基苯降解菌在厌氧序批式反应器中处理硝基苯废水的应用[J].环境化学, 2002. 21(6). 576-580.
    [28]印永祥,程仕清,吴广军.大气压下交辉光放电等离子体气-液相化学反应器.核聚变与等离子体物理, 1997, 17(4): 46~49.
    [29] S. Boev, N. Yavorovsky, Electrical Water Treatment. in: Pulsed Power Conference, 1999. Digest of Technical Papers. 12th IEEE International , 1999, 1: 181~184.
    [30] Bing Sun; Masayuki Sato; J S Clements. Use of a pulsed high-voltage discharge for removal of organic compounds in aqueous solution. Journal of Physics D: Applied Physics, 1999, 32(15): 1908~1915.
    [31] P. Sunka, Pulses electrical discharges in water and their applications. Physics of Plasmas, v8, n5 II, May, 2001, p 2587.
    [32] P. S. Lang, W. K. Ching, D. M. Willberg et al, Oxidative degradation of 2, 4, 6-trinitrotolene by ozone in an ekectrichydraulic discharge reactor, Environ. Sci. Technol., Vol. 32, 1998, pp 3142-3148.
    [33] Satoshi Ihara, Tomoaki Miichi, Saburoh Satoh, et al, Ozone generation by a discharge in bubbled water, Jpn. J. Appl. Phys, 1999, 38: 4601~4604.
    [34] F. Yoshikawa, T. Oishi, T. Satoh and K. Isuzugawa, "A bubble originated with underwater spark discharge and the pressure ofjet caused by its movement", Symposium on High Speed Photography and Photonics, 1997.
    [35] M. Uchiyama, K. Kusakabe and K. Isuzugawa, "Behavior of bubble produced by underwater spark discharge in the vicinity of water surface", Symposium on High Speed Photography and Photonics, 1999.
    [36]国家环保局《水和废水监测分析方法》编委编.水和废水监测分析方法[M].第3版,北京:中国环境科学出版社, 1989, 424~426.
    [37]尹莉莉.还原-偶氮光度法测定水中硝基苯的方法探讨.北方环境, 2005, 2, 30卷1期.
    [38]李凌云,叶齐政,谢志辉,李劲.放电等离子体水处理中活性粒子的研究进展,高电压技术, 2005, 31(1), 57~59.
    [39]李凌云,叶齐政,谢志辉,李劲.气体成分对水中脉冲放电H2O2形成的影响,高压电器, 2005, 31(2), 57~59.
    [40] Sikney Clement J et al. Preliminary investigation of prebreakdown phenomena and chemical reactions using a pulsed high-voltage discharge in water[J]. IEEE Trans. Industry Application, 1987, 23(2): 224.
    [41]李劲,王泽文,高秋华等.放电等离子体水处理技术中的放电问题[J].高电压技术, 1997, 23(2): 7~8.
    [42]郭香会,李劲,脉冲放电等离子体处理硝基苯废水的实验研究[J].电力环境保护, 2001, 17(2): 37-38.
    [43]叶齐政,李凌云,李劲,胡辉.计算混合体在均匀场中最大场强的近似公式,高电压技术, 2003, 29(1), 3、20.
    [44] R Ono, T Oda. OH radical measurement in a pulsed a discharge plasma observed by a lif method[J]. IEEE Trans on Ind Appl, 2001, 37(3): 709-714.
    [45]魏复盛.水和废水监测分析方法[M].北京:中国环境科学出版社, 1989. 424~428.
    [46]全国量和单位标准化技术委员会. GB13194-91水质硝基苯、硝基甲苯、硝基氯苯、二硝基甲苯的测定气相色谱法[S].北京:中国标准出版社, 1991.
    [47]柳禹行.气相色谱在环境监测分析中的应用[M].北京:中国环境科学出版社, 1989. 92~117.
    [48] Bing Sun. Optical study of active species produced by a pulsed steamer corona discharge in water[J]. Journal of Electrostatics, 1997, 39: 182-202.
    [49] T. Miichi, S. Ihara, S. Satoh. Spectroscopic measurements of discharges inside bubbles in Water[J]. Vacuum, 2000, 59: 236-243.
    [50]李青山,白焱,傅春艳,孟庆红.树脂吸附/气相色谱法测定水中硝基苯类污染物[J].水资源保护, 2000, (04).
    [51] Satoshi Ihara. Ozone generation by a discharge in bubble water[J]. Journal of AppliedPhysics, 1999, 38: 4601-4604.
    [52]李名波,申欢等.水处理中的羟基自由基·OH[J].陕西环境, 2003, 10(4): 20~22.
    [53] H. M. Jones, E. E. Kunhardt. Submircosecond breakdown and prebreakdown phenomena in Water: Influence of pressure, conductivity, and gap separation[C]. Conference record of the 1994 International Symposium on Electrical Insulation, Pittsburgh, PA USA, 1994, 442~445.
    [54] V. P Glushko, Thermodynamic Properties of Individual Substances, Moscow: Nauka, 1978.
    [55] Radu, Balescu, Equilibrium and Nonequilibrium Statistical Mechanics, New York: A Wiley-Interscience Publication, 1975.
    [56] BE戈兰特等,【前苏联】.等离子体物理基础(马腾才等译).北京:原子能出版社, 1988.
    [57] Boulos M I, Fauchais P, fendder E, Thermal Plasma Fundamental and Applications, Plenum Press, 1994.
    [58]赵化桥,等离子体化学与工艺.合肥:中国科技大学出版社, 1993.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700