肝细胞癌患者血清糖蛋白质组及其糖链结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
国际癌症研究机构的最新资料表明,肝细胞癌(Hepatocellular Carcinoma,HCC)是全球最常见的五种恶性肿瘤之一。从2009年起恶性肿瘤致死率已跃居我国主要疾病死亡率的首位,而其中HCC排在恶性肿瘤死亡率的第二位。HCC死亡率高的原因之一是当前肝癌的确诊通常是在晚期,因而错过了最佳的治疗时期,因此寻找一种能在发生早期快速灵敏的诊断HCC的方法就显得尤为必要。利用蛋白质组学和糖组学技术对HCC发生过程中糖蛋白及其糖基化修饰进行深入的研究,可以揭示糖蛋白在肝癌发生过程中作用和功能,探究HCC发生的分子机理,并促进临床诊断方法的发展。
     第一部分:通过对Fe304磁性粒子的硅烷化修饰制备出了环氧化磁性微粒,并建立了一套利用环氧化磁性微粒制备凝集素-磁性微粒复合物(LMPCs)的方法。经表征,制备的环氧化磁性微粒是一种粒径相对均一,d(0.5)为3.50μm,饱和磁化强度为69.55emu/g,比表面积为96.29m2/g,且表面具有丰富环氧基团的超顺磁性材料。通过条件优化,在保持凝集素生物活性的前提下,确定1g磁性微粒最多可以固定186.31±5.16mg伴刀豆球蛋白凝集素(ConA)。
     第二部分:利用制备的LMPCs建立了一种简单快速且高通量的凝集素-磁性微粒复合物分离N-连接糖蛋白的方法(N-glyco-LMPCs),并与质谱技术联用同时鉴定和解析糖蛋白及其糖链结构。通过CMPCs对模式蛋白中糖蛋白核糖核酸酶B(RNase B)的分离及结构鉴定,获得了分离的RNase B的蛋白酶切图谱,分析了其糖型的微不均一性。利用CMPCs分离健康志愿者和HCC患者血清中的糖蛋白,并利用质谱技术对分离的糖蛋白及其糖链结构进行鉴定和分析。最终从健康志愿者和HCC患者血清分别鉴定到93和85种糖蛋白,并且有21种糖蛋白只在健康志愿者血清中鉴定到,另外有13种糖蛋白只在HCC患者血清中鉴定到。同时从健康志愿者和HCC患者血清分离的糖蛋白上分别鉴定到28和30种糖链结构,并且有10种糖链结构只在健康志愿者血清中鉴定到,另外有12种糖链结构只在HCC患者血清中鉴定到。这种健康志愿者和HCC患者血清中糖蛋白和糖链结构差异被用凝集素印迹技术(lectin blotting),蛋白质印迹技术(western blott ing)和凝集素/糖抗体芯片技术(lectin/glyco-antibody microarrays)验证。结果显示健康志愿者和HCC患者血清中糖蛋白的差异不仅是蛋白质表达水平差异,且其糖基化修饰水平也存在明显差异。
     第三部分:利用单凝集素-磁性微粒复合物(S-LMPCs)和多凝集素-磁性微粒复合物(M-LMPCs)的N-glyco-LMPCs法结合质谱技术分离和鉴定健康志愿者和HCC患者血清中的糖蛋白,并利用emPAI方法对两种血清中分离的糖蛋白进行定量分析。两种方法从健康志愿者和HCC患者血清中共鉴定到371种N-连接糖蛋白,且结果显示不同糖蛋白与四种凝集素(伴刀豆凝集素A,Con A;扁豆凝集素,LCA;橙黄网胞盘菌凝集素,AAL;麦胚凝集素,WGA)的结合具有特异性,初步显示了糖蛋白的糖链结构,揭示了HCC发生过程中一些糖链微结构的变化。通过非标记emPAI;定量分析,发现有315种(84.9%)糖蛋白的丰度在HCC发生过程中没有发生或者发生了很小的变化,另外有49种(13.2%)糖蛋白在HCC患者血清中高表达,有27种(7.3%)糖蛋白在HCC患者血清中低表达。其中高表达的糖蛋白中包括已经作为肝癌诊断标志物的α-甲胎蛋白以及补体蛋白C6(Component C6),免疫球蛋白轻链C(Ig mu chain C),β-2-糖蛋白(β-2-glycoprotein),G蛋白偶联受体(G-protein coupled receptor)等重要的HCC潜在标志物。第四部分:采用滤膜辅助的凝集素分离糖蛋白糖肽法(N-glyco-FASP)对健康志愿者和HCC患者血清中N-连接糖蛋白及其糖基化位点进行鉴定和分析。两种血清中共鉴定出137条N-连接糖肽,包含144个N-连接糖基化位点,分别来自74种糖蛋白,其中只出现在健康志愿者血清中的糖基化位点有54个,只出现在HCC癌患者血清中的糖基化位点有53个。经该方法富集后的糖肽占鉴定到的多肽的28%,相对于富集前提高了近60倍。结合N-glyco-LMPCs分离鉴定到的糖蛋白,从血清中共鉴定出451种糖蛋白,其中在健康志愿者血清中鉴定出305种,HCC患者血清中鉴定出298种,使血清中糖蛋白鉴定的覆盖率得到提高。经功能分析,发现这些糖蛋白主要分子功能是结合,催化以及酶调节活性;主要参与细胞过程,刺激应答,生物调节和代谢过程;并且主要分布在细胞中,细胞外区域,以及细胞器中。经过对只在HCC患者血清中鉴定出的蛋白质进行功能聚类分析后发现,这些蛋白主要是一类分泌性,并具有信号肽序列的糖蛋白。
     第五部分:采用滤膜辅助分离全糖蛋白N-连接糖链法(N-glycan-FASP-T)和滤膜辅助的凝集素分离糖蛋白N-连接糖链法(N-glycan-FASP-L)对健康志愿者和HCC患者血清中全糖蛋白N-连接糖链和凝集素结合的糖蛋白N-连接糖链分别进行比较分析,并利用MALDI-TOF/TOF串联质谱解析糖链结构。其中两种血清经N-glycan-FASP-T法分析共鉴定出26种,且主要分布在小分子量范围;通过N-glycan-FASP-L法分析共鉴定出24种,其分布更均匀,糖链鉴定范围相对更广。其中用N-glycan-FASP-T法分析中有9种糖链同时在两种血清中鉴定到,N-glycan-FASP-L法分析中也有9种糖链同时在两种血清中鉴定到。经分析后发现无论是单独在HCC患者血清中鉴定到的(6/16)或者是初步定量分析后在HCC中相对高表达的糖链(4/5)均主要是岩藻糖化修饰的糖链。N-glycan-FASP-T法和N-glycan-FASP-L法两种分析策略对糖链的鉴定具有一定的偏好性,可以相互补充更好地分析与HCC发生相关的糖链结构。
The International Agency for Research on Cancer (IARC) indicated that Hepatocellular Carcinoma (HCC) was one of the top five prevalent primary malignant tumors. It showed that malignant carcinoma has been the most common cause of disease death and the HCC has been the second most common cause of cancer death in China. The diagnosis of HCC is usually achieved at a late stage, which results in the high mortality. A rapid and sensitive diagnosis method of the HCC would be particularly necessary. The study of the glycoproteomics can reveal the functions of the glycoproteins and explore the molecular mechanism of the HCC, and also devebpe a method for clinical diagnosis.
     For the first part:The epoxy-activated magnetic particles were synthesized by modification of the Fe3O4fluids using silaning agent.The method to preparation the lectin-magnetic particle conjugates was established using the home-made epoxy-activated magnetic particle. The epoxy-activated magnetic particles were characterized as uniform superparamagnetism material with3.50μm diameter,69.55emu/g saturation magnetic moments, and96.29m2/g specific surface area. For the biological activated lectin-magnetic particle conjugates preparation (LMPCs), the binding buffer, binding time, binding capacity, and surface coverage were optimized. It was estimated that the each gram of the magnetic particles could be saturated with186.31±5.16mg Concanavalin A (Con A).
     For the second part:A simple, rapid and high-throughput method was established for the N-linked glycoprotein isolation using lectin-magnetic particle conjugates (N-glyco-LMPCs). Meantime, combined with the mass spec tro me try could implement the identification and characterization the glycoprteins and glycans in one flow. At first, the strategy was involved in the isolation and identification the glycoprotein RNase B from model protein. The peptide spectra of the RNase B were identified by the MALDI-MS. The microheterogeneity of the glycan on the RNase B was characterized as five glycoform. Additional, the Con A-magnetic particle conjugate-based method was utilized to selectively isolate the glycoproteins and their glycomes from the healthy donor and HCC case sera. Followed the isolated glycoproteins and their JV-linked glycans were identified by LC-ESI-MS/MS and MALDI-TOF/TOF-MS, respectively.93glycoproteins from the healthy donors and85glycoproteins from the HCC cases were identified. There were34different glycoproteins shown between the healthy donors (21/34) and the HCC cases (13/34).28glycans from the healthy donors and30glycans from the HCC cases were detected and there were22different glycans shown between the healthy donors (10/22) and HCC cases (12/22). Moreover, the lectin blotting, western blotting and lectin/glyco-antibody microarrays were applied to definitely elucidate the change of the expressions of selective protein and their glycosylatio n, the results indicated that the differences of the identified glycoproteins between the healthy donors and HCC cases were caused by the change of both protein expression and their glycosylation levels.
     For the third part:The glycoproteins of the normal donors and HCC cases sera were isolated by the single-and multi-lectin-magnetic particle conjugates and identified by the high-accuracy ESI-Q-TOF-MS, respectively. The exponentially modified protein abundance index (emPAI) method was applied in the absolute quantification of the glycoproteia371N-linked glycoproteins were identified from the two serum pools. From the results, it showed that the binding specificity of the identified glycoproteins to the four lectins (Con A, Lens Culinaris Agglutinin (LCA), Aleuria Aurantia Lectin (AAL), Wheat Germ Agglutinin (WGA)) and the glycan structures of the identified glycoproteins were tentative estimated. With the stringent criteria emPAI quantification, it indicated that315(84.9%) glycoproteins were no significant difference in the two serum pools. However,49(13.2%) glycoproteins were measured up-regulation and27(7.3%) were down-regulation in the HCC cases. The up-regulation proteins included the verified HCC biomarkers AFP and the potential biomarker Component C6, Ig mu chain C, β-2-glycoprotein, G-protein coupled receptor, and so on.
     For the fourth part:We applied the filter aided sample preparation-based N-linked glycopeptides enrichment (N-glyco-FASP) from the healthy donors and HCC cases sera.144N-glycosylation sites were mapped on74proteins in the two serum pools using high-accuracy mass spectrometry. With lectin enrichment, glycopeptides were28%of total peptides, indicating an enrichment factor of nearly60-fold. Combined the N-glyco-LMPCs and the N-glyco-FASP,451proteins were identified in the two serum pools, which305and298proteins were identified from the normal donors and HCC cases sera, respectively. After the analysis of the functional of the proteins by the Blast2Go, It indicated that the mainly molecular function of the protein was binding, catalytic activity, enzyme regulator activity. The proteins mainly located at the cell, the extracellular region, as well as organelle. The biological processes mediated by the proteins were cellular processes, response to stimulus, biological regulation and metabolic process. After the functional cluster analysis of the proteins only identified in the HCC, it showed that the proteins were secreted glycoproteins with signal peptide.
     For the fifth part:We developed a filter aided sample preparation-based total glycoprotein N-linked glycans enrichment (N-glycan-FASP-T) and lectin binding glycoprotein N-linked glycans enrichment (N-glycan-FASP-L) from the normal donors and HCC cases sera, respectively. The enriched N-linked glycans were characterized by the MALDI-TOF/TOF-MS to obtain the glycan spectra and structures.26glycans were annotated from the total glycoproteins using N-glycan-FASP-T in the two serum pools, which were centralized in the small molecular weight Additional,24glycans were annotated from the lectin binding glycoproteins using N-glycan-FASP-L in the two serum pools, which distributed more homogeneous and wider. The glycans between the two serum pools were mostly same using the two methods, which9glycans were identified both in the healthy donors and HCC cases sera using N-glycan-FASP-T, and also9glycans for the N-glycan-FASP-L. It showed that the characterized glycans only in the HCC were fucosylated oligosaccharide whatever by qualification (6/16) or by quantification (4/5). The two strategies for the glycan isolation and characterization displayed preference and could be mutual complementation in the study of the glycomics in HCC.
引文
[1]Jemal A., Ward E., Hao Y., et al. Trends in the leading causes of death in the United States,1970-2002[J]. The Journal of the American Medical Association,2005, 294:1255-1259
    [2]Bosch F. X., Ribes J., Diaz M., et al. Primary liver cancer:Worldwide incidence and trends[J]. Gastroenterology,2004,127:S5-S16
    [3]Parkin D. M., Bray F., Ferlay J., et al. Global Cancer Statistics [J]. CA:A Cancer Journal for Clinicians,2005,55,74-108
    [4]World Health Organization.International Agency for Research on Cancer. Globocan, 2008, (http://globocan.iarc.fr.)
    [5]Edwards B. K., Ward E., Kohler B. A., et al. Annual report to the nation on the status of cancer,1975-2006, featuring colorectal cancer trends and impact of interventions (risk factors, screening, and treatment) to reduce future rates[J]. Cancer,2010, 116:544-573
    [6]Colombo M. Hepatitis C virus and hepatocellular carcinoma[J]. Seminars in Liver Disease,1999,19263-269
    [7]Chu C. M., Liaw Y. F. Hepatitis B virus-related cirrhosis:Natural history and treatment[J]. Seminars in Liver Disease,2006,26:142-152
    [8]Perz J. F., Armstrong G. L., Farrington L.A., et al.The contributions of hepatitis B virus and hepatitis C virus infections to cirrhosis and primary liver cancer worldwide[J]. Journal of Hepatology,2006,45:529-538
    [9]Saab S., Yeganeh M., Nguyen K., et al.Recurrence of hepatocellular carcinoma and hepatitis B reinfection in hepatitis B surface antigen-positive patients after liver transplantation[J]. Liver Transplantation,2009,15:1525-1534
    [10]Tong M. J., Hsien C., Song J. J., et al.Factors associated with progression to hepatocellular carcinoma and to death from liver complications in patients with HBsAg-positive cirrhosis[J]. Digestive Diseases and Sciences,2009,54:1337-1346
    [11]Schutte K., Bornschein J., Malfertheiner P. Hepatocellular carcinoma: Epidemiological trends and risk factors[J]. Digestive Diseases,2009,27:80-92
    [12]Marrero J. A., Fontana R. J., Su G. L., et al. NAFLD may be a common underlying liver disease in patients with hepatocellular carcinoma in the United States [J]. Hepatology,2002,36:1349-1354
    [13]Thomas M. B., Jaffe D., Choti M. M., et al. Hepatocellular Carcinoma:Consensus recommendations of the National Cancer Institute Clinical Trials Planning Meeting[J]. Journal of Clinical Oncology,2010,28:3994-4005
    [14]Ressom H. W., Varghese R. S., Goldman L., et al. Analysis of MALDI-TOF mass spectrometry data for discovery of peptide and glycan bio markers of hepatocellular carcinoma[J]. The Journal of Proteome Research,2008,7:603-610
    [15]Talwalkar J. A., Gores G. J. Diagnosis and staging of hepatocellular carcinoma[J]. Gastroenterology,2004,127:S126-S132
    [16]Dwek M. V, Lacey H. A., Leathem A. J., Breast cancer progression is associated with a reduction in the diversity of sialylated and neutral oligosaccharides[J]. Clinica Chimica Acta,1998,271:191-202
    [17]Handerson T, Camp R., Harigopal M., et al. Beta 1,6-branched oligosaccharides are increased in lymph node metastases and predict poor outcome in breast carcinoma[J]. Clinical Cancer Research,2005,11:2969-2973
    [18]Baldus S. E, Wienand J. R., Werner J. P., et al. Expression of MUC1, MUC2 and oligosaccharide epitopes in breast cancer:prognostic significance of a sialylated MUC1 epitope[J]. International Journal of Oncology,2005,27:1289-1297
    [19]Alper J. Glycobiology, turning sweet on cancer[J]. Science,2003,301:159-160
    [20]Hakomori S. Tumor malignancy defined by aberrant glycosylation and sphingo(glyco)lipid metabolism[J]. Cancer Research,1996,56,5309-5318
    [21]Kobata A. A retrospective and prospective view of glycopathology[J]. Glycoconjugate Journal,1998,15:323-331
    [22]Butler M., Quelhas D., Critchley A. J., et al.Detailed glycan analysis of serum glycoproteins of patients with congenital disorders of glycosylation indicates the specific defective glycan processing step and provides an insight into pathogenesis[J]. Glycobiobgy,2003,13:601-622
    [23]Sharon N., Lis H. History of lectins from hemagglutinins to biological recognition molecules[J]. Glycobiology,2004,14:53R-62R
    [24]Siddiqui S. F., Pawelek J., Handerson T., et al. Coexpression of 1,6-N-acetylglucosaminyltransferase V glycoprotein substrates defines aggressive breast cancers with poor outcome[J]. Cancer Epidemiology, Biomarkers & Prevention,2005, 142517-2523
    [25]Peracaula R, Tabares G., Royle L., et al. Altered glycosylation pattern allows the distinction between prostate-specific antigen (PSA) from normal and tumor origins [J]. Glycobiology,2003,13:457-470
    [26]Dai Z., Zhou J., Qiu S. J., et al. Lectin-based glycoproteomics to explore and analyze hepatocellular carcinoma-related glycoprotein markers [J]. Electrophoresis,2009, 30:2957-2966
    [27]Blomme B., Van Steenkiste C., Callewaert N., et al. Alteration of protein glycosylation in liver diseases[J]. Journal of Hepatology,2009,50:592-603
    [28]Tissot B., North S. J., Ceroni A., et al. Glycoproteomics:Past, present and future[J]. FEBS Letters,2009,583(11):1728-1735
    [29]Li J. Fucntional glycomics methods and protocols [M]. Hertfordshire:Human Press, 2009:1
    [30]Helenius A., Aebi M. Roles of N-linked glycans in the endoplasmic reticulum[J], Annual Review of Biochemistry,2004,73:1019-1049
    [31]Haltiwanger R. S., Lowe J. B. Role of glycosylation in development[J]. Annual Review of Biochemistry,2004,73:491-537
    [32]Zielinska D. F., Gnad F., Mann M., et al.Precision mapping of an In Vivo N-glycoproteome reveals rigid topological and sequence constraints [J]. Cell,2010, 141:897-907
    [33]Helenius A., Aebi M. Intracellular functions of N-linked glycans[J]. Science,2001, 2912364-2369
    [34]Roth J. Protein N-glycosylation along the secretory pathway:relationship to organelle topography and function, protein quality control, and cell interactions [J]. Chemical Reviews,2002,102:285-303
    [35]Spiro R. G. Protein glycosylation:nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds[J]. Glycobiology,2002,12:43R-56R
    [36]Hunte C., Von Jagow G., Schagger H. Membrane protein purification and crystallization[M]. second edition.Amsterdam:Acadamic Press,2003:23-25
    [37]Zahedi R. P., Meisinger C., Sickmann A. Two-dimensional benzyldi-methyl-n-hexadecylammonium chloride/SDS-PAGE for membrane proteomics[J]. Proteomics, 2005,53581-3588
    [38]Morel J., Claverol S., Mongrand S., et al. Proteomics of plant detergent-resistant membranes[J]. Molecular & Cellular Proteomics,2006,5:1396-1411
    [39]Haselbeck A., Hosel W. Immunological detection of glycoproteins on blots based on labeling with digoxigenin[J]. Methods in Molecular Bio fogy,1993,14:161-173
    [40]Cummings R. D. Use of lectins in analysis of glycoconjugates[J]. Methods in Enzymology,1994,230:66-86
    [41]Pacakova V, Hubena S., Ticha M., et al. Effects of electrolyte modification and capillary coating on separation of glycoprotein isoforms by capillary electrophoresis[J]. Electrophoresis,2001,22:459-463
    [42]Kinoshita M., Murakami E., Oda Y, et al. Comparative studies on the analysis of glycosylation heterogeneity of sialic acid-containing glycoproteins using capillary electrophoresis[J]. Journal of Chromatography A,2000,866:261-271
    [43]Kakehi K., Kinoshita M., Kawakami D., et al. Capillary electrophoresis of sialic acid-containing glycoprotein. Effect of the heterogeneity of carbohydrate chains on glycofcrm separation using an alphal-acid glycoprotein as a model[J]. Analytical Chemistry,2001,73:2640-2647
    [44]Huang M., Plocek J., Novotny M. V. Hydrolytically stable cellulose-derivative coatings for capillary electrophoresis of peptides, proteins and glycoconjugates[J]. Electrophoresis,1995,16396-401
    [45]Sottani C., Fiorentino M., Minoia C. Matrix performance in matrix-assisted laser desorption/ionization for molecular weight determination in sialyl and non-sialyl oligosaccharide proteins[J]. Rapid Communications in Mass Spectrometry,1997, 11:907-913
    [46]Wheeler S. F., Rudd P. M., Davis S. J., et al.Comparison of the N-linked glycans from soluble and GPI-anchored CD59 expressed in CHO cells[J]. Glycobiology,2002, 12261-271
    [47]Vestal M. L., Juhasz P., Martin S. A. Delayed extraction matrix-assisted laser desorption time-of-flight mass spectrometry, Rapid Communications in Mass Spectrometry,1995,9:1044-1050
    [48]Wilm M., Mann M. Analytical properties of the nanoelectrospray ion source[J]. Analytical Chemistry,1996,68:1-8
    [49]Dillon T. M., Bondarenko P. V, Ricci M. S. Development of an analytical reversed-phase high-performance liquid chromatography-electrospray ionization mass spectrometry method for characterization of recombinant antibodies[J]. Journal of Chromatography A,2004,1053:299-305
    [50]Annesley T.M. Ion suppression in mass spectrometry[J]. Clinical Chemistry,2003, 49:1041-1044
    [51]Kaji H., Saito H., Yamauchi Y., et al. Isobe, lectin affinity capture, isotope-coded tagging and mass spectrometry to identify N-linked glycoproteins[J]. Nature Biotechnology,2003,21:667-672
    [52]Geng M., Zhang X., Bina M., et al.Proteomics of glycoproteins based on affinity selection of glycopeptides from tryptic digests[J]. Journal of Chromatography B: Biomedical Sciences and Applications,2001,752:293-306
    [53]Uematsu R., Furukawa J. I., Nakagawa H., et al.High throughput quantitative glycomics and glycoform-focused proteomics of murine dermis and epidermis[J]. Molecular & Cellular Proteomics,2005,4:1977-1989
    [54]Wang L., Li F., Sun W., et al.Concanavalin A-captured glycoproteins in healthy human urine [J]. Molecular & Cellular Proteomics,2006,5:560-562
    [55]Alvarez-Manilla G., Atwood III J., Guo Y, et al. Tools for glycoproteomic analysis: size exclusion chromatography facilitates identification of tryptic glycopeptides with N-linked glycosylation sites[J]. Journal of Proteorne Research,2006,5:701-708
    [56]Tajiri M., Yoshida S., Wada Y. Differential analysis of site-specific glycans on plasma and cellular fibronectins:application of a hydrophilic affinity method for glycopeptide enrichment[J]. Glycobiology,2005,15:1332-1340
    [57]Wada Y, Tajiri M., Yoshida S. Hydrophilic affinity isolation and MALDI multiple-stage tandem mass spectrometry of glycopeptides for glycoproteomics, Analytical Chemistry,2004,76:6560-6565
    [58]Hagglund P., Bunkenborg J., Elortza F., et al. A new strategy for identification of N-glycosylated proteins and unambiguous assignment of their glycosylation sites using HILIC enrichment and partial deglycosylation[J]. Journal of Proteome Research, 2004,3:556-566
    [59]Sparbier K., Koch S., Kessler I., et al.Selective isolation of glycoproteins and glycopeptides for MALDI-TOF MS detection supported by magnetic particles[J]. Journal of Biomolecuar Techniques,2005,16:407-413
    [60]查娟,刘坐镇,邬行彦.云芝糖肽的硼酸亲和色谱纯化[J].中国医药工业杂志,2003,34(2):66-68
    [61]Zhang H., Li X. J., Martin D. B., et al. Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry[J]. Nature Biotechnology,2003,21:660-666
    [62]Tie J. K., Zheng M. Y, Pope R M., et al. Identification of the N-linked glycosylation sites of vitamin K-dependent carboxylase and effect of glycosylation on carboxylase function[J]. Biochemistry,2006,45(49):14755-14763.
    [63]Chen R., Jiang X., Sun D., et al.Glycoproteomics analysis of human liver tissue by combination of multiple enzyme digestion and hydrazide chemistry[J]. Journal of Proteome Research,2009,8(2):651-661.
    [64]Bari R., Zhang Y. H., Zhang F., et al.Transmembrane interactions are needed for KAIl/CD82-mediated suppression of cancer invasion and metastasis. American Journal of Pathology,2009,174(2):647-660.
    [65]Tretter V, Altmann F., Marz L. Peptide-N4-(N-acetyl-β-glucosaminyl) asparagine amidase F cannot release glycans with fucose (1-3) attached to the asparagine-linked N-acetylglucosamine residue[J]. European Journal of Biochemistry,1991, 199:647-652
    [66]O'Neill R. A. Enzymatic release of oligosaccharides from glycoproteins for chromato graphic and electrophoretic analysis[J]. Journal of Chromatography A,1996, 720201-215
    [67]Huang Y, Konse T., Mechref Y, et al. Matrix-assisted laser desorption/ionization mass spectrometry compatible beta-elimination of O-linked oligosaccharides[J]. Rapid Communications in Mass Spectrometry,2002,16:1199-1204
    [68]Huang Y, Mechref Y, Novotny M.V. Microscale nonreductive release of O-linked glycans for subsequent analysis through MALDI mass spectrometry and capillary electrophoresis[J]. Analytical Chemistry,2001,73:6063-6069
    [69]Anumula K. R. Advances in fluorescence derivatization methods for high-performance liquid chromatographie analysis of glycoprotein carbohydrates[J]. Analytical Biochemistry,2006,350:1-23
    [70]Kamoda S., Nakano M., Ishikawa R., et al. Rapid and sensitive screening of N-glycans as 9-fluorenylmethyl derivatives by high-performance liquid chromatography:a method which can recover free oligosaccharides after analysis[J]. Journal of Proteome Research,2005,4:146-152
    [71]Hase S. Pre-column derivatization for chromatographic and electrophoretic analyses of carbohydrates[J]. Journal of Chromatography A,1996,720:173-182
    [72]Xia B., Royall J. A., Damera G., et al. Altered O-glycosylation and sulfation of airway mucins associated with cystic fibrosis[J]. Glycobiology,2005,15:747-775
    [73]Chiesa C., O'Neill R. A. Capillary zone electrophoresis of oligosaccharides derivatized with various aminonaphthalene sulfonic acids [J] Electrophoresis 1994, 15:1132-1140
    [74]Guttman A., Chen F.T., Evangelista R. A. Separation of 1-aminopyrene- 3,6, 8-trisulfonate-labeled asparagine-linked fetuin glycans by capillary gel electrophoresis[J]. Electrophoresis,1996,17:412-417
    [75]Guttman A., Pritchett T. Capillary gel electrophoresis separation of high-mannose type oligosaccharides derivatized by 1-aminopyrene-3,6,8-trisulfonic acid[J]. Electrophoresis,1995,16:1906-1911
    [76]Oefner P. J., Chiesa C. Capillary electrophoresis of carbohydrates[J]. Glycobiology, 1994,4:397-412
    [77]Geyer H., Geyer R. Strategies for analysis of glycoprotein glycosylation[J]. Biochimica et Biophysica Acta,2006,1764:1853-1869
    [78]Mechref Y, Novotny M. V. Structural investigations of glycoconjugates at high sensitivity[J]. Chemical Reviews,2002,102:321-369
    [79]Wuhrer M., Deelder A. M., Hokke C. H. Protein glycosylation analysis by liquid chromatography-mass spectrometry[J]. Journal of Chromatography B:Analytical Technologies in the Biomedical and Life Sciences,2005,825:124-133
    [80]Guile G. R., Wong S. Y, Dwek R. A. Analytical and preparative separation of anionic oligosaccharides by weak anion-exchange high-performance liquid chromatography on an inert polymer column[J]. Analytical Biochemistry,1994,222:231-235
    [81]Lee Y. C. Carbohydrate analyses with high-performance anion-exchange chromatography[J]. Journal of Chromatography A,1996,720:137-149
    [82]Bruggink C., Wuhrer M., Koeleman C. A., et al Oligosaccharide analysis by capillary-scale high-pH anion-exchange chromatography with on-line ion-trap mass spectrometry[J]. Journal of Chromatography B:Analytical Technologies in the Biomedical and Life Sciences,2005,829:136-143
    [83]Royle L., Mattu T. S., Hart E., et al.An analytical and structural database provides a strategy for sequencing O-glycans from microgram quantities of glycoproteins[J]. Analytical Biochemistry,2002,304:70-90
    [84]Endo T. Fractionation of glycoprotein-derived oligosaccharides by affinity chromatography using immobilized lectin columns[J]. Journal of Chromatography A, 1996,720251-261
    [85]Hirabayashi J., Hashidate T., Arata Y, et al. Oligosaccharide specificity of galectins:a search by frontal affinity chromatography[J]. Biochim. Biophys. Acta 1572 (2002) 232-254
    [86]Zhang B., Palcic M. M., Mo H., et al.Rapid determination of the binding affinity and specificity of the mushroom polyporus squamosus lectin using frontal affinity chromatography coupled to electrospray mass spectrametry[J]. Glycobiology,2001, 11:141-147
    [87]Hermentin P., Doenges R., Witzel R., et al. A strategy for the mapping of N-glycans by high-performance capillary electrophoresis[J]. Analytical Biochemistry,1994, 22129-41
    [88]Ethier M., Saba J. A., Ens W., et al. Automated structural assignment of derivatized complex N-linked oligosaccharides from tandem mass spectra[J]. Rapid Communication in Mass Spectrometry,2002,16:1743-1754
    [89]Joshi H. J., Harrison M. J., Schulz B. L., et al.Development of a mass fingerprinting tool for automated interpretation of oligosaccharide fragmentation data[J]. Proteomics, 2004,4:1650-1664
    [90]Rudd P. M., Guile G. R., Kuster B., et al. Oligosaccharide sequencing technology[J]. Nature,1997,388:205-207
    [91]Edge C. J., Rademacher T. W., Wormald M. R., et al. Fast sequencing of oligosaccharides:the reagent-array analysis method[J]. Proceedings of the National Academy of Sciences,1992,89:6338-6342
    [92]Geyer R., Geyer H. Saccharide linkage analysis using methylation and other techniques [J]. Methods in Enzymology,1994,230:86-108
    [93]Hanisch F. G. Methylation analysis of complex carbohydrates:overview and critical comments[J]. Biological Mass Spectrometry.1994,23:309-312
    [94]Kamerling J. P., Vliegenthart J. F. G. Gas-liquid chromatography and mass spectrometry of sialic acids[J]. Cell Biology Monographs,1982,10:95-125
    [95]Wormald M. R., Petrescu A. J., Pao Y. L., et al.Conformational studies of oligosaccharides and glycopeptides:complementarity ofNMR, X-ray crystallography, and molecular modeling[J]. Chemical Reviews,2002,102:371-386
    [96]Duus J., Gotfredsen C. H., Bock K. Carbohydrate structural determination by NMR spectroscopy:modern methods and limitations[J]. Chemical Reviews,2000, 100:4589-4614
    [97]Wu A. M., Song S. C., Tsai M. S., et al.A Guide to the carbohydrate specificities of applied Lectins-2[J]. Advances in Experimental Medicine and Biology,2001, 491:551-585
    [98]Rudiger H., Gabius H. J. Plant lectins:Occurrence, biochemistry, functions and applications [J]. Glycoconjugate Journal,2001,18:589-613
    [99]Goldstein I. J. Lectin structure-activity:The story is never over[J]. Journal of Agricultural and Food Chemistry,2002,50:6583-6585
    [100]Hirabayashi J. Lectin-based structural glycomics:Glycoproteomics and glycan profiling[J]. Glycoconjugate Journal,2004,21:35-40
    [101]Dam T. K., Roy R, Das S. K., et al.Binding of Multivalent Carbohydrates to Concanavalin A and Dioclea grandiflora Lectin:Thermodynamic analysis of the "Multibalency effect"[J]. The Journal of Biological Chemistry,2000, 275:14223-14230
    [102]Taniguchi N., Ekuni A., Ko J. H., et al. A glycomic approach to the identification and characterization of glycoprotein function in cells transfected with glycosyltransferase genes[J]. Proteomics,2001,1:239-247
    [103]Saint-Guirons J., Zeqiraj E., Schumacher U., et al.Proteome analysis of metastatic colorectal cancer cells recognized by the lectin Helix pomatia agglutinin (HPA)[J]. Proteomics,2007,7:4082-4089
    [104]Xu Z., Zhou X., Lu H., et al. Comparative glycoproteomics based on lectins affinity capture of N-linked glycoproteins from human Chang liver cells and MHCC97-H cells[J]. Proteomics,2007,7:2358-2370
    [105]Kim Y. S., Kang H. Y, Kim J. Y, et al., Identification of target proteins of N-acetylglucosaminyltransferase V in human colon cancer and implications of protein tyrosine phosphatase kappa in enhanced cancer cell migration[J]. Proteomics,2006, 6:1187-1191
    [106]Zhao J., Simeone D. M., Heidt D. Comparative serum glycoproteomics using lectin selected sialic acid glycoproteins with mass spectrometric analysis:Application to pancreatic cancer serum[J]. Journal Proteome Research,2006,5:1792-1802
    [107]Kaji H., Yamauchi Y, Takahashi N., et al.Mass spectrometric identification of N-linked glycopeptides using lectin-mediated affinity capture and glycosylation site-specific stable isotope tagging. Nature Protocol,2006,1:3019-3027
    [108]North S. J., Hitchen P. G., Haslam S. M., et al.Mass spectrometry in the analysis of of N-linked and O-linked glycans[J]. Current Opinion in Structural Biology,2009, 19:498-506
    [109]Zaia, J. Mass spectrometry of oligosaccharides[J]. Mass Spectrometry Review,2004, 23:161-227
    [110]Ruhaak L. R, Zauner G., Huhn C., et al.Glycan labeling strategies and their use in identification and quantification[J]. Analytical Bioanalytical Chemistry,2010, 3973457-3481
    [111]Cooper C. A., Gasteiger E., Packer N. H. GlycoMod-A software tool for determining glycosylation compositions from mass spectrometric data[J]. Proteomics,2001, 1340-349
    [112]Cooper C. A., Joshi H. J., Harrison M. J., et al.GlycoSuiteDB:a curated relational database of glycoprotein glycan structures and their biological sources.2003 update[J]. Nucleic Acids Research.2003,31,511-513
    [113]Go E. P., Rebecchi K. R, Dalpathado D. S., et al. GlycoPep DB:A tool for glycopeptide analysis using a "Smart Search"[J]. Analytical Chemistry,2007, 79:1708-1713
    [114]Irungu J., Go E. P., Dalpathado D. S., et al. Simplification of mass spectral analysis of acidic glycopeptides using GlycoPep ID[J]. Analytical Chemistry,2007, 793065-3074
    [115]Goldberg D., Sutton-Smith M., Paulson J., et al. Automatic annotation of matrix-assisted laser desorption/ionization N-glycan spectra[J]. Proteomics,2005, 5:865-875
    [116]Goldberg D., Bern M., Parry S., et al. Automated N-glycopeptide identification using a combination of single- and tandem-MS[J]. J. Proteome Research,2007, 6:3995-4005
    [117]Maass K., Ranzingei R, Geyer H., et al. "Glyco-peakfinder" -de novo composition analysis of glycoconjugates[J]. Proteomics,2007,7:4435-4444
    [118]Ceroni A., Maass K., Geyer H., et al. GlycoWorkbench:A tool for the computer-assisted annotation of mass spectra of glycans[J]. Journal of Proteome Research,2008,7:1650-1659
    [119]Bayramoglu G., Kiralp S., Yilmaz M., et al. Covalent immobilization of chloroperoxidase onto magnetic beads:Catalytic properties and stability[J]. Biochemical Engineering Journal,2008,38:180-188
    [120]Monzo A., Bonn G. K., Guttman A. Lectin-immobilization strategies for affinity purification and separation of glycoconjugates[J]. Trends in Analytical Chemistry, 2007,26(5):423-432
    [121]Wu S., Sun A., Zhai F., et al.Fe3O4 magnetic nanoparticles synthesis from tailings by ultrasonic chemical co-precipitation[J]. Materials Letters,2011,65:1882-1884
    [122]Rosenfeld H., Aniulyte J., Helmholz H., et al Comparison of modified supports on the base of glycoprotein interaction studies and of adsorption investigations[J]. Journal of Chromatography A,2005,1092:76-88
    [123]Cho W., Jung K., Regnier F. E. Use of glycan targeting antibodies to identify cancer-associated glycoproteins in plasma of breast cancer patients [J]. Analytical Chemistry,2008,80(14):5286-5292
    [124]Monzo A., Bonn G. K., Guttman A. Boronic acid-lectin affinity chromatography.1. Simultaneous glycoprotein binding with selective or combined elution[J]. Analytical and Bioanalytical Chemistry,2007,389:2097-2102
    [125]Qiu R, Regnier F. E. Use of multidimensional lectin affinity chromatography in differential glycoproteomics[J]. Analytical Chemistry,2005,77 (9)2802-2809
    [126]Madera M., Mechref Y, Kbuckova I., et al. High-sensitivity profiling of glycoproteins from human blood serum through multiple-lectin affinity chromatography and liquid chromatography/tandem mass spectrometry[J]. Journal of Chromatography B, Analytical technologies in the bio medical and life sciences,2007, 845 (1):121-137
    [127]Madera M., Mann B., Mechref Y., et al.Efficacy of glycoprotein enrichment by microscale kctin affinity chromatography[J]. Journal of Separation Science,2008, 31(14):2722-2732
    [128]Sun X., Yang G., Sun S. et al. The hydroxyl-functionalized magnetic particles for purification of glycan-binding proteins[J]. Current Pharmaceutical Biotechnology, 2009,10:753-760
    [129]M(?)ller H. J., Poulsen, J. H. The protein protocols handbook[M].2nd Ed., Totowa, New Jersey:Humana Press Inc.,2002:773-777
    [130]Bairoch A, Apweiler R, Wu C. H., et al.The universal protein resource (UniProt)[J]. Nucleic Acids Research,2005,33:D154-D159
    [131]Huang D. W., Sherman B. T., Lempicki R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources[J]. Nature Protocol,2009, 4(1):44-57
    [132]Wen C. L., Chen K. Y, Chen C. T., et al. Development of an AlphaLISA assay to quantify serum core-fucosylated E-cadherin as a metastatic lung adenocarcinoma biomarker[J]. Journal of proteomics,2012,75:3963-3976
    [133]Chen S., LaRoche T., Hamelinck D., et al.Multiplexed analysis of glycan variation on native proteins captured by antibody microarrays[J]. Nature Methods,2007, 4:437-444
    [134]Li C., Simeone D. M., Brenner D. E., et al Pancreatic cancer serum detection using a Lectin/glyco-antibody array method[J]. Journal of Proteome Research,2009, 8:483-492
    [135]Yu H., Zhu M., Li Z., et al. Analysis of glycan-related genes expression and glycan profiles in mice with liver fibrosis[J]. Journal of Proteome Research,2012, 11:5277-5285
    [136]Kristiansen T. Z., Bunkenborg J., Gronborg M., et al. A proteomic analysis of human bile[J]. Molecular & Cellular Proteomics,2004,3:715-728
    [137]Loo D., Jones A., Hill M. M. Lectin magnetic bead array for biomarker discovery[J]. Journal of Proteome Research,2010,9:5496-5500
    [138]Jung K., Cho W., Regnier F. E. Glycoproteomics of plasma based on narrow selectivity lectin affinity chromatography[J]. Journal of Proteome Research,2009,8: 643-650.
    [139]Fu Q., Eyk J. E. Proteomics and heart disease:identifying biomarkers of clinical utility[J]. Expert Review of Proteomics,2006,3 (2)237-249
    [140]Yang Z., Hancock W. S. Approach to the comprehensive analysis of glycoproteins isolated from human serum using a multi-lectin affinity column[J]. Journal of Chromatography A,2004,1053 (1-2),79-88.
    [141]Jung K., Cho W., Regnier F. E. Glycoproteomics of plasma based on narrow selectivity lectin affinity chromatography[J]. Journal of Proteome Research 2009, 8:643-650
    [142]Dayarathna M. K., Hancock W. S., Hincapie M. A two step fractionation approach for plasma proteomics using immunodepletion of abundant proteins and multi-lectin affinity chromatography:Application to the analysis of obesity, diabetes, and hypertension diseases[J]. Journal of Separation Science,2008,31,1156-1166
    [143]Mechref Y, Madera M., Novotny M. V. Glycoprotein enrichment through lectin affinity techniques[J]. Methods in Molecular Biology,2008,424:373-396.
    [144]El-Boubbou K., Zhu D. C., Vasileiou C., et al Magnetic Glyco-nanoparticles:A tool to detect, differentiate, and unlock the glyco-codes of cancer via magnetic resonance imaging[J]. Journal of the American Chemical Society,2010,132 (12),4490-4499
    [145]Narimatsu H. A strategy for discovery of cancer glyco-biomarkers in serum using newly developed technologies for glycoproteomics[J]. FEBS Journal,2010,277, 95-105
    [146]Yang Z., Harris L. E., Palmer-Toy D. E., et al. Multilectin affinity chromatography for characterization of multiple glycoprotein biomarker candidates in serum from breast cancer patients[J]. Clinical Chemistry,2006,52:1897-1905
    [147]Qiu Y, Patwa T. H., Xu L., et al. Plasma glycoprotein profiling for colorectal cancer biomarker identification by lectin glycoarray and lectin blot[J]. Journal of Proteome Research,2008,7:1693-1703
    [148]Kullolli M., Hancock W. S., Hincapie M. Automated platform for fractionation of human plasma glycoproteome in clinical proteomics[J]. Analytical Chemistry 2010, 82,115-120
    [149]Aebersold R., Mann M. Mass spectrometry-based proteomics[J]. Nature,2003, 422:198-207
    [150]Ishihama Y, Oda Y, Tabata T. et al.Exponentially Modified Protein Abundance Index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein[J]. Molecular & Cellular Proteomics,2005, 4:1265-1272
    [151]Shinoda K., Tomita M, Ishihama Y emPAI Calc—for the estimation of protein abundance from large-scale identification data by liquid chromatography-tandem mass spectrometry[J]. Bioinformatics,2010,26(4):576-577
    [152]Itoh S., Kawasaki N., Ohta M., et al.Structural analysis of a glycoprotein by liquid chromatography-mass spectrometry and liquid chromatography with tandem mass spectrometry application to recombinant human thrombomodulin[J]. Journal of Chromatography A,2002,978:141-152
    [153]Ritchie M. A., Gill A. C., Deery M. J., et al.Precursor ion scanning for detection and structural characterization of heterogenous glycopeptide mixtures[J]. Journal of the American Society for Mass Spectrometry.2002,13:1065-1077
    [154]Ye J., Fang L., Zheng H. et al. WEGO:a web tool for plotting GO annotations [J]. Nucleic Acids Research,2006,34:W293-W297
    [155]Conesa A, Gotz S., Garcia-Gomez J. M., et al. Blast2GO:a universal tool for annotation, visualization and analysis in functional genomics research[J]. Bioinformatics,2005,21(18)3674-3676
    [156]Huang D. W., Sherman B. T., Tan Q. et al. DAVID bioinformatics resources:expanded annotation database and novel algorithms to better extract biology from large gene lists[J]. Nucleic Acids Research,2007,35:W169-W175
    [157]Dennis G. Jr., Sherman B. T., Hosack D. A. et al. DAVID:database for annotation, visualization, and integrated discovery[J]. Genome Biology,2003,4:R60.1-R60.11
    [158]Rudd P. M., Wormald M. R, Stanfield R. L, et al.Roles for glycosylation of cell surface receptors involved in cellular immune recognition[J]. Journal of Molecular Biology,1999,293,351-366
    [159]Kornfeld R.; Kornfeld S. Assembly of asparagine-linked oligosaccharides[J]. Annual Review of Biochemistry,1985,54:631-664
    [160]Dell A., Morris H. R. Glycoprotein structure determination by mass spectrometry[J]. Science,2001,2912351-2356
    [161]Pabst M., Altmann F. Glycan analysis by modern instrumental methods[J]. Proteomics, 2011,11:631-643
    [162]Stephens E., Maslen S. L., Green L. G., et al.Fragmentation characteristics of neutral N-linked glycans using a MALDI-TOF/TOF tandem mass spectrometer[J]. Analytical Chemistry,2004,762343-2354
    [163]Domon B., Costello C. E. A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates[J]. Glycoconjugate Journal,1988, 5397-409
    [164]Ludwig, J. A., Weinstein J. N. Biomarkers in cancer staging, prognosis and treatment selection[J]. Nature Reviews Cancer,2005,5 (11):845-856
    [165]Taketa K., Endo Y, Sekiya C., et al.A collaborative study for the evaluation of lectin-reactive alpha-fetoproteins in early detection of hepatocellular carcinoma[J]. Cancer Research,1993,53(22):5419-5423
    [166]Shiraki K., Takase K., Tameda Y, et al. A clinical study of lectin-reactive alpha-fetoprotein as an early indicator of hepatocellular carcinoma in the follow-up of cirrhotic patients[J]. Hepatology,1995,22 (3):802-807
    [167]Marrero J. A., Romano P. R, Nikolaeva O., et al.GP73, a resident Golgi glycoprotein, is a novel serum marker for hepatocellular carcinoma[J]. Journal of Hepatology,2005, 43 (6):1007-1012
    [168]Comunale M. A., Lowman M., Long R E., et al. Proteomic analysis of serum associated fucosylated glycoproteins in the development of primary hepatocellular carcinoma[J]. Journal of Proteome Research,2006,5(2)308-315
    [169]Zhao J., Qiu, W., Simeone D. M., et al. N-linked glycosylation profiling of pancreatic cancer serum using capillary liquid phase separation coupled with mass spectrometric analysis[J]. Journal of Proteome Research,2007,6(3):1126-1138
    [170]Maslen S., Sadowski P., Adam A., et al. Differentiation of isomeric N-glycan structures by normal-phase liquid chromatography-MALDI-TOF/TOF tandem mass spectrometry[J]. Analytical Chemistry,2006,78:8491-8498
    [171]Medzihradszky K. F., Campbell J. M., Baldwin M. A., et al. The characteristics of peptide collision-induced dissociation using a high-performance MALDI-TOF/TOF tandem mass spectrometer[J]. Analytical Chemistry,2000,72:552-558
    [172]Mechref Y, Novotny M. V, Krishnan C. Structural characterization of oligosaccharides using MALDI-TOF/TOF tandem mass spectrometry[J]. Analytical Chemistry,2003,75:4895-4903
    [173]Thomson J. A, Itskovitz-Eldor J., Shapiro S. S., et al.Embryonic stem cell lines derived from Human Blastocysts[J]. Science,1998,282:1145-1147

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700