无核荔枝胚败育相关蛋白质的分离鉴定及cDNA克隆
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
关于荔枝胚胎发育的研究,我国学者的研究较为深入,主要集中于形态解剖学和生理生化研究水平。形态学和解剖学的研究表明,胚胎败育型荔枝在授粉后10d左右,其胚胎发育受阻,花后15d,胚珠已明显萎缩导致果实无核。荔枝胚胎发育过程中内源激素变化表明,败育胚胎中IAA、GA3、CTK等促进型激素低于正常发育胚胎,而抑制型激素ABA则高于正常胚胎。败育胚胎内源激素与正常胚胎的差异,可能造成生理代谢紊乱及物质能量的亏损而导致果实无核。目前关于荔枝胚胎发育的基因调控及蛋白质组研究较少,仅陈伟及张以顺等采用双向电泳技术进行了荔枝胚胎发育后期总蛋白质的分离,还没有进一步的蛋白质组分析及鉴定研究。张以顺等克隆到一个与荔枝胚败育相关的S-腺苷甲硫氨酸合成酶基因。目前尚无更多的相关研究。
     海南无核荔枝是荔枝中的珍稀品种,其无核率高达95%,但其无核率极易受花期温度的影响,无核率的不稳定性严重影响了该品种的推广种植和经济效益。形态学观察表明,海南无核荔枝无核果实的形成是由于授粉后低温的影响导致胚胎败育所引起。
     海南无核荔枝经中国热带农业科学院和华南热带农业大学国家重点实验室鉴定,认为无核荔枝是一个突变体,可能由于某些基因发生突变,使胚胎发育早期的生化过程发生紊乱或受到抑制,导致胚胎败育。目前已对海南无核荔枝进行了部分应用基础方面的研究,包括胚退化的生物学,胚内源激素动力学,与无核荔枝花、果、胚发育相关基因的克隆等,为无核荔枝的产业化提供了有力的科技支撑。
     蛋白质作为基因功能的体现者和执行者,与生命体的生物功能和生理活动密切相关。机体所处的不同环境和本身的生理状态差异,会导致基因转录产物有不同的剪切和转译成不同的蛋白。因而蛋白质组学已成为当今研究热点。采用蛋白质组学技术及方法获得野生型与突变体间的差异蛋白质,对于目的蛋白质的功能及其编码这些蛋白的基因的功能研究,具有重要的意义,也为进一步探讨目的蛋白质与生物功能及生理活动的关系奠定了基础。
     本研究从差异蛋白质组学入手,分别提取无核荔枝开花后20d和开花后40d正常发育胚和败育胚的总蛋白质,采用二维聚丙烯酰胺凝胶电泳技术,得到无核荔枝
Litchi chinensis Sonn is an important agricultural product of subtropical Southern China. Hainan seedless Litchi is an excellent variety with a high seedless rate of 95%. Unfortunately, the seedless rate is unstable and dependent on the temperature during flowering stage. The unstable seedless rate seriously impacts the seedless Litchi's planting area and its commercial value. Although there are many morphological biochemical studied during embryo developing of litchi, there are few studies on the proteins and proteomatic relating to the embryonic development of litchi.
     The purpose of this research is to isolate the proteins of seedless Litchi at the different embryo development stages by using the two-dimensional polyacrylamide gel electrophoresis (2DE) in order to isolate the differential proteins between normal embryo and aborted embryo. The next step is to identify these proteins by using the MALDI-TOF MS search homologous protein and obtain their sequence through the protein data bank.
     The major results of the study are as follows:
     1. From 2DE electrophoresis maps, we compared the global protein patterns between normal and aborted embryo of litchi at the 20 DAA (day after anthesis) through computer image analysis. In total, 129 and 130 protein spots were obtained in the normal and aborted embryo maps, respectively. Of these, 24 spots were not significantly different, while 14 spots increased and 21 spots decreased in quantity. Furthermore, some spots were missing and some new spots emerged in aborted embryo compared with the normal embryo. The differential proteins between normal and aborted embryo of litchi are useful for regulating and controlling embryo abortion.
     2. We compared the global protein patterns between normal and aborted embryo of litchi at the 40 DAA. The result shows, the rate of the differential proteins were increased compared with the 20 DAA. 388 and 482 protein spots were obtained in normal and aborted embryo map, respectively, of which 60 spots were not significantly different, while 46 spots increased and 54 spots decreased in quantity. Furthermore, some spots
引文
1 陈伟 吕柳新 兰竹荔枝胚珠内源激素含量变化与胚胎发育的关系 应用与环境生物学报2000b,6(5):419-422
    2 陈伟 吕柳新 荔枝胚珠中多胺含量变化与胚胎发育的关系 热带亚热带植物学报 2000c,8(3):229-234
    3 陈伟 吕柳新 叶陈亮 荔枝胚胎败育和胚珠内源激素关系的研究 热带作物 2000a,21(3):34-38
    4 陈伟 周洁 叶明志 植物酚类物质研究进展 福建农业大学学报 1997,26(4):202-208
    5 陈伟 荔枝胚胎发育的生理生化机制研究 福建农业大学博士学位论文 2001
    6 崔凯荣,陈克明,王晓哲等 植物体细胞胚胎发生研究的某些现状 植物学通报,1993,10(3):14-20
    7 刁丰秋 黄美娟 吴乃虎 高等植物胚胎发生的分子调控 植物学报 2000,42(4):331-340
    8 丁勤学 阙海萍 郭尧君 成年和老年小鼠脑蛋白质组双向电泳图谱比较 生物化学与生物物理进展 2001,vol.28(5):683-687
    9 高原 王国秀 刘中来 一种经济简便的双向电泳方法 生物化学与生物物理进展 2003,vol.30(1):156-158
    10 何大澄 肖雪媛 差异蛋白质学及其应用 北京师范大学学报(自然科学版)2002,vol.38(4):558-562
    11 黄凌云 赵和平 丁勤学 生物质谱在蛋白质组学研究中的应用 现代仪器 2004,2:7-12
    12 贾宇峰 林秋霞 郭尧君 蛋白质双向电泳图像分析 生物化学与生物物理进展 2001,vol.28(2):246-250
    13 李蕾 应万涛 杨何义等 蛋白质组研究中二维电泳分离技术 色谱 2003,vol.21(1):27-31
    14 李林 蛋白质组学的进展 生物化学与生物物理进展 2000,vol.27(3):227-231
    15 李永民 生物质谱 分析测试技术与仪器 2002,vol.8(3):131-135
    16 梁宇 荆玉祥 沈世华 植物蛋白质学研究进展 植物生态学报 2004,vol.28(1):114-125
    17 梁卫红 唐朝荣 吴乃虎 两种水稻 GDP 解离抑制蛋白基因的分离及特征分析 中国生物化学与分子生物学报 2004,20(6):785~791
    18 林金科 郑金贵 袁明等 茶树蛋白质提取及双向电泳的改良方法 茶树科学 2003,vol.23(1):16-20
    19 刘健平 陈国华 陈本美等 蛋白质组双向电泳实验中一些常见失误的分析 生命科学研究2003,vol.7(2):177-180
    20 龙华 延伸因子-1α-A 和 β-肌动蛋白启动子在青鳟转基因胚胎中表达 实验生物学报 2003,36(3):238-242
    21 刘颂颂 无核荔枝种子败育的胚胎学研究 华南农业大学学报 1999,20(2):41-46
    22 娄沂春 董海涛 李德葆 水稻叶绿体 ATP 合成酶基因转录丰度受赤霉素诱导调节 中国水稻科学,2001,15(1):17~20
    23 吕柳新 陈荣木 陈景渌 荔枝胚胎发育过程的观察 亚热带植物科学 1985,(1):1-5
    24 吕柳新 余小玲 叶明志 荔枝胚胎发育机制的探讨 福建农学院学报 1989,18(2):149
    25 潘卫 王应雄 黎刚 蛋白质组技术在鼠胚胎发育研究中的应用 中国生物工程杂志 2003,vol.23(4):4-7
    26 邱燕平 张展薇 丘荣熙 荔枝胚胎发育的研究 植物学通报 1994,11(3):45-47
    27 王碧青 邱燕平 张展薇 单性结实荔枝胚胎及果实发育观察 园艺学报,1996,(2):15-17
    28 王碧青 邱燕平 向旭等 荔枝结果过程中内源激素变化及单性结果的诱导 园艺学报,1997,24(1):19-24
    29 王京兰 万晶宏 罗凌等 蛋白质组研究中肽质量指纹谱鉴定方法的建立及其应用 生物化学与生物物理学报 2000,vol.32(4):373-378
    30 王新 王伯良 张宗友等 蛋白质组分析中双向电泳技术的改良和应用 细胞与分子免疫学杂志 2001,vol.17(2):191-192
    31 夏其昌 曾荣等编著 蛋白质化学与蛋白质组学 科学出版社 2004:545-547
    32 熊兴东 许丽艳 沈忠英 双向凝胶电泳图像分析方法的建立 癌变 畸变 突变 2002,vol.14(3):139-144
    33 杨立新 郁卫东 陈清轩 小鼠 2-细胞胚胎 ATP 合成酶 6 基因特异表达分析及鉴定 中国生物化学与分子生物学报,2003,19(2):201~204
    34 杨应华 李蕾 余诞年 温敏无核荔枝的种子败育和果实发育研究 2002,15(2):71-74
    35 叶明志 肖振通 吕柳新 荔枝幼果内源生长调节物的消长和胚胎发育的关系 福建农学院学报 1990,19(3):268-272
    36 叶秀遴 王伏雄 钱南芬 荔枝胚胎学研究 云南植物学研究 1992,14(1):59-65
    37 俞利荣 王楠 吴高德 人肝癌细胞系 BEL-7404 和正常肝细胞系 L02-表达的蛋白质组双向凝胶电泳分析 科学通报 2000,vol.45(2):170-178
    38 张斌 唐锡华 水稻胚胎发育时期特异性蛋白质 植物生理学报,1992,18(1):85-92
    39 张德有 徐碧玉 金志强 香蕉果胶裂解酶基因的克隆 植物生理与分子生物学学报,2003, 29(5): 401-404
    40 张养军 蔡耘 王京兰 蛋白质组学研究中的色谱分离技术 色谱 2003,vol.21(1):20-26
    41 张以顺 向 旭 黄上志等 荔枝胚败育过程中内源激素与蛋白质含量的变化 植物生理与分子生物学学报,Journal of Plant Physiology and Molecular Biology 2003, 29 (3): 233-238
    42 张以顺 向 旭 傅家瑞 荔枝胚败育差异表达基因 cDNA 片段的克隆及序列分析 园艺学 报 2004,31(1): 25~28
    43 郑仲承,研究蛋白质组的新工具 生命的化学,2001,21(4): 314-315
    44 朱宏 王柏臣 张帅 蛋白质双向电泳双胺染色方法的改进 植物研究 2003,vol.23(1):94-98
    45 邹清华 张建中 蛋白质组学的相关技术及应用 生物技术通讯 2003,vol.14(3):210-213
    46 Agrawal GK, Rakwal M,YonekuraA, Proteome analysis of differentially displayed proteins as a tool for investigating ozon estress in rice(Oryza sativa L.)seedlings. 2002. Proteomics,2:947~959.
    47 Amiot MJ, Fleuriet A, Macheix JJ Important and evolution of phenolic compounds in olive during growth and maturation. J. Agric. Food Chem. 1986, 34:823-827
    48 Anderson NG, Matheson A, Anderson NL Back to the future: the human protein index and the agenda for post-proteomic biology. Proteomics 20011: 3–12
    49 Anderson NL, Anderson NG Proteome and pro teomics: new technologies, new concepts, and new words. Electrophoresis, 1998.19:1853~1861.
    50 Bestel_Corre GE,Dumas_Gaudot V, Poinsot M, Proteome analysis and identification of symbiosis_related proteins from Medicago truncatula Gaertn. By two_dimensional electrophoresis and mass spectrometry. Electrophoresis, 2002.23:122~137.
    51 Blee KA, Wheatley ER, Bonham VA Proteomic analysis reveals a novel set of cell wall proteins in a transformed tobacco cellculture that syn thesises secondary walls as determined by biochemical and morphological parameters. Planta, 2001.212:404~415.
    52 Breton C, Faure JE, Dumas C. From in vitro fertilization to early embryogenesis in Maize. Prdoplasma, 1995,187:3-7
    53 Bouchez D, Hoffe H Functional genomics inplants. PlantPhysiology, 1998.118:725~732.
    54 Buta JG, Lusby WR. Catechins as germination and growth inhibitors in Lespedeza seeds. Photochemistry 1986, 25: 63-98
    55 Catoira RC, Galera F, Billy RV. Four genes of Medicago truncatula controlling components of a nod factor transduction pathway. Plant Cell, 2000.12:1647~1666.
    56 Chang WW, Huang LM, Shen C. Patterns of protein synthesis and tolerance of an oxiainroot tips of maize seedlings acclimated to alow_oxygen environment, and identification of proteins by mass spectrometry. Plant Physiology, 2000.122:295~318.
    57 Chait BT, Wang R, et al.Protein ladder sequencing. Science, 1993, 262: 89-92 Chen W, Lv L X Relationship Between Litchi Embryo Abortion and Phenolic Inhibitors Acta Botanica Sinica,2002,44(2):168-172
    58 Cheng JC, Seeley KA, Sung ZR. RML1 and RML2, Arabidopsis genes required for cell proliferation at the root tip. Plant Physiol,1995,107:365-376.
    59 Costa P, Bahrman N, Frigerio J-M, Kremer A, Plomion C Waterdeficit- responsive proteins in maritime pine. Plant Mol Biol 1998,38: 587–596
    60 Costa PC, Pionneau G, Bauw C. Separation and characterization of needle and xylem maritime pineproteins. Electrophoresis, 1999. 20:1098~1108.
    61 Damerval C, LeGuilloux M. Characterization of novel proteins affected by the O2 mutation and expressed during maize endosperm development. Molecular and General Genetics, 1998.257: 354 ~361.
    62 David JL, Zivy ML, .Protein evolution in dynamically managed populations of wheat: adaptive responses tomacro_environmental conditions. The oreticaland Applied Genetics, 1997,95:932~941.
    63 Dominguez-Puigjaner E, Immaculada L, Vendrell M, Prat S. A cDNA clone highly expressed in ripe banana fruit shows homology to pectate lyases. Plant Physiol, 1997,114:1071-1076
    64 Dure L, Galau GA. Developmental biochemistry of cotton seed embryogenesis and germination: Changing messenger ribonucleic acid populations as shown by in vitro and in vivo protein synthesis. Biochemistry, 1981,20:4162-4168.
    65 Dure L, Crouch M, Harada J, et a.l Common amino sequence domains among the LEA protein of higher plants. Plant Mel. Biol. 1989,12:475-486
    66 Dure L. Structural motifs in Lea proteins. In Plant response to cellular dehydration during environmental tressed: Close T J,and Bray E A. vol.10 American Society of plant physiologists. 1993,91-103.
    67 Elliott RC, Betzner AS, Huttner E, Oakes MP, Tucker WQJ, Gerentes D, Perez P, Smyth DR. AINTEGUMENTA, an APETALA2_like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth. Plant Cell,1996,8:155-168.
    68 Feng Q, Zhang Y, Hao P, Wang S, Fu G, Huang Y, Li Y, Zhu J, et al Sequence and analysis of rice chromosome4. Nature, 2002. 420: 316~320.
    69 Figeys D, Aebersold R, High sensitivity analysis of proteins and peptides by capillary electrophoresis-tandem mass spectrometry :recent development in technology and applications. Electrophoresis, 1998, 19:885-892
    70 Figeys D, Gygi SP, et al. An integrated microfluidics-tandem mass spectrometry system for automated protein analysis. Anal. Chem. 1998, 70:3728-3734
    71 Gaskell S L, Electrospary principle and practice. J. of mass spectrometry, 1997, 32: 677-688
    72 Goff SA, Ricke D, Lan TH, Presting G, et al. Adraft sequence of the rice genome(OryzasativaL.ssp.japonica). Science, 2002.296:92~100.
    73 Grimm R., Grimm M, Eckerskorn C, Pholmeyer K, Post import methylation of the small subunit of ribulose_1,5_bisphosphate carboxylase in chloroplasts. FEBS Letters, 1997. 408:350~354.
    74 Guo YM, SHEN SH,et al., Plant Proteomics in the Post-genomic Era Acta Botanica Sinica,2002,vol.44(6):631-641
    75 Gygi SP et al., Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nature Biotachnol, 1999,17: 994-999
    76 Hartwig,VA, Philips DA. Release and modification of nod-gene-inducing flavonoids from alfalfa seeds. Plant Physiol.1991,95:804-807
    77 Havnes PA,Gygi SP,Aebrsold R,et al. Proteome analysis: biological assay or data archive?Electrophoresis. 1998,19:1862-1871
    78 Heazle WJ, Howell KA, Whelan J. Towards an analysis of the rice mitochondrial proteome. Plant Physiology, 2003.132: 230~242.
    79 Henzel WJ, Billeci TM, et al., Identifying proteins from two-dimensional gels by molecular mass searching of peptide fragment in protein sequence databases. Proc. Natl. Acad. Sci. USA 1993,90: 5011-5015
    80 Herbik A, Giritch A, Horstmann C, Becker R, et al. Iron and copper_nutrition dependent changes in protein expression in a tomato wild type and the nicotianamine_free mutant chloronerva. Plant Physiology, 1996.111:533~540.
    81 Joubert AJ. CRC Handbook of Fruit Set and Development. Horida: CRC Press, 1986, 233-246
    82 Jungblut P, et al., Protein identification from 2-DE gels by MALDI mass spectrometry. Mass Spectrometry Review. 1997, 16: 45-62
    83 Kaiser J. Plant genetics.From genome to functional g nomics.Science, 2000.288:1715.
    84 Kefeli, VI Natural plant growth inhibitors and phytohormones. Dr. W. Junk b.v. Publ., Hague/Boston 1978;
    85 Klose J. Human genetik,1975,26:211
    86 Klose J, Kobalz U. Two-dimensional electrophoresis of protein: an updated protocol and implications for a functional analysis of the genome. Electrophoresis,1995,16:1034-1059.
    87 Komatsu S, Muhammad A Rakwal R.. Seperation and characterization of proteins from green and etiolated shoots of rice(OryzasativaL.): towards a rice proteome. Electrophore sis, 1999a,.20:630~636.
    88 Komatsu S, Rakwal R, Li Z...Separation and characterization of proteins in rice(Oryzasativa) suspension cultured cells. Plant Cell Tissue and Organ Culture, 1999b, 55:183~192.
    89 Li J, Assmann SM. Mass spectrometry. An essential tool in proteome analysis. Plant Physiology, 2000.123:807~809.
    90 Lup PN, O'neillsd. Identification of a meristeml 1 layer_specific gene in Arabidopsis that is ex pressed during embryo nicpattern formation and defines a new class of homeoboxgenes. Plant cell,1996,8:2155-2168.
    91 Long JA, Moan EI, Medford JI, Barton MK. Amember of the KNOTTED class of homeodomain proteins encoded by STM gene in Arabidopsis. Nature, 1996,379:66-69.
    92 Macilwain,C. World leadersheap praise on human genome landmark.Nature, 2000.405:983~984.
    93 Mann M, et al., Error-tolerant identification of peptides in sequence databases by peptide sequence tags. Anal. Chem, 1994, 66:4390-4399.
    94 Mattoo AK, Edelman M.. Intramembrane translocation and posttrans location palmitoylation of the chloroplast 32_kD herb cide_binding protein. Proceedings of the National Academy of Sciences, 1987.84:1497~1501.
    95 Mayer U, et al. Mutations affecting body organization in the Arabidopsis embryo. Nature, 1991, 353: 402-407
    96 Mayfield JA, Fiebig A, Johnstone SE.et al. Gene families from the Arabidopsis thaliana pollen coat proteome. Science, 2001.292:2482~2485.
    97 Meinke, DW, Embryo-lethal mutants and the study of the plant embryo development. Oxford Surv. Plant Mol. Cell Biol. 1986,3: 122-165
    98 Meinke, DW, Perspective on genetic analysis of plant embryogenesis. Plant Cell,1991 3: 857-866
    99 Meinke, DW and Sussex, I.M., Isolation and characterization of six embryo-lethal mutants of Arabidopsis thaliana Dev. Genet. 1979 69: 543-552
    100 Meinke, DW, Ann Rev Plant Physiol Plant Mol Biol, 1995,46:369
    101 Meinke, DW, Science, 1992,258: 1647
    102 Millar AH, Sweetlove LJ, Giege P. Analysis of the Arabidopsis mitochondrial proteome. Plant Physiol, 2001.127:1711~1727.
    103 Moons AJ, Gielen J, Vandekerckhove D, et al. An abscisic_acid and salt_stress_responsive rice cDNA from a novel plant gene family. Planta, 1 997202:443~454.
    104 Oda Y, et al., Accurate quantification of protein expression and site-spctific phosphorylation. Proc. Natl Acad. Sci. USA, 1999, 96:6591-6596
    105 O’Farrell, PH. Highre solution two_dimensional electrophoresis of proteins. Journal of Biological Chemistry, 1975.250: 4007~4021.
    106 Oliver S. Guilt_by_associationgoesglobal.Nature, 2000.403:601~603.
    107 Panek J, Vohradsky J. Point pattern matching in the analysis of two-dimentsional gel electropherograms. Electrophoresis, 1999,20:3483-3491
    108 Peltier, J.B., G.Friso, D.E.Kalume, P.Roepstorff, F.Nils son, I.Adamska & K.J.van Wijk. 2000.Proteomics of the chloroplast: systematic identification and targeting analysis of lu menal and peripheral thylakoid proteins.PlantCell,12:319~341.
    109 Peltier JB, Ytterberg J, A.Liberles D, et al. Identification of a350_kDa ClpP protease complex with 10 different Clpis of or msinchloroplasts of Ara bidopsis thaliana. Journal of Biological Chemistry, 2001. 276:16318~16327.
    110 Peltier JB, Emanuelsson O, Kalume DE, Ytterberg J, et al. Central functions of the lumenal and peripheral thylakoid proteome of Arabidopsis determined by experimentation and genome_widepre diction. Plant Cell, 2002. 14:211~236.
    111 Pennington SR,Dunn M J 蛋白质组学:从序列到功能 科学出版社 2002:15-18
    112 Prime TA, Sherrier DJ, Mahon P, et al. A proteomic analysis of organelles from Arabidopsis thaliana. Electrophoresis, 2000.21:3488~3499.
    113 Picard P, et al. Protential of 2DE in routine identification of closely related durum wheat lines. Electrophoresis, 1997,18:174-181
    114 Przemeck GKH, Mattsson J, Hardtke CS, Sung ZR, Berleth T. Studies on the role of Arabidopsis gene MONOPTEROS in vascular development and plant cell axialization. Planta, 1996, 200: 229- 237.
    115 Ramani,S. K.Apte S. Transient expression of multiple genes in salinity_stressed young seedlingsof rice(OryzasativaL.cv.BuraRata). Biochemical and Biophysical Research Commu nications, 1997.233:663~667.
    116 Rakwal R, Komatsu S. Role of jasmonate in the rice(OryzasativaL.) self_defense mechanism using proteome analysis. Electrophoresis, 2000.21:2492~2500.
    117 Ray S et al. Materual effects of short integuments mutation on embryo development in Arabidopsis. Dev Biol, 1996.
    118 Raymend S, Weintraub L. Acrylamide gel as a supporting medium for zone electrophoresis. Nature, 1956,177:1033
    119 Rounsley SD. Diverse roles for MADS box genes in Arabidopsis development. Plant Cell, 1995,7:1259-1269.
    120 Saalbach G, Erik P, Wienkoop S. Characterisation by proteomics of peribacteroid space and peribacteroid membrane preparations from pea(Pisumsativum) symbiosomes. Pro teomics, 2002. 2:325~337.
    121 Santoni V, Bellini C, Caboche M.. Use of two_dimen sional protein_pattern analysis for the characterization of Arabidopsis thaliana mutants. Planta, 1994.192:557~566.
    122 Sasaki T, Matsumoto T, Yamamoto K, et al. The genome sequence and structure of rice chromosome1 .Nature, 2002. 420:312~316.
    123 Salekdeh GH, Siopongco J, Wade LJ, Proteomic analysis of rice leaves during drought stress and recovery. Proteomics, 2002. 2:1131~1145.
    124 Scheler C, Lamer S, et al., Peptide mass fingerprint sequence coverage from differently stained proteins on two-dimensional electrophoresis patterns by matrix assisted laser desorption/ionization-mass spectrometry (MALDI-MS). Electrophoresis, 1998,19: 918-927.
    125 Scheele GA. Two-dimensional gel analysis of soluble proteins. J Biol Chem,1975,250: 5375-5385.
    126 Scheres B, mckhann H, Vandenberg C. Experimental and genetic analysis of root development in Arabidopsis thaliana. Plant soil, 1996,187:97-105.
    127 Schubert M., Petersson UA, Hass BJ, et al. Proteome map of the chloroplastlumen of Arabidopsis thaliana. Journal of Biological Chemistry, 2002.277:8354~8365.
    128 Senter SD, Horvat RJ, Forbus WR. Quantitative variation of total phenols in fresh markettomatores at three stages of maturity. J. Food Sci. 1988, 53:639-643
    129 Shevchenko A. Linking genome and proteome by mass spectrometry: large-scale identification of yeast proteins from 2-DE gels. Proc. Natl Acad. Sci USA, 1996, 93: 14440-14445.
    130 Shen S, Komatsu. S. Characterization of proteins responsive to gibberellins in the leaf sheath of rice(OryzasativaL.) seedling using proteome analysis. Biological and Pharmaceutica lBulletin, 2003.26:129~136.
    131 Shevell DE, Leu WM, Gilimor CS, et al. EMB30 is essential for normal cell division, cell expansion, and cell adhesion in Arabidopsis and encodes a protein that has similarity to Sec7. Cell, 1994,77:1051-1062.
    132 Shen S, Jing Y, Kuang T. Proteomics approach to identify wound_response related proteins fromrice leaf sheath. Proteomics, 2003.3:527~535.
    133 Smithis O, Poulik MD, Two-dimensional electrophoresis of serum Proteins. Nature, 1956. 177:1033
    134 Stegemann H. Protein fraktionerungen in polyacrylamid und die anwendung auf die genesische analyse bei Pflanzen. Angew. Chem, 1970,82: 917-919.
    135 Sung, ZR Developmental biology embryogenesis from carrot culture. Plant Mole. Biol. Rep. 1984,(2):3-14
    136 Sung ZR et al. Science, 1992, 258: 1645
    137 Torres_Ruiz RA, Lohner A, Jurgens G. The GURKE gene is required for normal organization of the apical region intheArabidopsise mbryo.PlantJ,1996,10:1005-1016.
    138 Touzet P, deVienne D, C.Huet J,et al. Amino acid analysis of proteins separated by two_dimensional electrophoresis in maize: isoform detection and function identification. Electrophoresis, 1996.17:1393~1401.
    139 Tsugita A, Kawakami T, Uchiyama Y, et al. Separation and characterization of rice proteins. Electrophoresis, 1994.15:708~720.
    140 Unlue M. Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis, 1997,18: 2071-2077
    141 Van Wijk KJ. Proteomics of the chloroplast: experimentation and prediction. Trends in Plant Science, 2000.5:420~425.
    142 Van Wijk, KJ. Challenges and prospects of plant proteomics. Plant Physiology, 2001.126: 501 ~508.
    143 Vener AV, Harms A,.Sussman MR et al. Vierstra. Mass spectrometric resolution of reversible protein phosphorylation in photosynthetic membranes of Arabidopsis thaliana. Journal of Biological Chemistry, 2001.276:6959~6966.
    144 Von Wiren N, Peltier JB, Rouquie D, Rossignol M. Four root plasmalemma polypeptides under_rep resented in the maize mutant ys1 accumulate in a Fe_efficient genotype in response to iron_deficiency. Plant Physiology and Biochemistry, 2002,35:945~950.
    145 Wasinger, V. C., S. J. Cordwell, A.Cerpa_Poljak, J.X.Yan, A.A.Gooley, M.R.Wilkins, M.M.Duncan, R.Harris, K.L.Williams & I.Humphery_Smith. Progress with gene_product mapping the Mollicutes: mycoplasma genitalium. Electrophoresis, 1995.16:1090~1094.
    146 Weiss W, Huber G, Engel KH, et al. Identification and characteriza tion of wheat grain albumin/globulinallergens. Electrophroresis, 1997.18:826~833
    147 Werhahn W, Braun H.P. Biochemical dissection of the mitochondrial proteome from Arabidopsis thaliana by three_di mensional gel electrophoresis. Electrophoresis, 1997.23:640~646.
    148 Wienkoop S, Saalbach G. Proteome analysis. Novel proteins identified at the peribacteroid membrane from Lotus japonicus root nodules. Plant Physiology, .2003.131:1080~1090.
    149 Wilkins MR, Gasteiger E et al., Multiple parameter cross-species protein identification using MultiIdent – a world wide Web accessible tool. Electrophoresis. 1998, 19:3199-3206
    150 Wilm M, Shevchenko A, et al., Femtomole sequencing of from polyacrylamid gels by nano-eletrospry mass spectrometry. Nature, 1996, 379:466-469.
    151 Wilm M, Mann M, Analytical properties of the nanoelectrospray ion-source. Anal. Chem. 1996,68:1-8
    152 Wilm M, Neubauer G, et al., Parent ion scans of unseparated peptide mixtures. Anal. Chem. 1996, 68: 525-533
    153 Yamaguchi, K.,K.vonKnoblauch & A.RSubramanian.2000.The plastid ribosomal proteins. Identification of all the proteins in the 30S subunit of anorganelle ribosome(chloroplast). Journal of Biological Chemistry,275:28455~28465.
    154 Yang CH et al. Dev Boil, 1995, 169: 421
    155 Yates JR, Mass spectrometry and the age of proteome 1998, 33: 1-19
    156 Yu J, Hu S, Wang J, et al. Adraft sequence of the rice genome (Oryzasati vaL. ssp. indica). Science, 2002.296: 79~92.
    157 Zhu H, Snyder M, et al., Global analysis of protein atavistic using proteome chips. Science, 2001,293:2101-2105.
    158 Zhu H, Snyder M, Protein chip technology. Curr Opin Chem Biol, 2003,7(1): 55-63

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700