新型自动液相微萃取与高效液相色谱联用技术及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
样品前处理技术是样品分析过程中最关键的步骤,尤其是分析复杂样品基质中痕量组分时,它直接影响到样品的分析速度和整个测定结果的准确度和精密度。操作简便快速、有机溶剂用量少、装置微型化和自动化、易于与各种检测仪器联用的新型样品前处理技术已成为当前分析化学领域的重要发展趋势,其中预处理装置自动化是目前研究的热点之一。
     液相微萃取技术集萃取、富集、净化于一体,是一种新型的溶剂微型化样品预处理技术,具有富集倍数高、操作简单、有机溶剂用量少、灵敏度高、样品净化功能突出、对环境友好、易于与各种检测仪器联用和自动化等特点。该技术可以根据目标物的性质和样品基质的特点来选择多样化的萃取模式进行高效和快速分析,在痕量有机污染物分析中具有广阔的应用前景。
     本文设计和研制了一种新型自动液相微萃取装置,并与高效液相色谱联用,采用不同的萃取模式建立了环境水样、奶制品、饲料和土壤等复杂样品中多种有机污染物分析的新技术。主要研究内容包括:
     (1)基于虚拟仪器控制技术,研制了一种新型自动液相微萃取装置,包括液流驱动体系、液流路径切换体系、管道体系等硬件部分的构建和控制软件的编写。本装置自动化程度高,有助于提高液相微萃取的准确度和精密度。
     (2)将自动液-液-液三相微萃取与高效液相色谱联用,以苯酚、4-硝基酚、2,4-二氯酚为对象,研究建立了环境水样中酚类污染物分析的新技术。研究表明,最优萃取条件为:以正辛醇为有机溶剂,pH=5的水样为给体相,给体相中NaCl的加入量为50g/L,0.1mol/L NaOH溶液为受体相,搅拌速度为900rpm,萃取时间为20min,注射泵速度为8μL/s,停留时间为30s。在最优操作条件下,三种酚类化合物的富集倍数为85-101倍,方法检出限为0.9-2.2ng/mL (S/N=3),方法线性范围为20-1000ng/mL(R>0.9981),相对标准偏差低于4.2%(n=6)。该技术成功应用于武汉东湖表层水中酚类化合物的测定,三种酚类化合物的加标回收率为102.2-134.3%,相对标准偏差低于4.5%。
     (3)将自动液-液-液三相微萃取与高效液相色谱联用,以三聚氰胺为对象,研究建立了奶制品中三聚氰胺快速测定的新技术。研究表明,最优萃取条件为:超声处理15min,以正辛醇为有机溶剂,pH=8的水溶液为给体相,pH=5的0.02mol/L硫酸铵为受体相,搅拌速度为900rpm,萃取时间为15min,注射泵速度为6μL/s。在最优操作条件下,三聚氰胺的富集倍数为43倍,方法检出限为0.025μg/mL(S/N=3),方法线性范围为0.1-100μg/mL (R=0.9987),相对标准偏差为3.8%(n=6)。该技术成功应用于实际奶制品中三聚氰胺的分析,加标回收率为96.9-104.2%,相对标准偏差低于6.1%。
     (4)将载体辅助自动液-液-液三相微萃取与高效液相色谱联用,以四环素、土霉素、金霉素、强力霉素为对象,研究建立了饲料中四环素类抗生素分析的新技术。研究表明,最优萃取条件为:以正辛醇为有机溶剂,Aliquat-336载体浓度为10%(w/v),pH=9的水溶液为给体相,pH=2的盐酸溶液为受体相,搅拌速度为800rpm,萃取时间为15min,注射泵速度为8μL/s,停留时间为30s。在最优操作条件下,四种抗生素的富集倍数为56-99倍,方法检出限为1.2-2.8ng/mL (S/N=3),方法线性范围为1-500ng/mL(R>0.9930),相对标准偏差低于5.0%。该技术成功应用于市售鸡饲料中四环素类抗生素的分析,加标回收率为95.6-115.6%,相对标准偏差低于5.7%。
     (5)将超声辅助自动液相微萃取技术与高效液相色谱联用,以萘、菲、蒽、苯并(a)蒽为对象,研究建立了土壤中多环芳烃类污染物分析的新技术。研究表明,最优萃取条件为:1g土壤样品加入15mL水,超声功率100W时超声10min,以正辛醇为有机溶剂和接收相,搅拌速度为1000rpm,萃取时间为20min,有机溶剂的运动速度为10μL/s,停留时间为60s。在最优操作条件下,四种多环芳烃的方法检出限为0.05-0.1μg/g (S/N=3),方法线性范围为0.5-50μg/g(R>0.9945),相对标准偏差低于5.0%。该技术成功应用于武汉某染料厂旧址处土壤样品的测定,在三个不同的加标浓度,四种多环芳烃的加标回收率为78.4-127.3%,相对标准偏差低于8.5%。
Sample pretreatment technology is the most critical procedure in sample analysis,especially in trace analysis of organic pollutants in complex samples. Sample pretreatmentprocess directly influences the speed of sample analysis and accuracy and precision of theresults. Recently, the development of rapid, simple, less solvent consumption,miniaturization, automation, and easy combination to analytical instruments are theimportant trend of sample pretreatment technology. The automation of samplepretreatment devices is one of the hot points in analytical chemistry.
     Liquid-phase microextraction has emerged as a new sample preparation techniquebased on solvent-miniaturization because of the obvious advantages of simple, low cost,efficiency, selectivity, high enrichment factor, excellent sample clean-up, easycombination to analytical instruments and automation. It combines extraction,concentration and clean-up in a single step and it is a sensitive and environmental friendlysample preparation technique. Based on properties of the target analytes and types of thereal samples, different extraction modes can be chosen for efficient and fast analysis. Ithas been widely used in trace analysis of organic pollutants in complex samples.
     This work focuses on the development of a novel automated liquid-phasemicroextraction device combined with HPLC and its applications in environmental watersamples, dairy samples, feed samples and soil samples analysis based on differentextraction modes. The main contents are as follows:
     (1) A novel automated liquid-phase microextraction device was developed based onvirtual instrument technology. Hardware systems of liquid flow-driven system, liquid flowpath switching system, and pipeline system were established. The control software waswritten. It will improve the accuracy and precision of liquid phase microextrction.
     (2) A novel analytical method for determination of Phenol,4-NP and2,4-DCP inwater samples, based on liquid-liquid-liquid microextraction combined with HPLC wasdeveloped. The optimal conditions were as follows:1-Octanol as extraction solvent, pH=5water sample as donor phase (containing50g/L of sodium chloride), sodium hydroxide of0.1mol/L as acceptor phase, stirring speed900rpm, extraction time20min, pump speed8 μL/s, dwell time30s. Under the optimal conditions, for three phenolic compounds,enrichment factors were85-101fold, and linearity was obtained in the range of20-1000ng/mL(R>0.9981). The limits of detection defined for a signal-to-noise ratio of3(S/N=3) were0.9-2.2ng/mL. The relative standard deviations were below4.2%(n=6).This technique was successfully applied in the determination of phenolic compounds insurface water of East Lake, Wuhan. The recoveries from the spiked water sample variedbetween102.2and134.3%. Good reproducibilities were obtained with relative standarddeviation (RSD) values below4.5%.
     (3) A novel analytical method for determination of melamine in dairy samples, basedon liquid-liquid-liquid microextraction combined with HPLC was developed. The optimalconditions were as follows: Ultrasonic time15min,1-Octanol as extraction solvent, pH=8water sample as donor phase, pH=5ammonium sulphate of0.02mol/L as acceptor phase,stirring speed900rpm, extraction time15min, pump speed6μL/s. Under the optimalconditions, for melamine, enrichment factor was43fold, and linearity was obtained in therange of0.1-100μg/mL(R=0.9987). The limits of detection defined for a signal-to-noiseratio of3(S/N=3) were0.025μg/mL. The relative standard deviations were3.8%(n=6).This technique was successfully applied in the determination of melamine in real dairysamples. The recoveries from the spiked dairy samples varied between96.9and104.2%.Good reproducibilities were obtained with relative standard deviation (RSD) values below6.1%.
     (4) A novel analytical method for determination of TCs in feed samples, based oncarrier mediated liquid-liquid-liquid microextraction microextraction combined withHPLC was developed. The optimal conditions were as follows:1-Octanol as extractionsolvent (containing10%(w/v)of Aliquat-336as carrier), pH=9water sample as donorphase, pH=2hydrochloric acid as acceptor phase, stirring speed800rpm, extraction time15min, pump speed8μL/s, dwell time30s. Under the optimal conditions, for fourtetracycline antibiotics, enrichment factors were56-99fold, and linearity was obtained inthe range of1-500ng/mL (R>0.9930). The limits of detection defined for asignal-to-noise ratio of3(S/N=3) were1.2-2.8ng/mL. The relative standard deviationswere below5.0%(n=6). This technique was successfully applied in the determination of real chicken feed samples. The recoveries from the spiked feed samples varied between95.6and115.6%. Good reproducibilities were obtained with relative standard deviation(RSD) values below5.6%.
     (5) A novel green analytical method for determination of PAHs in soil samples, basedon ultrasound-assisted extraction combined with liquid-phase microextraction technologyand HPLC was developed. The optimal ultrasonic conditions were as follows:1g soilsample adding15mL ultrapure water, in the room temperature, ultrasonic power100W,ultrasonic time10min. The optimal liquid-phase microextraction conditions were as follows:1-Octanol as acceptor phase and extraction solvent, stirring speed1000rpm, extraction time20min. Under the optimal conditions, the limits of detection of PAHs were in the range of0.05-0.1μg/g (S/N=3). Good linear range (0.5-50μg/g)(R>0.9945)was obtained for allthe analytes. The relative standard deviations were below5.0%(n=6). This technique wassuccessfully applied in the determination of PAHs in soil samples of a dye factory inWuhan. The recoveries from the spiked soil samples varied between78.4and127.3%.Good reproducibilities were obtained with relative standard deviation (RSD) values below8.5%.
引文
[1] Alpendurada M D. Solid-phase microextraction: a promising technique for samplepreparation in environmental analysis. Journal of Chromatography A,2000,889(1-2):3-14.
    [2]黄骏雄.环境样品前处理技术及其进展(一).环境化学,1994,13(1):95-104.
    [3]赵汝松,徐晓白,刘秀芬.液相微萃取技术的研究进展.分析化学,2004,32(9):1246-1251.
    [4] Eisert R, Pawliszyn J. Automated in-tube solid-phase microextraction coupled tohigh-performance liquid chromatography. Analytical Chemistry,1997,69(16):3140-3147.
    [5] Jeannot M A, Cantwell F F. Solvent Microextraction into a Single Drop. AnalyticalChemistry,1996,68(13):2236-2240.
    [6] Jeannot M A, Cantwell F F. Mass transfer characteristics of solvent extraction intoa single drop at the tip of a syringe needle. Analytical Chemistry,1997,69(2):235-239.
    [7] Pedersen-Bjergaard S, Rasmussen K E. Liquid-liquid-liquid microextraction forsample preparation of biological fluids prior to capillary electrophoresis.Analytical Chemistry,1999,71(14):2650-2656.
    [8] Zhao L M, Lee H K. Determination of phenols in water using liquid phasemicroextraction with back extraction combined with high-performance liquidchromatography. Journal of ChromatographyA,2001,931(1-2):95-105.
    [9] Basheer C, Lee H K. Simple liquid-phase microextraction procedure forenvironmental analysis. Abstracts of Papers of the American Chemical Society,2002,223: U534-U534.
    [10] Jun X, Bin H. Comparison of hollow fiber liquid phase microextraction anddispersive liquid-liquid microextraction for the determination of organosulfurpesticides in environmental and beverage samples by gas chromatography withflame photometric detection. Journal of Chromatography A,2008,1193(1-2):7-18.
    [11] Arthur C L, Pawliszyn J. Solid phase microextraction with thermal desorptionusing fused silica optical fibers. Analytical Chemistry,1990,62(19):2145-2148.
    [12] Psillakis E, Kalogerakis N. Developments in liquid-phase microextraction.Trac-Trends in Analytical Chemistry,2003,22(10):565-574.
    [13] Ho T S, Halvorsen T G, Pedersen-Bjergaard S, et al. Liquid-phase microextractionof hydrophilic drugs by carrier-mediated transport. Journal of Chromatography A,2003,998(1-2):61-72.
    [14] Ho T S, Reubsaet J L E, Anthonsen H S, et al. Liquid-phase microextraction basedon carrier mediated transport combined with liquid chromatography-massspectrometry-New concept for the determination of polar drugs in a single dropof human plasma. Journal of ChromatographyA,2005,1072(1):29-36.
    [15] Liu H, Dasgupta P K. Analytical Chemistry in a Drop. Solvent Extraction in aMicrodrop. Analytical Chemistry,1996,68(11):1817-1821.
    [16] He Y, Lee H K. Liquid phase microextraction in a single drop of organic solvent byusing a conventional microsyringe. Analytical Chemistry,1997,69(22):4634-4640.
    [17] Ma M, Cantwell F F. Solvent Microextraction with Simultaneous Back-Extractionfor Sample Cleanup and Preconcentration: Preconcentration into a SingleMicrodrop. Analytical Chemistry,1998,71(2):388-393.
    [18] Zhao L M, Lee H K. Liquid-phase microextraction combined with hollow fiber asa sample preparation technique prior to gas chromatography/mass spectrometry.Analytical Chemistry,2002,74(11):2486-2492.
    [19] Shen G, Lee H K. Hollow fiber-protected liquid-phase microextraction of triazineherbicides. Analytical Chemistry,2002,74(3):648-654.
    [20] Zhu L Y, Zhu L, Lee H K. Liquid-liquid-liquid microextraction of nitrophenolswith a hollow fiber membrane prior to capillary liquid chromatography. Journal ofChromatographyA,2001,924(1-2):407-414.
    [21] Pedersen-Bjergaard S, Rasmussen K E. Liquid-phase microextraction and capillaryelectrophoresis of acidic drugs. Electrophoresis,2000,21(3):579-585.
    [22] Andersen S, Halvorsen T G, Pedersen-Bjergaard S, et al. Liquid-phasemicroextraction combined with capillary electrophoresis, a promising tool for thedetermination of chiral drugs in biological matrices. Journal of Chromatography A,2002,963(1-2):303-312.
    [23] Bjorhovde A, Halvorsen T G, Rasmussen K E, et al. Liquid-phase microextractionof drugs from human breast milk. Analytica ChimicaActa,2003,491(2):155-161.
    [24] Ho T S, Pedersen-Bjergaard S, Rasmussen, K E. Liquid-phase microextraction ofprotein-bound drugs under non-equilibrium conditions. Analyst,2002,127(5):608-613.
    [25] Muller S, Moder M, Schrader S, et al. Semi-automated hollow-fibre membraneextraction, a novel enrichment technique for the determination of biologicallyactive compounds in water samples. Journal of Chromatography A,2003,985(1-2):99-106.
    [26] Myung S W, Yoon S H, Kim M. Analysis of benzene ethylamine derivatives inurine using the programmable dynamic liquid-phase microextraction (LPME)device. Analyst,2003,128(12):1443-1446.
    [27] Roberto Danesi P, Chiarizia R, Coleman C F. The Kinetics of Metal SolventExtraction. C R C Critical Reviews in Analytical Chemistry,1980,10(1):1-126.
    [28] Ma M, Cantwell F F. Solvent Microextraction with Simultaneous Back-Extractionfor Sample Cleanup and Preconcentration: Quantitative Extraction. AnalyticalChemistry,1998,70(18):3912-3919.
    [29] Pedersen-Bjergaard S, Rasmussen K E. Liquid-phase microextraction utilisingplant oils as intermediate extraction medium-Towards elimination of syntheticorganic solvents in sample preparation. Journal of Separation Science,2004,27(17-18):1511-1516.
    [30] Psillakis E, Kalogerakis N. Application of solvent microextraction to the analysisof nitroaromatic explosives in water samples. Journal of Chromatography A,2001,907(1-2):211-219.
    [31] Basheer C, Lee H K, Obbard J P. Determination of organochlorine pesticides inseawater using liquid-phase hollow fibre membrane microextraction and gaschromatography-mass spectrometry. Journal of Chromatography A,2002,968(1-2):191-199.
    [32] Ugland H G, Krogh M, Rasmussen K E. Liquid-phase microextraction as a samplepreparation technique prior to capillary gas chromatographic-determination ofbenzodiazepines in biological matrices. Journal of Chromatography B,2000,749(1):85-92.
    [33] Psillakis E, Kalogerakis N. Hollow-fibre liquid-phase microextraction of phthalateesters from water. Journal of ChromatographyA,2003,999(1-2):145-153.
    [34] Pan H J, Ho W H. Determination of fungicides in water using liquid phasemicroextraction and gas chromatography with electron capture detection. AnalyticaChimica Acta,2004,527(1):61-67.
    [35] Ma M, Kang S Y, Zhao Q, et al. Liquid-phase microextraction combined withhigh-performance liquid chromatography for the determination of localanaesthetics in human urine. Journal of Pharmaceutical and Biomedical Analysis,2006,40(1):128-135.
    [36] Lambropoulou D A, Albanis T A. Sensitive trace enrichment of environmentalandiandrogen vinclozolin from natural waters and sediment samples usinghollow-fiber liquid-phase microextraction. Journal of Chromatography A,2004,1061(1):11-18.
    [37] Shen G, Lee H K. Headspace liquid-phase microextraction of chlorobenzenes insoil with gas chromatography-electron capture detection. Analytical Chemistry,2003,75(1):98-103.
    [38] Chiang J S, Huang S D. Determination of haloethers in water with dynamic hollowfiber liquid-phase microextraction using GC-FID and GC-ECD. Talanta,2007,71(2):882-886.
    [39] Qian L L, He Y Z. Funnelform single-drop microextraction for gaschrornatography-electron-capture detection. Journal of Chromatography A,2006,1134(1-2):32-37.
    [40] Tor A. Determination of chlorobenzenes in water by drop-based liquid-phasemicroextraction and gas chromatography-electron capture detection. Journal ofChromatographyA,2006,1125(1):129-132.
    [41] Zanjani M R K, Yamini Y, Shariati S, et al. A new liquid-phase microextractionmethod based on solidification of floating organic drop. Analytica Chimica Acta,2007,585(2):286-293.
    [42] Chen X M, Zhang T Z, Liang P, et al. Application of continuous-flow liquid phasemicroextraction to the analysis of phenolic compounds in wastewater samples.Microchimica Acta,2006,155(3-4):415-420.
    [43] Liu Y, Hashi Y, Lin J M. Continuous-flow microextraction and gaschromatographic-mass spectrometric determination of polycyclic aromatichydrocarbon compounds in water. Analytica Chimica Acta,2007,585(2):294-299.
    [44] Wu J M, Lee H K. Ion-pair dynamic liquid-phase microextraction combined withinjection-port derivatization for the determination of long-chain fatty acids inwater samples. Journal of ChromatographyA,2006,1133(1-2):13-20.
    [45] Fontanals N, Barri T, Bergstrom S, et al. Determination of polybrominateddiphenyl ethers at trace levels in environmental waters using hollow-fibermicroporous membrane liquid-liquid extraction and gas chromatography-massspectrometry. Journal of ChromatographyA,2006,1133(1-2):41-48.
    [46] Deng C H, Li N, Wang L, et al. Development of gas chromatography-massspectrometry following headspace single-drop microextraction and simultaneousderivatization for fast determination of short-chain aliphatic amines in watersamples. Journal of ChromatographyA,2006,1131(1-2):45-50.
    [47] Chia K J, Huang S D. Analysis of organochlorine pesticides in wine by solvent barmicroextraction coupled with gas chromatography with tandem mass spectrometricdetection. Rapid Communications in Mass Spectrometry,2006,20(2):118-124.
    [48] He Y, Lee H K. Continuous flow microextraction combined with high-performanceliquid chromatography for the analysis of pesticides in natural waters. Journal ofChromatographyA,2006,1122(1-2):7-12.
    [49] Ye C L, Zhou Q X, Wang X M. Improved single-drop microextraction for highsensitive analysis. Journal of ChromatographyA,2007,1139(1):7-13.
    [50] Vidal L, Psillakis E, Domini C E, et al. An ionic liquid as a solvent for headspacesingle drop microextraction of chlorobenzenes from water samples. AnalyticaChimica Acta,2007,584(1):189-195.
    [51] Ye C L, Zhou O X, Wang X M, et al. Determination of phenols in environmentalwater samples by ionic liquid-based headspace liquid-phase microextractioncoupled with high-performance liquid chromatography. Journal of SeparationScience,2007,30(1):42-47.
    [52] Zhou Q X, Xiao J P, Ye C L, et al. Enhancement of sensitivity for determination ofPhenols environmental water samples by single-drop liquid phase microextractionusing ionic liquid prior to HPLC. Chinese Chemical Letters,2006,17(8):1073-1076.
    [53] Liu J, Jiang G B, Chi Y G, et al. Use of ionic liquids for liquid-phasemicroextraction of polycyclic aromatic hydrocarbons. Analytical Chemistry,2003,75(21):5870-5876.
    [54] He Y, Kang Y J. Single drop liquid-liquid-liquid microextraction ofmethamphetamine and amphetamine in urine. Journal of Chromatography A,2006,1133(1-2):35-40.
    [55] Melwanki M B, Huang S D. Extraction of hydroxyaromatic compounds in riverwater by liquid-liquid-liquid microextraction with automated movement of theacceptor and the donor phase. Journal of Separation Science,2006,29(13):2078-2084.
    [56] Richoll S M, Colon I. Determination of triphenylphosphine oxide in activepharmaceutical ingredients by hollow-fiber liquid-phase microextraction followedby reversed-phase liquid chromatography. Journal of Chromatography A,2006,1127(1-2):147-153.
    [57] Gonzalez-Penas E, Leache C, Viscarret M, et al. Determination of ochratoxin A inwine using liquid-phase microextraction combined with liquid chromatographywith fluorescence detection. Journal of Chromatography A,2004,1025(2):163-168.
    [58] Romero-Gonzalez R, Pastor-Montoro E, Martinez-Vidal J L, et al. Application ofhollow fiber supported liquid membrane extraction to the simultaneousdetermination of pesticide residues in vegetables by liquid chromatography/massspectrometry. Rapid Communications in Mass Spectrometry,2006,20(18):2701-2708.
    [59] Leinonen A, Vuorensola K, Lepola L M, et al. Liquid-phase microextraction forsample preparation in analysis of unconjugated anabolic steroids in urine.Analytica Chimica Acta,2006,559(2):166-172.
    [60] Wang Y, Kwok Y C, He Y, et al. Application of dynamic liquid-phasemicroextraction to the analysis of chlorobenzenes in water by using a conventionalmicrosyringe. Analytical Chemistry,1998,70(21):4610-4614.
    [61] Shariati-Feizabadi S, Yamini Y, Bahramifar N. Headspace solvent microextractionand gas chromatographic determination of some polycyclic aromatic hydrocarbonsin water samples. Analytica Chimica Acta,2003,489(1):21-31.
    [62] King S, Meyer J S, Andrews A R J. Screening method for polycyclic aromatichydrocarbons in soil using hollow fiber membrane solvent microextraction.Journal of ChromatographyA,2002,982(2):201-208.
    [63] Zhao L M, Zhu L Y, Lee H K. Analysis of aromatic amines in water samples byliquid-liquid-liquid microextraction with hollow fibers and high-performanceliquid chromatography. Journal of Chromatography A,2002,963(1-2):239-248.
    [64] Zhu L Y, Tay C B, Lee H K. Liquid-liquid-liquid microextraction of aromaticamines from water samples combined with high-performance liquidchromatography. Journal of ChromatographyA,2002,963(1-2):231-237.
    [65] Przyjazny A, Kokosa J M. Analytical characteristics of the determination ofbenzene, toluene, ethylbenzene and xylenes in water by headspace solventmicroextraction. Journal of ChromatographyA,2002,977(2):143-153.
    [66] Zhao L M, Lee H K. Application of static liquid-phase microextraction to theanalysis of organochlorine pesticides in water. Journal of Chromatography A,2001,919(2):381-388.
    [67] Khalili-Zanjani M R, Yamini Y, Yazdanfar N, et al. Extraction and determination oforganophosphorus pesticides in water samples by a new liquid phasemicroextraction-gas chromatography-flame photometric detection. AnalyticaChimica Acta,2008,606(2):202-208.
    [68] Lopez-Blanco M C, Blanco-Cid S, Cancho-Grande B, et al. Application ofsingle-drop microextraction and comparison with solid-phase microextraction andsolid-phase extraction for the determination of alpha-and beta-endosulfan in watersamples by gas chromatography-electron-capture detection. Journal ofChromatographyA,2003,984(2):245-252.
    [69] Zhao R S, Lao W J, Xu X B. Headspace liquid-phase microextraction oftrihalomethanes in drinking water and their gas chromatographic determination.Talanta,2004,62(4):751-756.
    [70] Liu J F, Chi Y G, Jiang G B, et al. Ionic liquid-based liquid-phase microextraction,a new sample enrichment procedure for liquid chromatography. Journal ofChromatographyA,2004,1026(1-2):143-147.
    [71] Hou L, Lee H K. Determination of pesticides in soil by liquid-phasemicroextraction and gas chromatography-mass spectrometry. Journal ofChromatographyA,2004,1038(1-2):37-42.
    [72] Vora-adisak N, Varanusupakul P. Asimple supported liquid hollow fiber membranemicroextraction for sample preparation of trihalomethanes in water samples.Journal of ChromatographyA,2006,1121(2):236-241.
    [73] Pardasani D, Kanaujia P K, Gupta A K, et al. In situ derivatization hollow fibermediated liquid phase microextraction of alkylphosphonic acids from water.Journal of ChromatographyA,2007,1141(2):151-157.
    [74] Lee H S N, Basheer C, Lee H K. Determination of trace level chemical warfareagents in water and slurry samples using hollow fibre-protected liquid-phasemicroextraction followed by gas chromatography-mass spectrometry. Journal ofChromatographyA,2006,1124(1-2):91-96.
    [75] Kawaguchi M, Ito R, Endo N, et al. Liquid phase microextraction with in situderivatization for measurement of bisphenol A in river water sample by gaschromatography-mass spectrometry. Journal of Chromatography A,2006,1110(1-2):1-5.
    [76] Mohammadi A, Alizadeh N. Automated dynamic headspace organic solvent filmmicroextraction for benzene, toluene, ethylbenzene and xylene-Renewable liquidfilm as a sampler by a programmable motor. Journal of Chromatography A,2006,1107(1-2):19-28.
    [77] Dubey D K, Pardasani D, Gupta A K, et al. Hollow fiber-mediated liquid-phasemicroextraction of chemical warfare agents from water. Journal ofChromatographyA,2006,1107(1-2):29-35.
    [78] Chen C C, Melwanki M B, Huang S D. Liquid-liquid-liquid microextraction withautomated movement of the acceptor and the donor phase for the extraction ofphenoxyacetic acids prior to liquid chromatography detection. Journal ofChromatographyA,2006,1104(1-2):33-39.
    [79] Chia K J, Huang S D. Simultaneous derivatization and extraction of primaryamines in river water with dynamic hollow fiber liquid-phase microextractionfollowed by gas chromatography-mass spectrometric detection. Journal ofChromatographyA,2006,1103(1):158-161.
    [80] Saraji M, Mousavinia F. Single-drop microextraction followed by in-syringederivatization and gas chromatography-mass spectrometric detection fordetermination of organic acids in fruits and fruit juices. Journal of SeparationScience,2006,29(9):1223-1229.
    [81] Zhao E C, Han L J, Jiang S R, et al. Application of a single-drop microextractionfor the analysis of organophosphorus pesticides in juice. Journal ofChromatographyA,2006,1114(2):269-273.
    [82] Xiao Q, Hu B, Yu C H, et al. Optimization of a single-drop microextractionprocedure for the determination of organophosphorus pesticides in water and fruitjuice with gas chromatography-flame photometric detection. Talanta,2006,69(4):848-855.
    [83] Xiao Q, Yu C H, Xing J, et al. Comparison of headspace and direct single-dropmicroextraction and headspace solid-phase microextraction for the measurement ofvolatile sulfur compounds in beer and beverage by gas chromatography with flamephotometric detection. Journal of ChromatographyA,2006,1125(1):133-137.
    [84] Liu Y, Zhao E C, Zhou Z Q. Single-drop microextraction and gas chromatographicdetermination of fungicide in water and wine samples. Analytical Letters,2006,39(11):2333-2344.
    [85] Zhu L Y, Ee K H, Zhao L M, et al. Analysis of phenoxy herbicides in bovine milkby means of liquid-liquid-liquid microextraction with a hollow-fiber membrane.Journal of ChromatographyA,2002,963(1-2):335-343.
    [86] Huang S P, Huang S D. Dynamic hollow fiber protected liquid phasemicroextraction and quantification using gas chromatography combined withelectron capture detection of organochlorine pesticides in green tea leaves andready-to-drink tea. Journal of ChromatographyA,2006,1135(1):6-11.
    [87] Hou L, Shen G, Lee H K. Automated hollow fiber-protected dynamic liquid-phasemicroextraction of pesticides for gas chromatography-Mass spectrometricanalysis. Journal of ChromatographyA,2003,985(1-2):107-116.
    [88] Jiang X M, Oh S Y, Lee H K. Dynamic liquid-liquid-liquid microextraction withautomated movement of the acceptor phase. Analytical Chemistry,2005,77(6):1689-1695.
    [89]王亮,王立忠,胡锦霖等.基于CAN总线的智能继电器研究.现代电子技术,2012,35(8):83-85.
    [90]陈安斌,王苗苗,邹远文.蠕动泵控制软件的设计及应用.实验科学与技术,2010,8(6):44-46.
    [91]陈禹.正弦泵在奶制品行业的应用及特点.食品工业科技,2007,28(8):30-31.
    [92] Guebeli T, Christian G D, Ruzicka J. Fundamentals of sinusoidal flow sequentialinjection spectrophotometry. Analytical Chemistry,1991,63(21):2407-2413.
    [93] R i ka J. The second coming of flow-injection analysis. Analytica Chimica Acta,1992,261(1–2):3-10.
    [94]周娜,赵燕,谢振伟等.顺序注射分析及其在环境监测中的应用进展.现代科学仪器,2005,6:21-26.
    [95]王杰俊,李大寨,宗光华.注射泵控制系统设计.计算机测量与控制,2003,11(7):29-31.
    [96]周功业,黄文兰,卢建华.现代微机系统与接口技术.高等教育出版社,2005.
    [97]刘祥楼,王珏,高丙坤.基于虚拟仪器技术的环境噪声网络监测通信技术研究.化工自动化及仪表,2012,39(5):30-32.
    [98] Stevic Z, Andjelkovic Z, Antic D. Anew PC and LabVIEW package based systemfor electrochemical investigations. Sensors,2008,8(3):1819-1831.
    [99]徐超,徐相波,张兴然.基于Labview的火力发电厂循环水水质监测研究.能源环境保护,2012,26(6):58-60.
    [100] Aspey R A, McDermid I S, Leblanc T, et al. LABVIEW graphical user interfacefor precision multichannel alignment of Raman lidar at Jet Propulsion Laboratory,Table Mountain Facility. Review of Scientific Instruments,2008,79(9):25-27.
    [101] Martínez D, Pocurull E, Marcé R M, et al. Separation of eleven priority phenols bycapillary zone electrophoresis with ultraviolet detection. Journal ofChromatographyA,1996,734(2):367-373.
    [102] Escarpa A, Gonzalez M C. An overview of analytical chemistry of phenoliccompounds in foods. Critical Reviews in Analytical Chemistry,2001,31(2):57-139.
    [103] Li D H, Oh J R, Park J. Direct extraction of alkylphenols, chlorophenols andbisphenol A from acid-digested sediment suspension for simultaneous gaschromatographic-mass spectrometric analysis. Journal of Chromatography A,2003,1012(2):207-214.
    [104]赵美萍,李元宗,常文保.酚类环境雌激素的分析研究进展.分析化学,2003,31(1):40-45.
    [105] Cledera-Castro M, Santos-Montes A, Izquierdo-Hornillos R. Comparison of theperformance of conventional microparticulates and monolithic reversed-phasecolumns for liquid chromatography separation of eleven pollutant phenols. Journalof ChromatographyA,2005,1087(1-2):57-63.
    [106] Olejniczak J, Staniewski J, Szymanowski J. Extraction of phenols and phenylacetates with diethyl carbonate.Analytica Chimica Acta,2005,535(1-2):251-257.
    [107] Basheer C, Parthiban A, Jayaraman A, et al. Determination of alkylphenols andbisphenol-A-Acomparative investigation of functional polymer-coated membranemicroextraction and solid-phase microextraction techniques. Journal ofChromatographyA,2005,1087(1-2):274-282.
    [108] Bagheri H, Babanezhad E, Khalilian F. Anovel sol-gel-based amino-functionalizedfiber for headspace solid-phase microextraction of phenol and chlorophenols fromenvironmental samples. Analytica Chimica Acta,2008,616(1):49-55.
    [109] Wang Q, Qiu H D, Li J, et al. On-line coupling of ionic liquid-based single-dropmicroextraction with capillary electrophoresis for sensitive detection of phenols.Journal of ChromatographyA,2010,1217(33):5434-5439.
    [110] Park Y M, Pyo H, Park S J, et al. Development of the analytical method for1,4-dioxane in water by liquid-liquid extraction. Analytica Chimica Acta,2005,548(1-2):109-115.
    [111] Langford K H, Scrimshaw M D, Lester J N. Analytical methods for thedetermination of alkylphenolic surfactants and polybrominated diphenyl ethers inwastewaters and sewage sludges. II method development. EnvironmentalTechnology,2004,25(9):975-985.
    [112] Prosen H, Zupancic-Kralj L. Solid-phase microextraction. Trac-Trends inAnalytical Chemistry,1999,18(4):272-282.
    [113] Basheer C, Obbard J P, Lee H K. Analysis of persistent organic pollutants inmarine sediments using a novel microwave assisted solvent extraction andliquid-phase microextraction technique. Journal of Chromatography A,2005,1068(2):221-228.
    [114] Deng C H, Yao N, Wang A Q, et al. Determination of essential oil in a traditionalChinese medicine, Fructus amomi by pressurized hot water extraction followed byliquid-phase microextraction and gas chromatography-mass spectrometry.Analytica Chimica Acta,2005,536(1-2):237-244.
    [115]张朝辉,赵倩,康绍英等.液-液-液微萃取-高效液相色谱法测定人血浆中的局部麻醉剂.分析化学.2006,34(2):36-38.
    [116] Berhanu T, Liu J F, Romero R, et al. Determination of trace levels ofdinitrophenolic compounds in environmental water samples using hollow fibersupported liquid membrane extraction and high performance liquidchromatography. Journal of ChromatographyA,2006,1103(1):1-8.
    [117] Peng J F, Liu J F, Hu X L, et al. Direct determination of chlorophenols inenvironmental water samples by hollow fiber supported ionic liquid membraneextraction coupled with high-performance liquid chromatography. Journal ofChromatographyA,2007,1139(2):165-170.
    [118] Hou L, Lee H K. Dynamic three-phase microextraction as a sample preparationtechnique prior to capillary electrophoresis. Analytical Chemistry,2003,75(11):2784-2789.
    [119] Ma S, Nashabeh W. Carbohydrate analysis of a chimeric recombinant monoclonalantibody by capillary electrophoresis with laser-induced fluorescence detection.Analytical Chemistry,1999,71(22):5185-5192.
    [120] Cussler E L. Diffusion: mass transfer in fluid systems. Cambridge university press,1997.
    [121] Chang T T. Characterization of (Methoxymethyl)melamine Resins by LiquidChromatography/Mass Spectrometry. Analytical Chemistry,1994,66(19):3267-3273.
    [122] Brown C A, Jeong K S, Poppenga R H, et al. Outbreaks of renal failure associatedwith melamine and cyanuric acid in dogs and cats in2004and2007. Journal ofVeterinary Diagnostic Investigation,2007,19(5):525-531.
    [123] Puschner B, Poppenga R H, Lowenstine L J, et al. Assessment of melamine andcyanuric acid toxicity in cats. Journal of Veterinary Diagnostic Investigation,2007,19(6):616-624.
    [124] Miao H, Fan S, Wu Y N, et al. Simultaneous Determination of Melamine,Ammelide, Ammeline, and Cyanuric Acid in Milk and Milk Products by GasChromatography-tandem Mass Spectrometry. Biomedical and EnvironmentalSciences,2009,22(2):87-94.
    [125] Tyan Y C, Yang M H, Jong S B, et al. Melamine contamination. Analytical andBioanalytical Chemistry,2009,395(3):729-735.
    [126]宫小明,董静,孙军等. HPLC法测定植物性原料中三聚氰胺.食品科学,2008,29(4):321-323.
    [127]丁涛,徐锦忠,李健忠等.高效液相色谱-二极管阵列检测法及高效液相色谱-电喷雾串联质谱法测定植物源性蛋白中残留的三聚氰胺.色谱,2008,26(1):35-37.
    [128]李爱民,张代辉,马书民.液相色谱-串联质谱法测定饲料中三聚氰胺残留.分析化学研究简报,2008,36(5):699-701.
    [129] Yokley R A, Mayer L C, Rezaaiyan R, et al. Analytical method for thedetermination of cyromazine and melamine residues in soil using LC-UV andGC-MSD. Journal ofAgricultural and Food Chemistry,2000,48(8):3352-3358.
    [130]王春,吴秋华,王志等.基于中空纤维的液相微萃取技术的研究进展.色谱,2006,24(5):516-523.
    [131]蔡勤仁,欧阳颖瑜,钱振杰等.超高效液相色谱-电喷雾串联质谱法测定饲料中残留的三聚氰胺.色谱,2008,26(3):339-342.
    [132]张美金,林海丹,林峰等.高效液相色谱法测定饲料和宠物食品中三聚氰胺含量.中国卫生检验杂志,2007,17(12):2205-2206.
    [133] Wang C, Li C R, Zang X H, et al. Hollow fiber-based liquid-phase microextractioncombined with on-line sweeping for trace analysis of Strychnos alkaloids in urineby micellar electrokinetic chromatography. Journal of Chromatography A,2007,1143(1-2):270-275.
    [134]黄艳红,丁健桦,邱昌福等.液相微萃取-高效液相色谱法测定乳制品中的三聚氰胺.食品科学,2010,31(02):161-164.
    [135] Wang G Y, Chen J, Shi Y P. Hollow-Fiber Liquid-Phase MicroextractionCombined with High-Performance Liquid Chromatography for Analysis ofMelamine in Milk Products.Acta Chromatographica,2010,22(2):307-321.
    [136] Pedersen-Bjergaard S, Rasmussen K E. Liquid-phase microextraction with poroushollow fibers, a miniaturized and highly flexible format for liquid-liquid extraction.Journal of ChromatographyA,2008,1184(1-2):132-142.
    [137] Barri T, Jonsson J A. Advances and developments in membrane extraction for gaschromatography-Techniques and applications. Journal of Chromatography A,2008,1186(1-2):16-38.
    [138] Cui S F, Tan S, Ouyang G F, et al. Automated polyvinylidene difluoride hollowfiber liquid-phase microextraction of flunitrazepam in plasma and urine samplesfor gas chromatography/tandem mass spectrometry. Journal of Chromatography A,2009,1216(12):2241-2247.
    [139] Wu B, Tan X Y, Li K, et al. Removal of1,1,1-trichloroethane from water using apolyvinylidene fluoride hollow fiber membrane module: Vacuum membranedistillation operation. Separation and Purification Technology,2006,52(2):301-309.
    [140] Tan X Y, Tan S P, Teo W K, et al. Polyvinylidene fluoride (PVDF) hollow fibremembranes for ammonia removal from water. Journal of Membrane Science,2006,271(1-2):59-68.
    [141]李俊锁,邱月明,王超.兽药残留分析.上海科学技术出版社,2002.
    [142]张剑勇.兽药残留监测与动物性食品安全卫生.中国兽药杂志,2001,35(4):60-61.
    [143] Kummerer K. Antibiotics in the aquatic environment-A review-Part I.Chemosphere,2009,75(4):417-434.
    [144] Jjemba P K. The potential impact of veterinary and human therapeutic agents inmanure and biosolids on plants grown on arable land: a review. AgricultureEcosystems&Environment,2002,93(1-3):267-278.
    [145]刘虹,张国平,刘丛强.固相萃取-色谱测定水,沉积物及土壤中氯霉素和3种四环素类抗生素.分析化学,2007,35:62-65.
    [146]周启星,孔繁翔,朱琳.生态毒理学.科学出版社,2004.
    [147] Petrovic M, Hernando M D, Diaz-Cruz M S, et al. Liquid chromatography-tandemmass spectrometry for the analysis of pharmaceutical residues in environmentalsamples: a review. Journal of ChromatographyA,2005,1067(1-2):1-14.
    [148] Ben W W, Qiang Z M, Adams C, et al. Simultaneous determination ofsulfonamides, tetracyclines and tiamulin in swine wastewater by solid-phaseextraction and liquid chromatography-mass spectrometry. Journal ofChromatographyA,2008,1202(2):173-180.
    [149] Babic S, Asperger D, Mutavdzic D, et al. Solid phase extraction and HPLCdetermination of veterinary pharmaceuticals in wastewater. Talanta,2006,70(4):732-738.
    [150] Yang S, Carlson K. Routine monitoring of antibiotics in water and wastewater witha radioimmunoassay technique. Water Research,2004,38(14-15):3155-3166.
    [151] Zhu J, Snow D D, Cassada D A, et al. Analysis of oxytetracycline, tetracycline,and chlortetracycline in water using solid-phase extraction and liquidchromatography-tandem mass spectrometry. Journal of Chromatography A,2001,928(2):177-186.
    [152] ReverteS, Borrull F, Pocurull E, et al. Determinationof antibiotic compounds in water bysolid-phase extraction-high-performance liquid chromatography-(electrospray) massspectrometry.JournalofChromatographyA,2003,1010(2):225-232.
    [153] Riano S, Alcudia-Leon M C, Lucena R, et al. Determination of non-steroidalanti-inflammatory drugs in urine by the combination of stir membraneliquid-liquid-liquid microextraction and liquid chromatography. Analytical andBioanalytical Chemistry,2012,403(9):2583-2589.
    [154] Saraji M, Boroujeni M K, Bidgoli A A H. Comparison of dispersive liquid-liquidmicroextraction and hollow fiber liquid-liquid-liquid microextraction for thedetermination of fentanyl, alfentanil, and sufentanil in water and biological fluidsby high-performance liquid chromatography. Analytical and BioanalyticalChemistry,2011,400(7):2149-2158.
    [155] Saraji M, Bidgoli A A H, Farajmand B. Hollow fiber-based liquid-liquid-liquidmicroextraction followed by flow injection analysis using column-less HPLC forthe determination of phenazopyridine in plasma and urine. Journal of SeparationScience,2011,34(14):1708-1715.
    [156] Yamini Y, Reimann C T, Vatanara A, et al. Extraction and preconcentration ofsalbutamol and terbutaline from aqueous samples using hollow fiber supportedliquid membrane containing anionic carrier. Journal of Chromatography A,2006,1124(1-2):57-67.
    [157] Pedersen-Bjergaard S, Rasmussen K E. Bioanalysis of drugs by liquid-phasemicroextraction coupled to separation techniques. Journal of ChromatographyB-Analytical Technologies in the Biomedical and Life Sciences,2005,817(1):3-12.
    [158] Qiang Z M, Adams C. Potentiometric determination of acid dissociation constants(pK(a)) for human and veterinary antibiotics. Water Research,2004,38(12):2874-2890.
    [159] Oka H, Ito Y, Matsumoto H. Chromatographic analysis of tetracycline antibioticsin foods. Journal of ChromatographyA,2000,882(1-2):109-133.
    [160]焦文涛,吕永龙,王铁宇等.化工区土壤中多环芳烃的污染特征及其来源分析.2009.
    [161] Moret S, Conte L S. Polycyclic aromatic hydrocarbons in edible fats and oils:occurrence and analytical methods. Journal of Chromatography A,2000,882(1-2):245-253.
    [162]聂静,钱岩,段小丽等.食品中多环芳烃污染的健康危害及其防治措施.环境与可持续发展,2009,33(4):38-41.
    [163] Carlsten C, Hunt S C, Kaufman J D. Squamous cell carcinoma of the skin and coaltar creosote exposure in a railroad worker. Environmental Health Perspectives,2005,113(1):96-97.
    [164] Tauchi M, Hida A, Negishi T, et al. Constitutive expression of aryl hydrocarbonreceptor in keratinocytes causes inflammatory skin lesions. Molecular and CellularBiology,2005,25(21):9360-9368.
    [165] Seruto C, Sapozhnikova Y, Schlenk D. Evaluation of the relationships betweenbiochemical endpoints of PAH exposure and physiological endpoints ofreproduction in male California Halibut (Paralichthys californicus) exposed tosediments from a natural oil seep. Marine Environmental Research,2005,60(4):454-465.
    [166] El-Alawi Y S, McConkey B J, Dixon D G, et al. Measurement of short-andlong-term toxicity of polycyclic aromatic hydrocarbons using luminescent bacteria.Ecotoxicology and Environmental Safety,2002,51(1):12-21.
    [167] Rodriguez-Cea A, de la Campa M D F, Sanz-Medel A. Brown trout as a sentinelorganism for organic pollution in the field using catalytic and immunochemicalassays of cytochrome P-4501A. Journal of Environmental Monitoring,2004,6(4):368-373.
    [168] Doong R, Chang S, Sun Y. Solid-phase microextraction for detemnining thedistribution of sixteen US Environmental Protection Agency polycyclic aromatichydrocarbons in water samples. Journal of Chromatography A,2000,879(2):177-188.
    [169] Popp P, Bauer C, Moder M, et al. Determination of polycyclic aromatichydrocarbons in waste water by off-line coupling of solid-phase microextractionwith column liquid chromatography. Journal of Chromatography A,2000,897(1-2):153-159.
    [170] Cam D, Gagni S, Meldolesi L, et al. Determination of polycyclic aromatichydrocarbons in sediment using solid-phase microextraction with gaschromatography-mass spectrometry. Journal of Chromatographic Science,2000,38(2):55-60.
    [171] Poon K F, Lam P K S, Lam M H W. Determination of polynuclear aromatichydrocarbons in human blood serum by proteolytic digestion-direct immersionSPME. Analytica Chimica Acta,1999,396(2-3):303-308.
    [172] Baltussen E, Sandra P, David F, et al. Stir bar sorptive extraction (SBSE), a novelextraction technique for aqueous samples: Theory and principles. Journal ofMicrocolumn Separations,1999,11(10):737-747.
    [173] Lee J Y, Lee H K, Rasmussen K E, et al. Environmental and bioanalyticalapplications of hollow fiber membrane liquid-phase microextraction: A review.Analytica Chimica Acta,2008,624(2):253-268.
    [174] Basheer C, Balasubramanian R, Lee H K. Determination of organicmicropollutants in rainwater using hollow fiber membrane/liquid-phasemicroextraction combined with gas chromatography-mass spectrometry. Journal ofChromatographyA,2003,1016(1):11-20.
    [175] Charalabaki M, Psillakis E, Mantzavinos D, et al. Analysis of polycyclic aromatichydrocarbons in wastewater treatment plant effluents using hollow fibreliquid-phase microextraction. Chemosphere,2005,60(5):690-698.
    [176] Jiang X M, Lee H K. Solvent bar microextraction. Analytical Chemistry,2004,76(18):5591-5596.
    [177] Wang L, Wang L, Chen J, et al. Ultrasonic-assisted water extraction and solventbar microextraction followed by gas chromatography–ion trap mass spectrometryfor determination of chlorobenzenes in soil samples. Journal of Chromatography A,2012,1256(0):9-14.
    [178] Gorecki T, Pawliszyn J. Effect of sample volume on quantitative analysis bysolid-phase microextraction.1. Theoretical considerations. Analyst,1997,122(10):1079-1086.
    [179] Jiang X M, Basheer C, Zhang H, et al. Dynamic hollow fiber-supported headspaceliquid-phase microextraction. Journal of Chromatography A,2005,1087(1-2):289-294.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700