快速高分离液质联用技术在农药残留检测中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着亚二微米颗粒度色谱柱填料和新型液相色谱系统两大核心技术的突破,液质联用技术进入了全新的时代。与传统技术相比,新技术所具有的分析速度更快和分析灵敏度更高的优势将使其在未来的农药残留检测中发挥重要作用。
     本论文采用快速高分离液质联用技术(RRLC-MS),针对3种农药残留体系,从样品前处理、色谱分离、质谱测定及方法的有效性等方面进行了优化和验证,建立了5个新型检测方法。
     对松花江水体和饮用水中除草剂苯噻草胺及其三种光降解代谢物残留的固相萃取/快速高分离液相色谱-紫外/质谱联用(SPE/RRLC-UV/MS)和固相萃取-柱前衍生/快速高分离液相色谱-质谱联用(SPE-PCD/RRLC-MS)两种定性和定量检测方法进行了研究。在样品前处理阶段,考察了3种不同填料的固相萃取小柱和4种不同溶剂对4种分析物的吸附和洗脱回收性能;在样品分离阶段,分别采用等梯度和梯度洗脱方式,用快速分离高通量色谱柱Zorbax RRHT SB-C18 (50 mm×4.6 mm, 1.8μm, Agilent)进行分离;在定性和定量方法上,确定了每个分析物的保留时间和两对特征离子为定性参数,分别以紫外色谱和质量色谱峰面积为定量参数;同时初步研究了苯噻草胺的质谱裂解方式。两种方法对于4种分析物的线性相关系数(r2)分别为0.9992~0.9998和0.9986~0.9992,平均加标回收率为85.6%~101.4%和78.6%~101.2%,相对标准偏差(RSD)为3.0%~6.9%和3.2%~9.2%,最低检测限(LOD)为0.02μg·L~(-1)和0.02 ng·L~(-1)。实际水样品检测结果显示:松花江水体中4种化合物均为阳性检出,而饮用水中均未检到。
     采用固相萃取/快速高分离液相色谱-紫外/质谱联用(SPE/RRLC-UV/MS)和固相萃取/快速高分离液相色谱-质谱/质谱联用(SPE/RRLC-MS/MS)两种分析技术对松花江水中11种三嗪类除草剂残留进行了检测。在样品前处理阶段,考察了多壁碳纳米管材料作为固相萃取吸附剂和5种不同溶剂对11种分析物的吸附和洗脱回收性能;在样品分离阶段,采用梯度洗脱方式,用快速分离高通量色谱柱Zorbax RRHT SB-C18 (50 mm×4.6 mm, 1.8μm, Agilent)进行分离;在定性和定量方法上,确定了每个分析物的保留时间和两对特征离子为定性参数,分别以紫外色谱和质量色谱峰面积为定量参数;同时初步研究了11种化合物的质谱裂解规律。两种方法对于11种分析物的线性相关系数(r2)分别为0.9992~0.9996和0.9930~0.9980,平均加标回收率分别为72.3%~97.8%和73.0%~98.0%,相对标准偏差(RSD)为3.2%~13.6%和2.6%~10.8%,最低检测限(LOD)为0.04μg·L~(-1)和0.04 ng·L~(-1)。实际水样品检测结果显示:松花江水体中11种化合物只有西玛津和莠去津为阳性检出,其他9种均未检到。
     建立了果蔬品中9种有机磷类杀虫剂残留的基质固相分散萃取/快速高分离液相色谱-质谱/质谱联用(MSPD/RRLC-MS/MS)的定性和定量检测方法。考察了以多壁碳纳米管材料为基质固相分散萃取吸附剂和4种不同溶剂对9种化合物吸附和洗脱回收性能;优化了液相色谱分离和质谱测定的几个主要影响参数;初步研究了9种化合物的质谱裂解规律。该方法对于9种分析物的线性相关系数(r2)为0.9942~0.9996,平均加标回收率为71.2%~102.8%,相对标准偏差(RSD)为2.0%~11.8%,最低检测限(LOD)为0.4 ng·L~(-1),同时将该方法用于8种不同果蔬样品的实际检测。
With the breakthrough of two core techniques of sub-two micron particles chromatographic column and new liquid chromatographic system, liquid chromatography coupled to mass spectrometry (LC-MS) technology is stepping into a brand-new era. Compared with the traditional technology, praticular advantages of faster analytical speed and higher analytical sensitivity for new technology will make itself play an important role in prospective pesticide residue monitoring.
     In this doctoral paper, five new analytical methods of three pesticide residue systems were developed by rapid resolution liquid chromatography coupled to mass spectrometry technology (RRLC-MS). Optimization and validation were made for four aspects of sample pre-concentration method, separation of chromatography, analysis of mass spectrum and validation of the proposed method.
     Two analytical methods, SPE/RRLC-UV/MS and SPE-PCD/RRLC-MS, were investigated for the determination of herbicide mefenacet and three photolysis degradation products residues in Songhuajiang River water body and drinking water. In the SPE pre-concentration step, the adsorbent performance of three types of cartridges and the elution capability of four kinds of eluents were investigated for four analytes; in the LC separation step, rapid resolution high throughout LC column, Zorbax RRHT SB-C18 (50 mm×4.6 mm, 1.8μm, Agilent), was used and two elution modes, constant gradent and gradent, were adopted; for the qualitative and the quantitative method, the retention time and two parts of characteristic ions of every analyte were choosed to be qualitative parameters; two quantitative parameters, the peak area of UV chromatogram and mass chromatogram, were confirmed respectively and the mass spectrum fragmentation mode of mefenacet was studied. The research results show that the linear correlation coefficients (r2) of two proposed methods for four analytes are 0.9992~0.9998 and 0.9986~0.9992 respectively, the mean recoveries are 85.6%~101.4% and 78.6%~101.2% with relative standard deviations (RSD) 3.0%~6.9% and 3.2%~9.2%, the limits of detection (LOD) are 0.02μg·L~(-1) and 0.02 ng·L~(-1). The testing results for real water samples showed that four analytes were all detected in Songhuajiang River water body and were not detected in drinking water.
     Two analytical methods, SPE/RRLC-UV/MS and SPE/RRLC-MS/MS, were used for the determination of eleven triazine herbicides residues in Songhuajiang River water body. In the SPE pre-concentration step, the adsorbent performance of multi-walled carbon nanotube material as SPE adsorbent and the elution capability of five kinds of eluents were investigated for eleven analytes; in the LC separation step, rapid resolution high throughout LC column, Zorbax RRHT SB-C18 (50 mm×4.6 mm, 1.8μm, Agilent), was used and the gradent elution mode was adopted; for the qualitative and the quantitative method, the retention time and two parts of characteristic ions of every analyte were choosed to be qualitative parameters; two quantitative parameters, the peak area of UV chromatogram or mass chromatogram, were confirmed respectively and the mass spectrum fragmentation law of eleven analytes was studied. The research results show that the linear correlation coefficients (r2) of two proposed methods for eleven analytes are 0.9992~0.9996 and 0.9930~0.9980 respectively, the mean recoveries are 72.3%~97.8% and 73.0%~98.0% with relative standard deviations (RSD) 3.2%~13.6% and 2.6%~10.8%, the limits of detection (LOD) are 0.04μg·L~(-1) and 0.04 ng·L~(-1). The testing results for real water samples showed that only simazine and atrazine of eleven analytes were detected in Songhuajiang River water body and other nine analytes were not detected.
     MSPD/RRLC-MS/MS method was developed for the determination of nine organophosphrous pesticides residues in fruits and vegetables. The adsorbent performance of multi-walled carbon nanotube material as MSPD adsorbent and the elution capability of four kinds of eluents were investigated for nine analytes; several important parameters affecting LC separation and mass spectrum analysis were optimized; the mass spectrum fragmentation law of nine analytes was studied. The research results show that the linear correlation coefficient (r2) of the proposed method for nine analytes are 0.9942~0.9996, the mean recoveries are 71.2%~102.8% with relative standard deviation (RSD) 2.0%~11.8% , the limit of detection (LOD) is 0.4 ng·L~(-1). The proposed method was used for the simultaneous determination of these nine analytes residues in eight different fruit and vegetable samples.
引文
1李丽娟,梁丽乔,刘昌明等.近20年我国饮用水污染事故分析及防治对策.地理学报. 2007,62(9): 917~924
    2 L. Wloska, M. Wiergowski, K. Galer et al. Sample Preparation for GC Analysis of Selected Pesticides in Surface Water. Chemosphere. 1999, 39(9): 1477~1486
    3尹显贵.液相色谱-质谱/串联质谱联用技术及其在药物分析中的应用.天津药学. 2005,(3):53~55
    4 A. Steven, Barker. Matrix solid phase dispersion (MSPD). Journal of biochemical and biophysical methods. 2007, 70: 151~162
    5 U.J. Nilsson. Solid-phase Extraction for Combinatorial Libraries. Journal of Chromatography A. 2000, 885: 305~319
    6 M.C. Carson. Ion-pair Solid-phase Extraction. Journal of Chromatography A. 2000, 885: 343~350
    7 M.C. Hennion, C. Cau-Dit-Coumes, V. Pichon. Trace Analysis of Polar Organic Pollutants in Aqueous Samples: Tools for the Rapid Prediction and Optimization of the Solid-phase Extraction Parameters. Journal of Chromatography A. 1998, 823: 147~161
    8 F. Hernandez, J.V. Sancho, O. Pozo et al. Rapid Direct Determination of Pesticides and Metabolites in Environmental Water Samples at Sub-μg/L Level by On-line Solid-phase Extraction and Liquid Chromatography–electrospray Tandem Mass Spectrometry. Journal of Chromatography A. 2001, 939: 1~11
    9任晋,黄翠玲.固相萃取-高效液相色谱-质谱联机在线分析水中痕量除草剂.分析化学. 2001,29(8):876~880
    10 M.R. Alexandre, F. Vera, V.C. Vitor et al. Determination of Several Pesticides in Water by Solid-phase Extraction, Liquid Chromatography and Tandem Mass Spectrometry. Journal of Chromatography A. 2007, 1150(1-2): 267~278
    11 S. Wang, P. Zhao, G. Min et al. Multi-residue Determination of Pesticides in Water Using Multi-walled Carbon Nanotubes Solid-phase Extraction and Gas Chromatography-mass Spectrometry. Journal of Chromatography A. 2007, 1165(1-2): 166~171
    12 R.S. Zhao, J.P. Yuan, T. Jiang et al. Application of Bamboo Charcoal as Solid-phase Extraction Adsorbent for Determination Atrazine and Simazine in Environmental Water Samples by High-performance Liquid Chromatography Ultraviolet Detector. Talanta. 2008, 76(4): 956~959
    13 O. Hirotaka, O. Masahiro. Determination of Neonicotinoid Pesticide Residues in Vegetables and Fruits with Solid Phase Extraction and Liquid Chromatography Mass Spectrometry. Journal of Agriculture Food Chemistry. 2003, 51: 2501~2505
    14 O.R. Rial, G.B. Cancho, G.J. Simal. Multiresidue Method for Fourteen Fungicides in White Grapes by Liquid–liquid and Solid-phase Extraction Followed by Liquid Chromatography–diode Array Detrction. Journal of Chromatography A. 2003, 1992: 121~131
    15 M.R. Lidia, H. Javier, A.R. Miguel. Multi-walled Carbon Nanotubes as Efficient Solid-phase Extraction Materials of Organophosphorus Pesticides from Apple, Grape and Pineapple Fruit Juices. Journal of Chromatography A. 2008, 1211(1-2): 33~42
    16 M. Liu, H. Yuki, Y.Y. Song et al. Determination of Carbamate and Organophosphorus Pesticides in Vegetables Using Liquid Chromatograhy-mass Spectrometry with Dispersive Solid Phase Extraction. Chinese Journal of Analytical Chemistry. 2006, 34(7): 941~945
    17 S.A. Barker, A.R. Long, C.R. Short. Isolation of Drug Residues from Tissues by Solid Phase Dispersion Extraction. J of Chromatography, 1989, 475(1): 353~361
    18 C.M. Torres, Y. Pico, J. Manes. Analysis of Pesticide Residues in Fruit and Vegetable by Matrix Solid-phase Dispersion (MSPD) and Different Gas Chromatography Element-selective Detectors. Journal of Chromatography A. 1995, 41(11-12): 685~692
    19 A.D. Muccio, D.A. Barbini, T. Generali. Clean-up of Aqueous Acetone Vegetable Extracts by Solid Matrix Partition for Pyrethroid Residue Determination by Gas Chromatography Electroncapture Detection. Journal of Chromatography A. 1997, 765: 39~49
    20 A.I. Valenzuela, R. Lorenzini, M.J. Redondo. Matrix Solid-phase Dispersion Microextraction and Determination by High-performance Liquid Chromatography with UV Detection of Ppesticide Residues in Citrus Fruit. Journal of Chromatography A. 1999, 839(1-2): 101~107
    21 M.Ferandez, Y. Picd, J. Manes. Determination of Carbamate Residues in Fruits and Vegetables by Matrix Solid-phase Dispersion and Liquid Chromatography-mass Spectrometry. Journal of Chromatography A. 2000, 871: 43~56
    22 X.G. Chu, X.Z. Hu, H.Y. Yao. Determination of 266 Pesticide Residues in Apple Juice by Matrix Solid-phase Dispersion and Gas Chromatography—mass Selective Detection. Journal of Chromatography. 2005, 1063(1): 201~210
    23 G.D.S. Maria, A. Adriano, S.D. Haroldo et al. Simultaneous Determination of Eight Pesticide Residues in Coconut Using MSPD and GC/MS. Talanta. 2008, 76(3): 680~684
    24 R. Marina, G. Svetlana, V. Tatjana et al. Determination of Selected Pesticides in Fruit by Matrix Solid-phase Dispersion and Liquid Chromatography-tandem Mass Spectrometry. Food Chemistry. 2009, 113(2): 712~719
    25 A.B. Steven. Matrix Solid Phase Dispersion (MSPD). Journal of Biochemical and Biophysical Methods. 2007, 70(2): 151~162
    26 J. Beltran, F.J. López, M. Forcada et al. Microextraction Procedures Combined with Large Volume Injection in Capillary Gas Chromatography for the Determination of Pesticide Residues in Environmental Aqueous Samples. Analytica Chimica Acta. 1997, 356(2-3): 125~133
    27 R. Luca, T. Katia, D.S. Francesco. Determination of Organophosphorus Pesticide Residue in Cilento (Campania, Italy) Virgin Olive Oil by Caplillary Gas Chromatography. Food Chemistry. 2002, 79(3): 303~305
    28 O.S. Fatoki, R.O. Awofolu. Methods for Selective Determination of Persistent Organochlorine Pesticide Residues in Water and Sediments by Capillary Gas Chromatography and Electron-capture Detection. Journal of Chromatography A. 2003, 983(1-2): 225~236
    29 E.A. Hogendoorn, F.M. Ossendrijver, E. Dijkman et al. Rapid Determination of Glyphosate in Cereal Samples by Means of Pre-column Derivatisation with 9-fluorenylmethyl Chloroformate and Coupled-column Liquid Chromatography with Fluorescence Detection. Journal of Chromatography A. 1999, 833: 67~73
    30 A.C. Martel, S. Zeggane. Determination of Acaricides in Honey by High-performance Liquid Chromatography with Photodiode Array Detection. Journal of Chromatography A. 2002, 954: 173~180
    31 A.D. Muccio, S. Girolimetti, D.A. Barbini. Selective Clean-up Applicable to Aqueous Acetone Extracts for the Determination of Carbendazim and Thiabendazole in Fruits and Vegetables by High-performance Liquid Chromatography with UV Detection. Journal of Chromatography A. 1999, 833: 61~65
    32 R.J. Argauer. Determining Propoxur and Other Carbamates in Meat Using HPLC Fluorescence and Gas Chromatography/ion Trap Mass Spectrometry after Supercritical Fluid Extraction. Journal of Agricuture Food Chemistry. 1995, 43: 2774~2778
    33 F.Julie. Multiresidue Method for the Determination of Residues of 251 Pesticidesin Fruits and Vegetables by Gas Chromatography-Mass Spectrometry and Liquid Chromatography with Fluorescence Detection. J AOAC Int. 2000, 83(3):698~713
    34 A. Michelangelo, J.L. Steven, L. Darinka. Fast and Easy Multiresidue Method Employing Acetonit rile Ext raction/ Partitioning and“Dispersive Solid-Phase Ext raction”for the Determination of Pesticide Residues in Produce. J AOAC Int. 2003, 86(2): 412~431
    35 J.L. Steven, M. Katerina, J.Y. Seon. Evaluation of Two Fast and Easy Methods for Pesticide Residue Analysis in Fatty Food Matrixes. J AOAC Int. 2005, 88(2):630 ~638
    36 J.L. Steven, M. Katerina, R.L. Alan. Use of Buffering and Other Means toImprove Result s of Problematic Pesticides in a Fast and Easy Method for Residue Analysis of Fruit s and Vegetables. J AOAC Int. 2005, 88(2):615~629
    37费新平,王立世,张水锋.毛细管电泳-安培检测法对甲基对硫磷、对硫磷、西维因和速灭威农药残留的测定研究.分析测试学报. 2004, 23(5): 70~73
    38张裕平,李向军,袁悼斌.毛细管电泳法分析西维因等农药.色谱. 2002, 20 (4): 341~344
    39王硕,刘佳,王俊平.除虫脲农药残留的酶联免疫测定方法.农业环境科学学报,2005,(6):216~220
    40 I. Surugiu, L. Ye, E. Yilmaz. Anme Linked Molecularly Imprinted Sorbent Assay. Analyst. 2001, 125:13~16
    41 K. Streffer, E. Vijgenboom, A. Tepper. Determination of Phenolic Compounds Using Recombinant Tyrosinase from Streptomyces Antibioticus. Analytica Chimica Acta. 2001, 427: 210~210
    42 P. Mulchandani, W. Chen, A. Mulchandani. Flow Injection Amperometric Enzyme Biosensor for Direct Determination of Organophosphate Nerve Agents. Environmental Science Technology. 2001, 35: 2562~2565
    43 G. Jeanty, C. Chommidh, J.L. Marty. Automated Detection of Chlorpyrifos and Its Metabolites by A Continuous Flow System Based Enzyme Sensor. Analytica Chimica Acta. 2001, 436: 119~128
    44 N.F. Starodub, B.B. Dzantiev, V.W. Starodub. Immunosensor for the Determination of the Herbicide Simazine Based on An Ion-selective Field-effect Transistor. Analytica Chimica Acta. 2000, 424: 37~43
    45邱建伟,徐德昌.农药残留检测技术的研究进展.中国甜菜糖业. 2007,(3):47~51
    46史国放,吴筑平,杨成对.液相色谱-质谱联用技术.现代仪器. 2001,(1):9~13
    47黄峰.粒子束接口液相色谱-质谱应用.色谱. 1995,13(6):441~443
    48张选君.液相色谱/质谱联用中的热喷雾接口.分析仪器. 1988,2:28~34
    49 J.G. Simon. Electrospray: principles and practice. Journal of Mass spectrometry. 1997, 32: 677~688
    50 C.M. Whitehouse, R.N. Dreyer, M. Yamashita et al. Electrospray Interface for Liquid Chromatography and Mass Spectrometers. Analytical Chemistry. 1985, 57: 675~679
    51 M. Yamashita, J.B. Fenn. Electrospray Ion Source. Another Variation on the Free-jet Theme. Journal of Physics Chemistry. 1984, 88: 44~50
    52周慧.电喷雾质谱及其联用技术在药物分析中的应用.浙江大学博士学位论文. 2004: 2
    53王海荣,张兰桐.液-质联用中大气压电离接口技术及其在药物分子中的应用.中国医院药学杂志. 2006,26(9):1137~1139
    54 R.J. Cotter, B.D. Gardner, S. Iltchenko et al. Tandem Time-of-Flight Mass Spectrometry with a Curved Field Reflectron. Analytical Chemistry. 2004, 76(7): 1976~1981
    55刘密新,杨成对.液相色谱-质谱仪的近期进展.分析测试学报. 2004,23(9):151~154
    56李燕,梁汉东,韦妙等.离子阱质谱计的研究现状及其进展.质谱学报. 2006,27(4):249~256
    57 S.H. Philip, R. Wong, R.G. Cooks. Ion Trap Mass Spectrometry. Applied Physics. 1996, 19: 289~296
    58汪正范,杨树民,吴石天等.色谱联用技术(第二版).化学工业出版, 2007:119~138
    59盛龙生,苏焕华,郭丹滨.色谱质谱联用技术.化学工业出版社,2006: 36~45
    60杨义芳.超高效/高分离度快速/超快速液相色谱在中药及其制剂研究中的应用.中草药. 2008,39(8):1259~1264
    61 C. Blasco, G. Font, J. Manes et al. Screening and Evaluation of Fruit Samples for Four Pesticide Residues. J AOAC Int. 2005, 88(3):847~853
    62 D. Ortelli, P. Edder, C. Corvi. Multiresidue Analysis of 74 Pesticides in Fruits and Vegetables by Liquid Chromatography–electrospray–tandem Mass Spectrometry.Analytica Chimica Acta. 2004, 520: 33~45
    63 J. Christer, P. Tuija, ?. Bengt-G?ran et al. A New Multi-residue Method for Analysis of Pesticide Residues in Fruit Using Liquid Chromatography with Tandem Mass Spectrometric Detection. Journal of Chromatography A. 2004, 1023: 93~104
    64 F. Imma, F.G.R. Juan, M. Milagros et al. Multi-residue Pesticide Analysis in Fruits and Vegetables by Liquid Chromatography–time-of-flight Mass Spectrometry. Journal of Chromatography A. 2005, 1082: 81~90
    65 V. Padala, K. M. Rama, C. K. Ravi et al. Monitoring of Multi-class Pesticide Residues in Fresh Grape Samples Using Liquid Chromatography with Electrospray Tandem Mass Spectrometry. Food Chemistry. 2007, 105: 1760~1766
    66 B. Kaushik, P.O. Dasharath, D. Soma et al. Validation and Uncertainty Analysis of A Multi-residue Method for Pesticides in Grapes Using Ethyl Acetate Extraction and Liquid Chromatography–tandem Mass Spectrometry. Journal of Chromatography A. 2007, 1173: 98~109
    67 B. Kmellár, P. Fodor, L. Pareja et al. Validation and Uncertainty Study of A Comprehensive List of 160 Pesticide Residues in Multi-class Vegetables by Liquid Chromatography–tandem Mass Spectrometry. Journal of Chromatography A. 2008, 1215: 37~50
    68 P. Yolanda, F. Marinella, T. Nilgun et al. Rapid and Sensitive Ultra-high-pressure Liquid Chromatography-quadrupole Time-of-flight Mass Spectrometry for the Quantification of Amitraz and Identification of Its Degradation Products in Fruits. Journal of Chromatography A. 2008, 1203(1): 36~46
    69 P. Yolanda, F. Marinella, S. Carla et al. Idetification of Unknown Pesticides in Fruits Using Ultra-performance Liquid Chromatography-quadrupole Time-of-flight Mass Spectrometry: Imazalil As A Case Study of Quantification. Journal of Chromatography A. 2007, 1176(1-2): 123~134
    70 J. Klinger, F. Sacher, H.J. Baraueh. Analysis of Multiple Endocrine Disruptors in Environmental Waters via Wide-Spectrum Solid-Phase Extraction and Dual-Polarity Ionization LC-Ion Trap-MS/MS. Acta Hydrochim, Hydrobiol. 1997, 25(2): 79~86
    71 A.I. Benno, C.J.D. Ruud, J.V. Rob et al. Determination of Organophosphorus Pesticides in Aqueous Sample by Direct Injection Using Liquid Chromatography-tandem Mass Spectrometry. Journal of Chromatography A. 2001, 918(1): 67~78
    72 R. Castro, E. Moyano, M.T. Galceran. On-line Ion-pair Solid-phase Extraction-liquid Chromatography-mass Spectrometry for Analysis of Quaternary Ammonium Herbicides. Journal of Chromatography A. 2000, 869(1-2): 441~449
    73 N. Wang, W.L. Budde. Determination of Carbamate, Urea and Thiourea Pesticides and Herbicides inWater. Analytical Chemistry. 2001, 73(5) : 997~1006
    74 R. Jeannot, E. Sauvard. Determination of Pesticides and Some of Their Degradation Products in Ground and Surface Waters by LC/MS. Italian Journal of Food Science. 2000, 12(2): 219~231
    75 S. Lei, K.L. Hian. Stability Studies of Propoxur Herbicide in Environmental Water Samples by Liquid Chromatography-atmospheric Pressure Chemical Ionization Mass Spectrometry. Journal of Chromatography A. 2003,1014(1-2):153~163
    76 A. Eri, K. Hideko, A. Masanori et al. Determination and Quantification of Sulfonylurea and Urea Herbicides in Water Samples Using Liquid Chromatography with Electrospray Ionization Mass Spectrometric Detection. Analytical Chimica Acta. 2004, 507(2): 211~218
    77 C.Aguilar, I.Ferrer, F.Borrull et al. Monitoring of Pesticides in River Water Based on Samples Previously Stored in Polymeric Cartridges Followed by On-line Solid-phase Extraction-liquid Chromatography-diode Array Detection and Confirmation by Atmospheric Pressure Chemical Ionization Mass Spectrometry. Analytical Chimica Acta. 1999,386(3):237~248
    78 A. Eri, K. Hideko, A. Masanori et al. Determination and Quantitation of Sulfonylurea and Urea Herbicides in Water Samples Using Liquid Chromatography with Electrospray Ionization Mass Spectrometric Detection. Analytica Chimica Acta. 2004, 507: 211-218
    79 R. Carabias-Martínez, E. Rodríguez-Gonzalo, E. Herrero-Hernández et al. Simultaneous Determination of Phenyl- and Sulfonylurea Herbicides in Water by Solid-phase Extraction and Liquid Chromatography with UV Diode Array or Mass Spectrometric Detection. Analytica Chimica Acta. 2004, 517: 71-79
    80 S. Serenella, F. Paola, A.B. Danilo et al. Multiresidue Determination of Nicotinoid Insecticide Residues in Drinking Water by Liquid Chromatography with Electrospray Ionization Mass Spectrometry. Analytica Chimica Acta. 2005, 553 :21–26
    81 M.R. Alexandre, F. Vera, V.C. Vitor et al. Determination of Pesticides in Water by Solid-phase Extraction, Liquid Chromatography and Electrospray Tandem Mass Spectrometry. Journal of Chromatography A. 2007, 1150 : 267–278
    82 D. Laura, L.P. Julio, V. Ignacio. Ultra Trace Determination of 31 Pesticides inWater Samples by Rapid Resolution Liquid Chromatography-electrospray Tandem Mass Spectrometry. Analytica Chimica Acta. 2008, 624: 90~96
    83 G. Gervais, S. Brosillon, A. Laplanche et al. Ultra-pressure Liquid Chromatography–electrospray Tandem Mass Spectrometry for Multiresidue Determination of Pesticides in Water. Journal of Chromatography A. 2008, 1202:163~172
    84 M.M. José, G.L. Emma, V.S. Juan et al. Application of Ultra-high-pressure Liquid Chromatography-tandem Mass Spectrometry to the Determination of Multi-class Pesaticides in Environmental and Wastewater Samples: Study of Matrix Effects. Journal of Chromatography A. 2009, 1216(9): 1410~1420
    85 W. Xu, Q. Chen, T. Zhang et al. Development and Application of Ultra Performance Liquid Chromatography-electrospray Ionization Tandem Triple Quadrupole Mass Spectrometry for Determination of Seven Microcystins in Water Samples. Analytica Chimica Acta. 2008, 626(1): 28~36
    86 H.E. Amjad, A.I. Ahmad, A.S. Jamal. Effect of Oxidation and Dimensions of Multi-walled Carbon Nanotubes on Solid Phase Extraction and Enrichment of Some Pesticides from Environmental Waters Prior to Their Simultaneous Determination by High Performance Liquid Chromatography. Journal of Chromatography A. 2007, 1164: 25~32
    87 X.Y. Liu, Y.S. Ji, Y.H. Zhang et al. Oxidized Multiwalled Carbon Nanotubes as A Novel Solid-phase Microextraction Fiber for Determination of Phenols in Aqueous Samples. Journal of Chromatography A. 2007, 1165: 10~17
    88 F.D. Hess, J.D. Holmsen, C. Fedtke. The Influence of the Herbicide Mefenacet on Cell Division and Cell Enlargement in Plants. Weed Research. 1990, 30: 21~27
    89 G. Groth, K. Schreeb, V. Herdt et al. Toxicity Studies in Zebrafish Eggs Treated with N-methylamine, N,N-dimethylamine, 2-aminoethanol, Isopropylamine, Aniline, N-methyaniline, N,N-dimethylaniline, Quinone, Chloroacetaldehyde or Cyclohexanol. Bulletin of Environmental Contamination and Toxicology. 1993, 50(6): 878~882
    90 N. Harada, K. Takagi, A. Harazono et al. Isolation and Characterization of Microorganisms Capable of Hydrolysing the Herbicide Mefenacet. Soil Biology & Biochemistry. 2006, 38(1): 173~179
    91 D. Gómez de Barreda Ferraz, C. Sabater, J.M. Carrasco. Effects of Propanil, Tebufenozide and Mefenacet on Growth of Four Freshwater Species of Phytoplankton: A Microplate Bioassay. Chemosphere. 2004, 56(4): 315~320
    92 E. Hayashi, K. Fuzimoto, H. Imaishi. Expression of Arabidopsis Thaliana Cytoch-rome P450 Monooxygenase, CYP71A12, in Yeast Catalyze the Metablism of Her- bicide Pyrazoxyfen. Plant Biotechnology. 2007, 24: 393~396
    93 T. Yoshida, R.E. Majors, H. Kumagai. High-speed Analyses Using Rapid Resolut- ion Liquid Chromatography on Zorbax Column Packed 1.8μm Particles. Chroma- tography. 2007, 28: 1~7
    94 B. Klejdus, J. Vacek, L. Bene?ováet al. Rapid-resolution HPLC with Spectrometric Detection for the Determination and Identification of Isoflavones in Soy Preparations and Plant Extracts. Analytical and Bioanalytical Chemistry. 2007, 389(7-8): 2277~2285
    95帕拉马尼克,甘古利,格罗斯.电喷雾质谱应用技术.化学工业出版社,2005: 86~92
    96 A. Donna, P. Crosignani, F. Robutti et al. Triazine Herbicides and Overian Epith- elial Neoplasms. Scand. J. Work Environ. Health. 1989, 15: 45~53
    97 M.R. Carabias, G.E. Rodriguez, H.E. Herrero. Determination of Herbicides and Metabolites by Solid-phase Extraction and Liquid Chromatography Evaluation of Pollution Due to Herbicides in Surface and Groundwater. Journal of Chromatography A. 2002, 950: 157~166
    98 D. Djavanshir, E. Bahram. Preparation of New Solid Phase Micro Extraction Fiber on the Basis of Atrazine-molecular Imprinted Polymer: Application for GC and GC/MS Screening of Triazine Herbicides in Water, Rice and Onion. Analytica Chimica Acta. 2008, 616(2): 152~159
    99 B.H. Zhang, X.P. Pan, P. George. Use of Pressurized Liquid Extraction (PLE)/gas Chromatography-electron Capture (GC-ECD) for the Determination of Biodegradation Intermediates of Hexahydro-1,3,5-triazine (RXD) in Soils. Journal of Chromatography B. 2005, 24(1-2): 277~282
    100祁彦,占春瑞,张新忠等.高效液相色谱法测定大豆中13种三嗪类除草剂多残留量.分析化学, 2006, 34(6):787~790
    101李竺,陈玲,郜洪文等.固相萃取-高效液相色谱法测定环境水样中的三嗪类化合物.色谱. 2006, 24(3):267~270
    102 R. Cleonice, A.P. Elizabeth, C.H. Huang. Determination of Trace Triazine and Chloroacetamide Herbicides in Tile-fed Drainage Ditch Water Using Solid-phase Microextraction Coupled With GC-MS. Environmental Pollution. 2008, 152(1): 239~244
    103 T. Dagnac, S. Bristeau, R. Jeannot et al. Determination of Chloroacetanilides,Triazines and Phenylureas and Some of Their Metabolites in Soils by Pressurised Liquid Extraction, GC-MS/MS, LC-MS and LC-MS/MS. Journal of Chromatography A. 2005, 1067( 1-2): 225~233
    104 D. Du, M.H. Wang, J.M. Zhang et al. Application of Multiwalled Carbon Nanotubes for Solid-phase Extraction of Organophosphate Pesticide. Electrochemistry Communications. 2008, 10: 85~89
    105 Z. Guan, Y.M. Huang, W.D. Wang. Carboxyl Modified Multi-walled Carbon Nanotubes as Solid-phase Extraction Adsorbents Combined with High-performance Liquid Chromatography For Analysis of Linear Alkylbenzene Sulfonates. Analytica Chimica Acta. 2008, 627: 225~231
    106 H.E. Amjad, A.S. Jamal, S.A. Yahya et al. Critical Evaluation and Comparison of Enrichment Efficiency of Multi-walled Carbon Nanotubes, C18 Silica and Acticated Carbon towards Some Pesticides from Environmental Waters. Talanta. 2008, 74: 1675~1680
    107 Q.X. Zhou, J.P. Xiao, W.D. Wang et al. Determination of Atrazine and Simazine in Environmental Water Samples Using Multiwalled Carbon Nanotubes as the Adsorbents for Preconcentration prior to High Performance Liquid Chromatography with Diode Array Detector. Talanta. 2006, 68: 1309~1315
    108 G. Min, S. Wang, H.P. Zhu et al. Multi-walled Carbon Nanotubes as Solid-phase Extraction Adsorbents for Determination of Atrazine and Its Principal Metabolites in Water and Soil Samples by Gas Chromatography-mass Spectrometry. Science of Total Environment. 2008, 396: 79~85
    109 X.Y. Liu, Y.S. Ji, H.X. Zhang et al. Highly Sensitive Analysis of Substituted Aniline Compounds in Water Samples by Using Oxidized Multiwalled Carbon Nanotubes as An In-tube Solid-phase Microextraction Medium. Journal of Chromatography A. 2008, 1212: 10~15
    110 S. Wang, P. Zhao, G. Min et al. Multi-residues Determination of Pesticides in Water Using Multi-walled Carbon Nanotubes Solid-phase Extraction and Gas Chromatography-mass Spectrometry. Journal of Chromatography A. 2007, 1165: 166~171
    111 Q.L Li, D.X. Yuan, Q.M. Lin. Evaluation of Multi-walled Carbon Nanotubes as An Adsorbents for Trapping Volatile Organic Compounds from Environmental Samples. Journal of Chromatography A. 2004, 1026: 283~288
    112 S. Kamlesh, H.F. Wu. Oxidized Multiwalled Carbon Nanotubes for Quantitative Determination of Cationic Surfactants in Water Samples Using AtmosphericPressure Matrix-assisted Laser Desorption/ionization Mass Spectrometry. Analytica Chimica Acta. 2008, 628: 198~203
    113 Q.X. Zhou, G.H. Xie, J.P. Xiao et al. Sensitive Determination of Fenpropathrin, Cyhalothrin and Deltamethrin in Environmental Water Samples Using Multiwalled Carbon Nanotubes Cartridge prior to HPLC. Chinese Chemical Letters. 2008, 19: 95~98
    114 G.J.M. Hans, C.J. Ruud, M.S. Odile. Determination of Polar Organophosphorus Pesticides in Vegetables and Fruits Using Liquid Chromatography with Tandem Mass Spectrometry: Selection of Extraction Solvent. Journal of Chromatography A. 2003, 1015 (1-2): 119~127
    115 L. Min, H. Yuki, Y.Y. Song et al. Lin. Simultaneous Determination of Carbamate and Organophosphorus Pesticides in Fruits and Vegetables by Liquid Chromatography-Mass Spectrometry. Journal of Chromatography A. 2005, 1097 (1-2): 183~187
    116 D.P. Mauro, T.B. Maria, M. Rita et al. Determination of Organophosphorus Pesticides in Fruits by On-line Size-exclusion Chromatography-Liquid Chromatography-Gas Chromatography-Flame Photometric Detection. Journal of Chromatography A. 1992, 626 (1): 145~150
    117 S. Paul, J.T. Paul, R. Darren et al. Liquid Chromatography-Tandem Mass Spectrometry Method for the Simultaneous Quantitative Determination of the Organophosphorus Pesticides Dimethoate, Fenthion, Diazinon and Chlorpyrifos in Human Blood. Journal of Chromatography B. 2009, 877 (5-6): 568~574
    118 F. Hernández, J.V. Sancho, O.J. Pozo. An Estimation of the Exposure to Organophosphorus Pesticides Through the Simultaneous Determination of Their Main Metabolites in Urine by Liquid Chromatography-Tandem Mass Spectrometry. Journal of Chromatography B. 2004, 808 (2): 229~239
    119 A.I. Benno, C.J. Ruud, J.V. Rob et al. Determination of Polar Organophosphorus Pesticides in Aqueous Sample by Direct Injection Using Liquid Chromatography-Tandem Mass Spectrometry. Journal of Chromatography A. 2001, 918 (1): 67~78
    120 S. Lacorte, C. Molina, D. Barceló. Temperature and Extraction Voltage Effect on Fragmentation of Organophosphorus Pesticides in Liquid Chromatography- Atmospheric Pressure Chemical Ionization Mass Spectrometry. Journal of Chromatography A. 1998, 795 (1): 13~26
    121 C. Molina, P. Grasso, E. Benfenati et al. Automated Sample Preparation withExtraction Columns Followed by Liquid Chromatography-Ionspray Mass Spectrometry Interferences, Determination and Degradation of Polar Organophosphorus Pesticides in Wter Samples. Journal of Chromatography A. 1996, 737 (1): 47~58
    122 K. Seiji, U. Hiroshi, I. Hideo et al. Screening of Organophosphorus Pesticides Using Liquid Chromatography-Atmospheric Pressure Chemical Ionization Mass Spectrometry. Journal of Chromatography A. 1992, 595 (1-2): 193~202
    123 M.P. García de Llasera , L. Gómez-Almaraz, L.E. Vera-Avila et al. Matrix Solid-phase Dispersion Extraction and Determination by High-performance Liquid Chromatography with Fluorescence Detection of Residues of Glyphosate and Aminomethylphosphonic Acid in Tomato Fruit. Journal of Chromatography A. 2005, 1093: 139~146
    124 A.I. Valenzuela, R. Lorenzini, M.J. Redondo et al. Matrix Solid-phase Dispersion Microextraction and Determination by High-performance Liquid Chromatography of Pesticide Residues in Citrus Fruit. Journal of Chromatography A. 1999, 839: 101~107
    125 B. Shao , H. Han, X.M. Tu et al. Analysis of Alkylphenol and Bisphenol A in Eggs and Milk by Liquid Chromatography with Tandem Mass Spectrometry. Journal of Chromatography B. 2007, 850: 412~416
    126 K. Kunihiro, F. Naoto. Matrix Solid-phase Dispersion Extraction and High-performance Liquid Chromatographic Determination of Residual Sulfonamides in Chicken. Journal of Chromatography A. 2001, 937: 49~55
    127 Y. Yang, B. Shao, J. Zhang et al. Analysis of Eight Free Progestogens in Eggs by Matrix Solid-phase Dispersion Extraction and Very High Pressure Liquid Chromatography with Tandem Mass Spectrometry. Journal of Chromatography B. 2008, 870: 241~246
    128 B. Sara, D.C. Antonio. Matrix Solid-phase Dispersion as A Valuable Tool for Extraction Contaminants from Foodstuffs. J. Biochem. Biophys. Methods. 2007, 70: 163~179
    129 P.C. Abhilash, J. Sarah, S. Nandita. Matrix Solid-phase Dispersion Extraction Versus Solid-phase Extraction in the Analysis of Combined Residues of Hexachlorocyclohexane Isomers in Plant Matrices. Journal of Chromatography A. 2007, 1176: 43~47
    130 A.B. Steven. Matrix Solid Phase Dispersion (MSPD). J. Biochem. Biophys. Methods. 2007, 70: 151~162
    131 H.E. Amjad, A.I. Ahmad, A.S. Jamal. Effect of Oxidation and Dimensions of Multi-walled Carbon Nanotubes on Solid Phase Extraction and Enrichment of Some Pesticides from Environmental Waters Prior to Their Simultaneous Determination by High Performance Liquid Chromatography. Journal Chromatography A. 2007, 1164: 25~32

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700