植物多酚的高速逆流色谱分离及特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多酚类物质是植物的次生代谢产物,具有独特的化学性质和生理活性。快速有效地分离纯化植物中酚类物质进行结构鉴定是生物活性研究、合理组方和可再生资源高值化利用的必要前提。本文以低极性多酚—蒽醌苷元和高极性多酚—黄酮糖苷为分离目标,探讨了快速寻找植物多酚高速逆流色谱分离的方法步骤,建立了微波辅助提取/大孔树脂富集提取、高速逆流色谱分离、高效液相色谱做最终分离物纯度检测的高效、快速植物多酚分离纯化平台,并对代表性多酚单体的电喷雾串联质谱碎裂规律、晶体结构信息等特性进行了研究,以期通过本课题的研究能为同类其它植物多酚单体的分离纯化、结构鉴定及生物活性研究提供可借鉴的技术和理论依据。主要结果如下:
     (1)利用微波辅助从决明子中提取蒽醌类多酚的最优工艺为:乙醇浓度60%,料液比1: 4,在60°C下提取40 min,蒽醌类多酚的得率为0.275%。通过HPLC-ESI-MS联用技术,采用正、负离子扫描模式对提取物进行分析,初步鉴定了22种多酚成分。
     (2)通过HPLC测定分配系数来选择和优化两相溶剂系统,建立了低极性多酚—蒽醌苷元的高速逆流色谱分离纯化平台,利用该平台并结合半制备HPLC从决明子中分离得到5种纯度均超过97%蒽醌苷元。经UV、MS、~1H NMR等分析,它们分别为:橙黄决明素、钝叶决明素、1-去甲基钝叶决明素、甲基钝叶决明素、1-去甲基橙黄决明素。
     (3)通过SD 300大孔树脂吸附富集、乙醇洗脱从甘蔗榨汁中提取黄酮类多酚,并利用HPLC-ESI-MS负离子扫描模式初步鉴定了9种单体成分。同时建立了高极性多酚—黄酮糖苷的高速逆流色谱分离纯化平台,以乙酸乙酯-正丁醇-水(9:1:10, v/v/v)为两相溶剂体系,从250 mg样品中分离得到38.3 mg异荭草素-7, 3’-二甲基醚、19.7 mg当药黄素、8.5 mg麦黄酮-7-O-葡萄糖苷,HPLC峰面积归一法显示,这三种黄酮糖苷的纯度分别为98.3%、97.8%和97.2%。
     (4)运用电喷雾-离子阱质谱技术对橙黄决明素、钝叶决明素、甲基钝叶决明素、1-去甲基橙黄决明素、异荭草素-7, 3’-二甲基醚、麦黄酮-7-O-葡萄糖苷等4个蒽醌类和2个黄酮类多酚进行多级碰撞诱导解离分析(MS5-MS9),归属了负离子模式下这些化合物的主要特征碎片离子,提出了它们的可能裂解途径,并总结了蒽醌、黄酮类化合物的主要碎裂规律。
     (5)利用单晶X-射线衍射分析了甲基钝叶决明素、茜素-1-甲醚、1, 2-二甲氧基-3-羟基蒽醌、咖啡酸和原儿茶酸五种酚酸的晶体结构。结果表明:此五种酚酸晶体分别属于单斜和三斜两大晶系;晶态下它们分别由氢键、π-π堆积等弱作用组装单个分子成具有二维层状结构的三维超分子网络。此外,单晶X-射线衍射结构分析也表明原儿茶酸与钾、钙离子发生配位反应的基团为3-、4-位羟基,配位后其羟基氢并未离去,晶体结构中每个钾、钙离子均与四分子配体作用,形成八配位的空间构型。原儿茶酸-钾、钙配合物分别属于三斜和正交晶系,主体结构化学计量式为K(C_7H_5O_4)(C_7H_6O_4)和Ca(C_7H_5O_4)_2(C_7H_6O_4)_2。
     (6)原儿茶酸、原儿茶酸-钾和原儿茶酸-钙对O~(2-)·、·OH均有较强的清除能力。原儿茶酸形成配合物后,由于K-O、Ca-O配位键的形成降低了羟基O-H间的电子云密度,增大了羟基氢的离去能力,从而使得其抗氧化能力升高,三者的抗氧化活性为原儿茶酸-钙﹥原儿茶酸-钾﹥原儿茶酸。抑菌实验表明原儿茶酸、原儿茶酸-钾、原儿茶酸-钙对大肠杆菌和金黄色葡萄球菌均有一定的抑制作用,但原儿茶酸形成配合物后不能改善其抑菌活性。
Polyphenols are secondary metabolites in plants, which possess special chemical and physiological activities. Separation and purification of phenolic compounds from plants for molecule structure identification are key steps of their pharmacological activities, rational combination and high-value utilization of renewable resources. This paper first described the qualitative determination of phenolic compounds in Cassia tora L. and sugarcane by HPLC- ESI-MS. And then high-speed counter-current chromatography (HSCCC) was used to establish the rapid and high efficiency preparation platforms of phenolic compounds from Cassia tora L. and sugarcane. The characterizations of main phenolic compounds were also investigated. The main contents and results are as follows:
     (1) The extraction of anthraquinones in Cassia tora L. with microwave-assisted method was studied. The optimal condition was 60% ethanol (V:V), the ratio of solid to liquid (1:4), extraction 40 minutes at 60°C by orthogonal experiments.
     (2) The chemical components were analyzed by HPLC-ESI-MS in Cassia tora L., and 22 molecule structures were elucidated according to mass-to-charge (m/z) of quasi-molecule ion peak and reference. Five anthraquinones including aurantio-obtusin, 1-desmethylaurantio- obtusin, chryso-obtusin, obtusin, and 1-desmethylchryso-obtusin were isolated and purified by HSCCC and semi-HPLC from Cassia tora L. The purity of aurantio-obtusin, 1-desmethylaurantio-obtusin, chryso-obtusin, obtusin, and 1-desmethylchryso-obtusin was over 97% as determined by HPLC. The structures of five anthraquinones were identified by UV, MS, ~1H NMR.
     (3) HPLC-ESI-MS was utilized for the identification of nine flavonoid glycosides from sugarcane juice. Three flavonoid glycosides including swertisin, isoorientin-7, 3'-dimethyl ether, and tricin-7-O-glycoside were isolated and purified from sugarcane juice by HSCCC with a two-phase solvent system composed of ethyl acetate-n-butanol-water (9:1:10, v/v/v). The isolation produced a total of 19.7 mg of swertisin, 38.3 mg of isoorientin-7, 3'-dimethyl ether, and 8.5 mg of tricin-7-O-glycoside from 250 mg of crude extract in one-step elution. The purity of each compound was over 97% as determine by HPLC. The chemical identities of these components were confirmed by UV, MS and ~1H NMR.
     (4) The muti-stage tandem collision-induced dissociation mass spectrum (MS~5-MS~9) of four anthraquinones (aurantio-obtusin, obtusin, chryso-obtusin, 1-desmethylaurantio-obtusin) and two flavonoid glycosides (isoorientin-7, 3'-dimethyl ether, tricin-7-O-glycoside) were investigated in negative mode by electrospray ionization-ion trap mass spectrometry (ESI-ITMS). The fragmentation mechanisms of these compounds were explored according to some interesting losses. We also summarized the relationship between structural features of similar compounds and corresponding fragmentation behavior.
     (5) The crystals of five phenolic compounds were analyzed by single-crystal X-ray diffraction. The results showed that chryso-obtusin and caffeic acid crystallized in the monoclinic space group P2_1/n, and alizarin-1-methyl ether, 1,2-dimethoxy-3-hydroxy- anthraquinone and protocatechuic acid (PCA) crystallized in the triclinic space group P -1. It was one important feature of these crystals that their molecules were interconnected by themselves through hydrogen bonds,π···πstacking, and weak intermolecular interactions to form 3D supramolecular network. Single-crystal X-ray analysis revealed that, in the complexes K-protocatechuic acid (K-PCA) and Ca-protocatechuic acid (Ca-PCA), the central metallic ions were coordinated to eight oxygen atoms from 3-OH and 4-OH of four PCA ligands, crystallizing in the triclinic space group P -1 and the orthorhombic space group P 2_12_12 respectively. The main chemical stoichiometry of complexes K-PCA and Ca-PCA were K(C_7H_5O_4)(C_7H_6O_4) and Ca(C_7H_5O_4)_2(C_7H_6O_4)_2.
     (6) The antioxidant activity of PCA, complexes K-PCA and Ca-PCA were investigated. The results demonstrated that the ligand and its complexes showed good ability for scavenging superoxide and hydroxyl free radicals, and the order of antioxidant activity was Ca-PCA > K-PCA > PCA. At the molecular level, we deduced that the formation of K-O and Ca-O coordination bonds reduced the electron density of 3-OH and 4-OH, and increased the departure ability of H. On the other hand, PCA and its complexs also were tested in vitro to evaluate their antibacterial activity against bacteria Escherichia coli and Staphylococcus aureus, but it was not found that Ca-PCA and K-PCA showed higher activity than PCA.
引文
[1]宋立江,狄莹,石碧.植物多酚研究与利用的意义及发展趋势[J].化学进展,2000, 12(2): 161-170
    [2]狄莹,石碧.植物多酚[M].北京:科学出版社,2000: 1,154,161
    [3] Han X., Shen T., Lou H. Dietary polyphenols and their biological significane[J]. Int. J. Mol. Sci., 2007, 8: 950-988
    [4] Crozier A., Jaganath I.B., Clifford M.N. Dietary phenolics: chemistry, bioavailability and effects on health[J]. Nat. Prod. Rep., 2009, 26: 1001-1043
    [5]何有节,狄莹,赵宇,等.黑荆树皮单宁降解产物的抑菌性能[J].林产化学与工业,1999, 19(2): 1-7
    [6] Harborne J.B. Methods in plant biochemistry, I: plant phenolics[M]. London: AcademicPress, 1989: 48
    [7] Bravo L. Polyphenols: chemistry, dietary sources, metabolism and nutrition significane[J]. Nutr. Rev., 1998, 56(11): 317-333
    [8] Naczk M., Shahidi F. Extraction and analysis of phenolics in food[J]. J. Chromatogr. A, 2004, 1054: 95-111
    [9] Gharras H.E. Polyphenols: food sources, properties and applications - a review[J]. Int. J. Food Sci. Tech., 2009, 44: 2512-2518
    [10] Appel H.M. Phenolics in ecological interaction: the importance of oxidation[J]. J. Chem. Ecol., 1993, 19: 1521-1552
    [11] Sakihama Y., Cohen M.F., Gace S.C. Plant phenolic antioxidant and prooxidant activities: phenolics-induced oxidative damage mediated by metals in plants[J]. Toxicology, 2002, 177: 67-80
    [12] Lee G.L., Hinks C.F., Suttill N.H. Effect of high temperature on condensed tannin accumulation in leaf tissues of big trefoil (Lotus uliginosus Schkuhr)[J]. J. Sci. Food Agr., 2006, 65(4): 415-421
    [13] Kusumoto D., Suzuki K. Spatial distribution and time-course of polyphenol accumulation as a defense induced by wounding in the phloem of Chamaecyparis obtuse[J]. New Phytologist, 2003, 159(1): 167-173
    [14] Hattenschwiler S., Vitousek P.M. The role of polyphenols in terrestrial ecosystem nutrient cycling[J]. Trends Ecol. Evol., 2000, 15: 238-243
    [15] Chappell J., Hahlbrock K. Transcription of plant defense genes in respose to UV light or fungal elicitor[J]. Nature, 1984, 311: 76-78
    [16] Myster R.W. Foliar pathogen and insect herbivore effects on two landslide tree species in Puerto Rico[J]. For. Ecol. Manag., 2002, 169: 231-242
    [17] Sticher L., Mauch-Mani B., Metraux J.P. Systemic acquired resistance[J]. Ann. Rev. Phytopathol., 1997, 35: 325-357
    [18] Nagendran B., Kalyana S., Samir S. Phenolic compounds in plants and agri-industrial by-products: antioxidant activity, occurrence, and potential uses[J]. Food Chem., 2006, 99(1): 191-203
    [19] Manach C., Scalbert A., Morand C., et al. Polyphenols: food sources and bioavilability[J]. Am. J. Clin. Nutr., 2004, 79: 727-747
    [20]保国裕.从甘蔗中提取若干保健品的探讨(下)[J].甘蔗糖业,2003, (2): 41-44
    [21]李秋红.决明子的化学、药理与炮制研究进展[J].中医药学报,2006, 34(6): 48-50
    [22] Shi J., Nawaz H., Pohorly J., et al. Extraction of polyphenolics from plant material for function foods engineering [J]. Food Rev. Int., 2005, 219(1): 139-166
    [23] Robbins R.J. Phenolic acids in foods: an overview of analytical methodology [J]. J. Agr. Food Chem., 2003, 51: 2866-2887
    [24]杨小兰,田艳花,师成滨,等.啤酒花多酚的提取工艺及抗氧化活性研究[J].食品科学,2006, 6(3): 70-74
    [25]白秀丽,李晓莉,汪国砚.茶多酚的提取与应用研究[J].长春师范学院学报,2001, 20(3): 15-17
    [26] Rodrigues S., Pinto G.A.S., Fernandes F.A.N., et al. Optimization of ultrasound extraction of phenolic compounds from coconut (Cocos nucifera) shell power by response surface methodology[J]. Ultrason Sonochem., 2008, 15(1): 95-100
    [27] Painwnyk L., Beaufoy E., Lorimer J.P., et al. The extraction of rutin from flower buds of Sophora japonica[J]. Ultrason Sonochem., 2001, 8(3): 299-301
    [28] Ganzler K. Microwave extraction - a novel sample preparation method for chromatography[J]. J. Chromatogr., 1986, 371: 299-306.
    [29]刘峙嵘,俞自由,方裕勋,等.微波萃取银杏叶黄酮类化合物[J].东华理工学院学报,2005, 28(2): 151-154
    [30] Sun Y.Z., Liao X.J. Wang Z.F. Optimization of micro-assisted extraction of anthocyanins in red raspberries and identification of anthocyanin of extracts using high-performance liquid chromatography-mass spectrometry[J]. Eur. Food Res. Technol., 2007, 225(3-4): 511-523
    [31]廖传华,黄振仁.超临界CO2流体萃取技术—工艺开发及其应用[M].北京:化学工业出版社,2004: 1-8
    [32] Palenzuela B., Arce L., Macho A., et al. Bioguided extraction of polyphenols from grape marc by using an alternative supercritical-fluid extraction method based on a liquid solvent trap[J]. Anal. Bioanal. Chem., 2004, 378: 2021-2027
    [33] Goli A.H., Barzegar M., Sahari M.A. Antioxidant activity and total phenolic compoundsof pistachio (Pistachia vera) hull extracts[J]. Food Chem., 2005, 92: 521-525
    [34]梁茂雨,赵光远,纵伟.高压对从苹果渣中提取酚类物质的影响[J].食品与机械,2007, 23(4): 38-40
    [35] Pineiro Z., Palma M., Barroso C.G. Determination of catechins by means of extraction with pressurized liquilds[J]. J. Chromatogr. A, 2004, 1026: 19-23
    [36]王晓,李林波,马小来,等.酶法提取山楂叶中总黄酮的研究[J].食品工业科技,2003, 23(3): 37-39
    [37]刘军海,杨海涛,刁宇清.复合酶法提取茶多酚工艺条件研究[J].食品与机械,2008, 24(3): 74-77, 80
    [38]黄秋森.有机溶剂提取萃取法生产茶多酚工业试验[J].现代化工,2006, 26(9): 49-51
    [39]彭雪萍,马庆一,刘艳芳,等.苹果废渣中天然抗氧化物的提取、分离及活性研究[J].食品工业科技,2006, 27(11): 111-113
    [40]戴群晶.用茶末及废茶枝叶提取高纯茶多酚的研究[J].现代食品科技,2007, 23(1): 45-48
    [41]王哲,白志明,关海君,等.用β-葡萄糖苷酶和膜技术生产大豆异黄酮苷元的方法[P].中国: 1003531388, 2007-11-28
    [42]汪茂田,谢培山,王忠东,等.天然有机化合物提取分离与结构鉴定[M].北京:化学工业出版社,2004: 69-131
    [43] Svedstrom U., Vuorela H., Kostiainen R., et al. Isolation and identification of oligomerlic procyanidins from crataegus leaves and flowers[J]. Phytochemistry, 2002, 60(8): 821-825
    [44]李红霞,邓铁忠.灯心草酚性成分的分离与结构鉴定[J].药学学报,2007, 42(2): 174-178
    [45] Landrault N., Poucheret P., Ravel P., et al. Antioxidant capacities and phenolic levels of French wines from different varieties and vintages[J]. J. Agr. Food Chem., 2001, 49(7): 3341-3348
    [46] Arora A., Nair G.M., Strasburg G.M. Structure-activity relationship for antioxidant activities of a series of flaonoids in a liposomal system[J]. Free Radical Bio. Med., 1998, 24: 1355-1363
    [47] More J., Lescoat G., Cogrel P., et al. Antioxidant and iron chelating activities of the flavonols catechin, quercetin, and diosmetin on iron-loaded rat hepatocyte cultures[J].Biochem. Pharmacol., 1993, 45(1): 13-19
    [48] Costa S., Utan A., Cervellati R., et al. Catechins: natural free-radical scavengers against ochratoxin A-induced cell damage in a pig kidney cell line (LLC-PK1)[J]. Food Chem. Toxicol., 2007, 45: 1910-1917
    [49] Yao P., Nussler A., Liu L.G., et al. Quercetin protects human hepatocytes from ethanol-derived oxidative stress by inducing heme oxygenase-1 via the MAPK/Nrf2 pathways[J]. J. Hepatol., 2007, 47(2): 253-261
    [50] Zhu X., Zhang H., Lo R. Phenoic compounds from the leaf extract of artichoke (Cynara scolymus L.) and their antimicrobial activities[J]. J. Agr. Food Chem., 2004, 52(24): 7272-7278
    [51]孙爱东,孙建霞,白卫滨,等.苹果多酚抑菌作用的研究[J].北京林业大学学报,2008, 30(4): 150-152
    [52] Liu S., Lu H., Zhao Q., et al. Theaflavin derivatives in black tea and catechin derivatives in green tea inhibit HIV-1 entry by targeting gp41[J]. Biochim. Biophys. Acta, 2005, 1723(1-3): 270-281
    [53] Chisolm G., Steinberg D. The oxidative modification hypothesis of atherogenesis: an overview[J]. Free Radical Bio. Med., 2000, 28: 1815-1826
    [54] Miura Y., Chiba T., Miura S., et al. Green tea polyphenols prevent oxidative modification of low density lipoproteins: an ex vivo study in humans[J]. J. Nutr. Biochem., 2000, 11(4): 216-222
    [55]王敏,魏益民,高锦明.苦荞麦总黄酮对高脂血大鼠血脂和抗氧化作用的影响[J].营养学报,2006, 28(6): 502-506
    [56] Castillo J., Benavente-Garcia O., Lorente J., et al. Antioxidant activity and radioprotective effects against chromosomal damage induced in vivo by X-rays of flavan-3-ols (procyanidins) from grape seeds[J]. J. Agr. Food Chem., 2000, 48: 1738-1745
    [57] Rajeshkumar N.V., Pillai M.R., Kuttan R. Induction of apoptosis in mouse and human carcinoma cell lines by Emblica officinalis polyphenols and its effect on chemical carcinogenesis[J]. J. Exp. Clin. Cancer Res., 2003, 22: 201-212
    [58] Yang C.S., Lee M.J., Chen L., et al. Polyphenols as inhibitors of carcinogenesis[J]. Environ. Health Perspect., 1997, 105: 971-976
    [59] Yamagishi M., Natsume M., Osakabe N., et al. Effects of cacao liquor proanthocyanidins on PhIP-induced mutagenesis in vitro, and in vivo mammary and pancreatic tumorigenesis in female Sprague-Dawley rats[J]. Cancer Lett., 2002, 185: 123-130
    [60] Huynh H.T., Teel R.W. Selective induction of apoptosis in human mammary cancer cells (MCF-7) by pycnogenol[J]. Anticancer Res., 2000, 20: 2417-2420
    [61] Sartippour M.R., Heber D., Ma J., et al. Green tea and its catechins inhibit breast cancer xenografts[J]. Nutr. Cancer, 2001, 40: 149-156
    [62] Ye X., Krohn R.L., Liu W., et al. The cytotoxic effects of a novel IH636 grape seed proanthocyanidin extract on cultured human cancer cells[J]. Mol. Cell. Biochem., 1999, 196: 99-108
    [63] Cai Y., Luo Q., Sun M., et al. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer[J]. Life Sci., 2004, 74: 2157-2184
    [64]张天佑.逆流色谱仪在天然药物有效成份制备分离中的应用[J].分析仪器,1995, (1): 6-8
    [65] Ito Y., Sandlin J., Browers W.G. High-speed preparative counter-current chromatography with a coil planet centrifuge[J]. J. Chromatogr., 1982, 244(2): 247-258
    [66]张天佑.逆流色谱技术[M].北京:北京科学技术出版社,1991: 267
    [67] Peng J.Y., Fan G.R., Chai Y.F., et al. Efficient new method for extracton and isolation of three flavonoids from Patrinia villosa juss by supercritical fluid extraction and high-speed counter-current chromatography[J]. J. Chromatogr. A, 2006, 1102: 44-50
    [68] Peng J.Y., Fan G.R., Hong Z.Y., et al. Preparative isolation of isovitexin and isoorientin from Patrinia villosa juss by high-speed counter-current chromatography[J]. J. Chromatogr. A, 2005, 1074: 111-115
    [69] Wei Y., Ito Y. Preparative isolation of imperatorin, oxypeucedanin and isoimperatorin from tradition Chinese herb“bai zhi”Angelica dahurica (Fisch. ex Hoffm) Benth. et hook using multidimensional high-speed counter-current chromatography[J]. J. Chromatogr. A, 2006, 1115: 112-117
    [70] Lu H.T., Jiang Y., Chen F. Application of preparative high-speed counter-current chromatography for separation of chlorogenic acid from Flos Lonicerae[J]. J. Chromatogr.A, 2004, 1026: 185-190
    [71] Andreas D., Saskia H., Peter W. Isolation of the lignan secoisolariciresinol diglucoside from flaxseed (Linum usitatissimum L.) by high-speed counter-current chromatography[J]. J. Chromatogr. A, 2002, 943: 299-302
    [72] Du Q., Jiang H., Ito Y. Separation of theaflavins of black tea high-speed countercurrent chromatography vs sephadex LH-20 gel column chromatography[J]. J. Liq. Chromatogr. R. T., 2001, 24: 2363-2369
    [73]姚新生,吴立军,吴继洲,等.天然药物化学[M].第4版.北京:人民卫生出版社,2005: 150, 173
    [74] Kuo Y.C., Sun C.M., Ou J.C., et al. A tumor cell growth inhibitor from Polygonum hypoleucum Ohwi[J]. Life Sci., 1997, 61: 2335-2344
    [75] Igarashi Y., Trujillo M.E., Martinez-Molina E., et al. Antitumor anthraquinones from a endophytic actinomycete Micromonospora lupini sp. nov.[J]. Bioorg. Med. Chem. Lett., 2007, 17: 3702-3705
    [76]苟奎斌,孙丽华,娄卫宁,等.大黄中4种蒽醌类化合物抑幽门螺杆菌效果比较[J].中国药学杂志,1997, (5): 278-280
    [77]邓响潮,孙桂波,宋威.决明子蒽醌苷对小鼠免疫功能的调节[J].药物研究,2008, 17(11): 10-11
    [78]唐传核.植物生物活性物质[M].北京:化学工业出版社,2005: 29-30
    [79] Haddad A.Q., Venkateswaran V., Viswanathan L., et al. Novel antiprolife-rative flavonoids induce cell cycle arrest in human prostate cancer cell lines[J]. Prostate Cancer P. D., 2006, 9(1): 68-76
    [80]宗灿华,马山,于国萍.荷叶黄酮抗衰老作用研究[J].中国食物与营养,2009, (10): 52-53
    [81]刘江,童智,张再超,等.山楂叶总黄酮防治大鼠胰岛素抵抗及脂肪肝的实验研究[J].华东师范大学学报,2008, (6): 127-132
    [82] Augustin E. Prenylated isoflavanone from the roots of Erythrina sigmoidea [J]. Phytochemistry, 1994, 36(4): 1074-1077
    [83]杨林,周本宏.石榴皮中鞣质和黄酮类化合物抑菌作用的实验研究[J].时珍国医国药,2007, 18(10): 2235-2236
    [1]国家药典委员会编.中华人民共和国药典(一部)[S].北京:化学工业出版社,2000: 112
    [2]李秋红.决明子的化学、药理与炮制进展[J].中医药学报,2006, 34(6): 48-50
    [3]许牡丹,陈合.药食兼用食品加工技术[M].北京:化学工业出版社,2006: 11
    [4]张景,王涛,张春枝.决明子中蒽醌类物质的提取和TLC检测[J].大连轻工业学院学报,2006, 25(1): 43-46
    [5] Yen G.C., Chen H.W., Duh P.D. Extraction and identification of an antioxidative component from Jue Ming Zi (Cassia tora L.)[J]. J. Agric. Food Chem., 1998, 46:820-824
    [6]贾振宝,丁霄霖.决明子中蒽醌类成分研究[J].中药材,2006, 29(1): 28-29
    [7] Ganzler K. Microwave extraction - a novel sample preparation method for chromatography[J]. J. Chromatogr., 1986, 371: 299-306
    [8]汪茂田,谢培山,王忠东,等.天然有机化合物提取分离与结构鉴定[M].北京:化学工业出版社,2004: 39-40
    [9]曹学丽.高速逆流色谱分离技术及应用[M].北京:化学工业出版社,2005: 16
    [10] Liu R.M., Feng L., Sun A.L., et al. Preparative isolation and purification of coumarins from Peucedanum praeruptorum dun by high-speed counter-current chromatography[J]. J. Chromatogr. A, 2004, 1057: 89-94
    [11] Zhou X., Peng J.Y., Fan G.R., et al. Isolation and purification of flavonoid glycosides from Trollius ledebouri using high-speed counter-current chromatography by stepwise increasing the flow-rate of the mobile phase[J]. J. Chromatogr. A, 2005, 1092: 216-221
    [12]王慧,高晓霞,张立伟.决明子复方降脂茶总蒽醌含量测定[J].光谱实验室,2007, 24(1): 19-21
    [13]祝国强,滕海英,黄平.正交试验设计法在医药学中的应用[J].数理医药学杂志,2007, 20(4): 568-569
    [14]王海棠,吕本莲,尹卫平,等.正交试验法研究决明子提取工艺[J].天然产物研究与开发,2003, 15(2): 141-143
    [15] Kitanaka S., Takido M. Torosachrysone and physcion gentiobiosides from the seeds of Cassia torosa[J]. Chem. Pharm. Bull., 1984, 32(9): 3436-3440
    [16]唐力英,王祝举,傅梅红,等.决明子中游离蒽醌类化学成分研究[J].中药材,2009, 32(5): 717-719
    [17] Zhu L.C., Yu S.J., Zeng X.A., et al. Preparative separation and purification of five anthraquinones from Cassia tora L. by high-speed counter-current chromatography[J]. Sep. Purif. Technol., 2008, 63: 665-669
    [18]李桂柳,肖永庆,李丽,等.炒决明子化学成分的研究[J].中国中药杂志,2009, 34(1): 54-56
    [19] Kitanaka S., Takido M. Studies on the constituents of the seeds of Cassia obtusifolia LINN. The structures of three new anthraquinones[J]. Chem. Pharm. Bull., 1984, 32(3):860-864
    [20]张加雄,万丽,王凌.决明子降血脂有效部位的化学成分[J].华西药学杂志,2008, 23(6): 648-650
    [21] Wong S.M., Wong M.M., Seligmann O., et al. New antihepatotoxic naphtho-pyrone glycosides from the seeds of Cassia tora[J]. Planta Med., 1989, 55(3): 276-280
    [22] Kitanaka S., Nakayama T., Shibano T., et al. Antiallergic agent from natural sources. Structures and inhibitory effect of histamine release of naphthopyrone glycosides from seeds of Cassia obtusifolia L.[J]. Chem. Pharm. Bull., 1998, 46(10): 1650-1652
    [23] Wong S.M., Wong M.M., Seligmann O., et al. Anthraquinone glycosides from the seeds of Cassia tora[J]. Phytochemistry, 1989, 28(1): 211-214
    [24] Kitanaka S., Takido M. Studies on the constituents of the seeds of Cassia obtusifolia LINN. The structures of two naphthopyrone glycosides[J]. Chem. Pharm. Bull., 1988, 36(10): 3980-3984
    [25] Lee H.J., Jung J.H., Kang S.S., et al. A rubrofusarin gentiobioside isomer from roasted Cassia tora[J]. Arch. Pharm. Res., 1997, 20(5): 513-515
    [26]唐力英,王祝举,赫炎,等.决明子中苷类化学成分研究[J].中国实验方剂学杂志,2009, 15(7): 35-37
    [27] Peng J.Y., Fan G.R., Chai Y.F., et al. Efficient new method for extracton and isolation of three flavonoids from Patrinia villosa juss by supercritical fluid extraction and high-speed counter-current chromatography[J]. J. Chromatogr. A, 2006, 1102: 44-50
    [28] Hana X., Ma X.F., Zhang T.Y., et al. Isolation of high-purity casticin from Artemisia annua L. by high-speed counter-current chromatography[J]. J. Chromatogr. A, 2007, 1151: 180-182
    [29] Ito Y. Golden rules and pitfalls in selecting optimum conditions for high-speed counter-current chromatography[J]. J. Chromatogr. A, 2005, 1065: 145-168
    [30]郝延军,桑育黎,赵余庆.决明子蒽醌类化学成分研究[J].中草药,2003, 34(1): 18-19
    [31] Choi J.S., Jung J.H., Lee H.J., et al. The NMR assignments of anthraquinones from Cassia tora[J]. Arch. Pharm. Res., 1996, 19(4): 302-30
    [1] Paton N.H. Duong M. Sugar cane phenolics and first expressed juice colour Part III. Role of chlorogenic acid and flavonoids in enzymic browning of cane juice[J]. Int. Sugar J., 1992, 94(1124): 170-176
    [2]保国裕.从甘蔗中提取若干保健品的探讨(下)[J].甘蔗糖业,2003, (2): 41-44
    [3]陈其斌,周重吉.甘蔗制糖手册[M].第12版.高大维等译校.广州:华南理工大学出版社,1993: 353-359
    [4] Karakaya S. Bioavailability of phenolic compounds[J]. Crit. Rev. Food Sci. Nutr., 2004, 44(6): 453-464
    [5] Issa A.Y., Volate, S.R., Wargovich M.J. The role of phytochemicals in inhibition of cancer and inflammation: New directions and perspectives[J]. J. Food Comps. Anal., 2006, 19(5): 405-419
    [6] Hasna E.G. Polyphenols: food sources, properties and applications - a review[J]. J. Food Sci. Tech., 2009, 44(12): 2512-2518
    [7] Payet B., Sing A.S.C, Smadja J. Comparison of the concentration of phenolic constituents in cane sugar manufacturing products with their antioxidant activities[J]. J. Agric. Food Chem., 2006, 54: 7270-7276
    [8] Kadam U.S., Ghosh S.B., De S., et al. Antioxidant activity in sugarcane juice and its protective role against radiation induced DNA damage[J]. Food Chem., 2008, 106: 1154-1160
    [9] Elabasy M., Motobu M., Na K.J., et al. Immunostimulating and growth promoting effects of sugarcane extracts (SCE) in chickens[J]. J. Veter. Med. Sci., 2002, 64: 1061-1063
    [10]扶雄,于淑娟,闵亚光,等.从甘蔗中提取天然抗氧化活性物质[J].甘蔗糖业,2003, (5): 37-41
    [11] Colombo R., Yariwake J.H., Queiroz E.F., et al. On-line identification of further flavone C- and O-glycosides from sugarcane (Saccharum officinarum L., Gramineae) by HPLC-UV-MS[J]. Phytochem. Anal., 2006, 17: 337-343
    [12] Colombo R., Lancas F.M., Yariwake J.H. Determination of flavonoids in cultivated sugarcane leaves, bagasse, juice and in transgenic sugarcane by liquid chromatography-UV detection[J]. J. Chromatogr. A, 2006, 1103: 118-124
    [13] Colombo R., Yariwake J.H., Mccullagh M. Study of C- and O-glycosylflavones in sugarcane extracts using liquid chromatography-exact mass measurement mass spectrometry[J]. J. Braz. Chem. Soc., 2008, 19: 483-490
    [14] Colombo R., Yariwake J.H., Queiroz E.F., et al. On-line identification of sugarcane (Saccharum officinarum L.) methoxyflavones by liquid chromatography-UV detection using post-column derivatization and liquid chromatography-mass spectrometry[J]. J. Chromatogr. A, 2005, 1082: 51-59
    [15] Patron N.H., Smith P., Mabry T.J. Identification of flavonoid compounds in HPLC separation of sugar cane colorants[J]. Int. Sugar J., 1985, 87(1043): 213-215
    [16] Mabby T.J., Liu Y.L., Pearce J., et al. New flavonoids from sugarcane (Saccharum) [J]. J. Nat. Prod., 1984, 47: 127-130
    [17] Mcghie T.K. Analysis of sugarcane flavonoids by capillary zone electrophoresis[J]. J. Chromatogr., 1993, 634: 107-112
    [18]曹学丽.高速逆流色谱分离技术及应用[M].北京:化学工业出版社,2005: 39
    [19] Karin V., Elisabeth B., Jean C. Isoorientin 7, 3'-dimethyl ether, a new C-glycosylflavone from Achillea cretica [J]. Phytochemistry, 1980, 19(1): 156
    [20]王建农,侯翠英.抱茎獐牙菜化学成分的研究[J].中草药,1994, 25(8): 401-403
    [21]戴好富,刘玉青,邓世明.毛剪秋罗的化学成分研究[J].天然产物研究与开发,2002, 14(1): 9-12
    [1]应万涛,钱小红.生物质谱应用及其进展[J].军事医学科学院院刊,2000, 24(2): 146-150
    [2] Leinonen A., Kuuranne T., Kostiainen R. Optimization and comparison of three ionization techniques[J]. J. Mass Spectrom., 2002, 37(7): 693-698
    [3]帕拉马尼克B.N.,甘古利A.K.,格罗斯M.L.电喷雾质谱应用技术[M].蒋宏建,俞克佳译.北京:化学工业出版社,2005: 142-144
    [4]丛浦珠.质谱学在天然有机化学中的应用[M].北京:科学出版社,1987: 78-79
    [5]李娟,宋树美,王少敏,等.电喷雾质谱法研究4种青蒿素类药物的质谱裂解特征[J].质谱学报,2009, 30(3): 148-153
    [6]徐英,董静,王弘,等.电喷雾-离子阱-飞行时间质谱联用研究黄酮和异黄酮苷元C环上的裂解规律[J].高等学校化学学报,2009, 30(1): 46-50
    [7]马小红,沈少林,韩凤梅,等.大黄蒽醌类化合物电喷雾质谱研究[J].湖北大学学报(自然科学版),2006, 28(4): 403-406
    [8] Kang J.G., Hick L.A., Price W.E. A fragmentation study of isoflavones in negative electrospray ionization by MSn ion trap mass spectrometry and triple quadrupole mass spectrometry [J]. Rapid Commun. Mass Spectrom., 2007, 21(6): 857-868
    [9] Eddine N., Safi E.S., Kerhoas L., et al. Fragmentation study of iridoid glucosides through positive and negative electrospray ionization collision-induced dissociation and tandem mass spectrometry[J]. Rapid Commun. Mass Spectrom., 2007, 21(7):1165-1175
    [1]王钟敏. X射线衍射分析及其在中草药化学成分结构测定中的应用[J].河北建筑工程学院学报,2002, 20(1): 86-88, 91
    [2]陈小明,蔡继文.单晶结构分析原理与实践[M].北京:科学出版社,2003: 1-3
    [3]常颖,郑启泰,吕扬. X射线衍射技术在药物研究中的应用[J].物理,2007, 36(6): 452-459
    [4]冒莉,郑启泰,吕扬.固体药物多晶型的研究进展[J].天然产物研究与开发,2005, 17(3): 371-375
    [5]赵斌,周俊国,蒙根,等.桥环黄皮酰胺差向异构体的结构研究[J].药学学报,2001, 36(5): 373-376
    [6]沈建林,姜倩,张均寿.药物多晶型的研究进展[J].中国医院药学杂志,2001, 21(5): 304-305
    [7]吕扬,吴云山,郑启泰. X射线衍射技术在新药及制药研究中的应用[J].现代仪器,2004, (3): 6-9,19
    [1] Zhao Z.G., Zhu L.C., Yu S.J., et al. Simultaneous determination of ten major phenolic acids in sugarcane by a reversed phase HPLC method[J]. Zucherindustrie, 2008, 133(8): 503-506
    [2]张遵仪,韩鹏飞,梁满达,等.原儿茶酸衍生物的化学结构与冠脉流量、心肌耗氧量关系的探讨[J].药学学报,1980, 15(11): 641-647
    [3]王秋娟,后德辉,洪善云,等.原儿茶酸衍生物对实验性心律失常的作用[J].中国药科大学学报,1988, 19(1): 70-72
    [4] Guan S., Bao Y.M., Jiang B., et al. Protective effect of protocatechuic acid from Alpinia oxyphylla on hydrogen peroxide-induced oxidative PC12 cell death[J]. Eur. J. Pharmacol., 2006, 538(1-3): 73-79
    [5] Tseng T.H., Hsu J.D., Lo M.H., et al. Inhibitory effect of Hibiscus protocatechuic acid on tumor promotion in mouse skin[J]. Cancer Lett., 1998, 126(2): 199-207
    [6] Yip E.C., Chan A.S., Pang H., et al. Protocatechuic acid induces cell death in HepG2hepatocellular carcinoma cells through a c-Jun N-terminal kinase-dependent mechanism[J]. Cell Biol. Toxicol., 2006, 22(4): 293-302
    [7] Ueda J., Saito N., Shimazu Y., et al. A comparison of scavenging abilities of antioxidants against hydroxyl radicals[J]. Arch. Biochem. Biophys., 1996, 333(2): 377-384
    [8] Nakamura Y., Torikai K., Ohto Y., et al. A simple phenolic antioxidant protocatechuic acid enhances tumor promotion and oxidative stress in female ICR mouse skin: dose-and timing-dependent enhancement and involvement of bioactivation by tyrosinase[J]. Carcinogenesis, 2000, 21(10): 1899-1907
    [9] Tsuda T., Shiga K., Ohshima K., et al. Inhibition of lipid peroxidation and the active oxygen radical scavenging effect of anthocyanin pigments isolated from Phaseolus vulgaris L.[J]. Biochem. Pharmacol., 1996, 52(7): 1033-1039
    [10] Gyurcsik B., Nagy L. Carbohydrates as ligands: coordination equilibria and structure of the metal complexes[J]. Coordin. Chem. Rev., 2000, 203(1): 81-149
    [11] Lippard S.J., Berg J.M.生物无机化学原理[M].席振峰,姚光庆,项斯芬,等译.北京:北京大学出版社,2000: 1-13
    [12]曹治权,房喻.对中药有效化学成分研究的新思路[J].实用中西医结合杂志,1991, 4(9): 518-521
    [13]谭明雄,陈振锋,罗旭健,等.天然药物有效成分的金属配合物研究进展[J].林产化学与工业,2008, 28(6): 93-99
    [14]贾秀荣,周济桂,吕华,等.黄芩甙锌配合物与黄芩甙对免疫反应的初步比较研究[J].西北药学杂志,1994, 4(9): 162-164
    [15] Zhou J., Wang L.F., Wang J.Y., et al. Antioxidative and anti-tumour activities of solid quercetin metal(II) complexes[J]. Transi. Metal Chem., 2001, 26: 57-63
    [16] Al-Allaf T.A.K., Rashan L.J. Synthesis and cytotoxic evaluation of the first trans-palladium(II) complex with naturally occurring alkialoid hamine[J]. Eur. J. Med. Chem., 1998, 33:817-820
    [17]文镜,贺素华,杨育颖,等.保健食品清除自由基作用的体外测定方法和原理[J].食品科学,2004, 25(11): 190-195
    [18]杨璇璇,朱思明,于淑娟,等.橙皮苷-铜配合物的结晶与抗氧化活性[J].现代食品科技,2008, 24(11): 1096-1099
    [19]丁利君,冼建毅.黄芪中黄酮类化合物提取及其对羟基自由基清除作用[J].食品与机械,2002, 18(3): 20-21
    [20]任志秋,陈平.橙皮苷锌配合物合成及其清除自由基能力的研究[J].哈尔滨商业大学学报,2009, 25(6): 688-693
    [21]贾冬英,姚开,何强,等.柚皮苷-金属配合物的抗氧化活性研究[J].中国油脂,2005, 30(4): 30-33
    [22]陈莉敏,林友文,康建军,等.姜黄素-钌配合物的合成和抗氧化活性研究[J].海峡药学,2010, 22(5): 224-226
    [23]李华,刘玉明.茶多酚银、茶多酚锌配合物抗氧化活性研究[J].林产化学与工业,2004, 24(4): 94-98

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700