枯草芽孢杆菌(Bacillus subtilis)Bs-916胞外抗菌蛋白质的纯化及其鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
枯草芽孢杆菌Bs-916是我们自行分离的一株拮抗菌,目前用于防治水稻纹枯病和稻曲病,该菌株表现出广谱的抑菌活性。本文研究了枯草芽孢杆菌Bs-916及分泌液对水稻纹枯病菌(Rhizoctonia solani)、蚕豆枯萎病菌(Fusanum oxysporum Schlecht.f.fabae Yu et Fang)、水稻恶苗病菌(Fusarium monitiforme Sheld.)、西瓜枯萎病菌(Fusanum oxysporum(Schl.)f.sp.nieveum(E.F.Smith)Snyderet Hansen)、水稻稻瘟病菌(Pyricularia grisea)、水稻稻曲病菌(Ustilaginoidea virens)、水稻白叶枯病菌(Xanthomonas oryzae pv.oryzae(Ishiyama)Zoo)和水稻细菌性条斑病菌(Xanthomonas oryzae pv.oryzicola Dowson)的抑菌活性,发现枯草芽孢杆菌Bs-916及其分泌物对上述病原菌均具有较强的抑菌活性,具有广谱性的特点。同时,采用丙酮沉淀、PEG沉淀、等电点沉淀和超微浓缩,发现沉淀物和截留物都有抻菌活性,提示枯草芽孢杆菌胞外存在蛋白质类抗菌物质。
     用硫酸铵分级沉淀枯草芽孢杆菌Bs-916胞外抗菌蛋白质,共获得8个蛋白质粗提物,其中硫酸铵饱和度为40%~50%和50%~60%提取的粗蛋白质具有较强的抑菌活性,说明该抗菌蛋白质在硫酸铵饱和度为40-60%时就可完全沉淀。研究结果表明:硫酸铵饱和度40%~50%和50%~60%提取的粗蛋白质浓度分别为17.261μg/ml和18.899μg/ml,上述两者粗提物对水稻纹枯病菌和水稻恶苗病菌有较强的抑菌活性,对马铃薯晚疫病菌没有抑菌活性;当温度高于40℃时抑菌活性均降低,但在120℃时仍有部分抑菌活性;对pH值适应范围较宽,在pH值为13.6时抑菌活性均丧失;经蛋白酶K、蛋白酶E、胃蛋白酶、胰蛋白酶和木瓜蛋白酶处理后,抑菌活性均下降。SDS-PAGE电泳结果表明枯草芽孢杆菌Bs-916能分泌多种蛋白质。
     采用了层析技术分离和纯化了枯草芽孢杆菌Bs-916胞外的抗菌蛋白质。利用DEAE Sepharose Fast Flow柱层析,后获得3个蛋白质吸收峰,其中B峰具有抑菌活性,将B峰收集液过疏水层析柱Phenyl Sepharose 6 F.F.后获得2个吸收峰,其中第E峰具有抑菌活性,再将第E峰收集液过羟基磷石灰石柱层析后得到了2个蛋白质吸收峰,其中第G峰具有抑菌活性,经SDS-PAGE检测后为单一的蛋白质条带(暂定名:Bacisubin),该蛋白质的分子量约为41.9kDa。
     研究了胞外抗菌蛋白质(bacisubin)的抑菌活性。发现抗菌蛋白质(Bacisubin)对水稻纹枯病菌(Rhizoctonia solani)、水稻稻瘟病菌(Magnaporthe grisease)、油菜菌核病菌(Sclerotinia sclerotiorum)、甘蓝黑斑病菌(Ahernaria oleracea)、白菜黑斑病菌病菌(A.brassicae)、灰霉病菌(Botrytis cinerea)、辣椒炭疽病菌(C.capsici)和水稻恶苗病菌(F.moniliforme)均有抑菌活性。尤其对Alternaria属的病原菌具有较高的毒力。结果显示抗菌蛋白质Bacisubin具有广谱、高毒力的特点。抗菌蛋白质(Bacisubin)对水稻纹枯病菌、灰霉病菌、甘蓝黑斑病菌和白菜黑斑病菌的EC_(50)分别为4.011μM、2.740μM、0.087μM和0.055μM。枯草芽孢杆菌Bs-916胞外抗菌蛋白质(Bacisubin)的抑菌机制是造成病原菌菌丝营养吸收困难,致使菌丝顶端膨大,分支增加,胞壁加厚、断裂,从而抑制了病原菌的生长。同时该抗菌蛋白质具有凝集素活性和核糖核酸酶活性。枯草芽孢杆菌Bs-916胞外抗菌蛋白质(Bacisubin)无蛋白酶活性和蛋白酶抑制活性。
     利用生物质谱技术鉴定了枯草芽孢杆菌胞外抗菌蛋白质。胞外抗菌蛋白质(Bacisubin)经过胰蛋白酶消解后,经基质协助激光解吸附离子化-飞行时间质谱(MALDI-TOF-MS)获得22个质荷比峰(M/Z),Matrix Science数据库检索未发现显著相关的蛋白质。再经电喷雾四极杆飞行时间串联质谱分析后(Q-TOF2)后获得五个肽的氨基酸序列,氨基酸序列分别为VTIVDEKGR,FSDSDVMNR,VYIADSTNFK,ELPISENLASVNMR,EAEWAYMITGK。经鉴定,该蛋白质和一种枯草芽孢杆菌的草酸盐脱羧酶和地衣芽孢杆菌的草酸盐脱羧酶具有显著的相关性,关于草酸盐脱羧酶的抑菌活性和其他生物活性未见报道。
Bacillus subtilis Strain Bs-916 was isolated from rice field soil. B-916 was used incontrolling rice shealth blight and rice false smut in field, while showed a high controleffect. The Bs-916 and its extract showed a high antifungal (antibacterial) activityagainst hizoctonia solani, Fusarium oxysporum Schlecht. f. fabae Yu et Fang, Fusariummoniliforme Sheld., Fusarium oxysporum (Schl.) f.sp.nieveum (E.F.Smith)SnyderetHansen, Pyricularia grisea, Ustilaginoidea virens, Xanthomonas oryzae pv. oryzae(Ishiyama) Zoo, Xanthomonas oryzae pv. oryzicola Dowson. Bs-916 and its extractshowed a broad-spectrum antifungal activity. The extract of Bacillus subtilis strain B-916was deposited by acetone, PEG6000, ammonium sulfate and ultra-4 centrifugal filterdevices exhibited a high antifungal activity (detected toward Rhizoctonia solani). Theantifungal activity of the extract treated with protease K was lower than that withoutprotease K treated. The results implied that the extract of Bs-916 secrete an antifungalprotein.
     The filtrated cultured liquid of Bacillus subtilis strain Bs-916 was precipitated ingrades with the ammonium sulfate to draw the antifungal proteins, and eight kinds crudeproteins were drawn, we studied character of two kinds crude proteins drawn withammonium sulfate at 40%~50% and 50%~60% saturation respectively, which showeda strong antifungal activity. The concentration of crude proteins drawn with ammoniumsulfate at 40%~50% and 50%~60% saturation were 17.261μg/ml and 18.899μg/mlrespectively. Both of them showed high antifungal activity against R solani, F.moniliforme while no antifungal activity against P. infestans. Crude proteins drawn withammonium sulfate at 40%~50% and 50%~60% saturation showed a stable and highantifungal activity against R. solani during 0~40℃, decreased antifungal activity whenthe temperature was more than 40℃, kept only a little antifungal activity at 120℃. Crudeproteins drawn with ammonium sulfate at 40%~50% and 50%~60% saturation showed a stable and high antifungal activity in broad range of pH value, however, lost fullantifungal activity when pH value was 13.6, kept partial antifungal activity after treatedwith protease K, protease E, Pepsin, Papatin and Trypsin. Results of SDS-PAGE showedthat Bacillus subtilis Bs-916 secreted abundance of proteins.
     Bacillus subtilis strain Bs-916 secreted the antifungal protein, but litter is knownabout the antifungal protein. In this study, the crude proteins were purified by AmershamAKTA Explore system. The crude proteins were eluted through the DEAE SepharoseFast Flow column and three peaks were found; only the second fraction (fraction B) hadantifungal activity. After the fraction B were pooled and eluted in the Phenyl Sepharose 6F.F. column, two peaks were obtained, only the second fraction (Fraction E) hadantifungal activity. When the Fraction E were pooled and eluted in the hydroxyapatitecolumns, there were also two peaks and the last peak (Fraction G) exhibited antifungalactivity, which showed only one protein band in the SDS-PAGE, designated as Bacisubinwith 41.9 kDa molecular weight compared with standard proteins.
     Bacisubin was measured antifungal activity toward Rhizoctonia solani, Fusariummoniliforme, Magnaporthe grisease, Sclerotinia sclerotiorum, Alternaria oleracea, A.brassicae, C. capsici and Botrytis cinerea. The results exhibited that the antifungalprotein had a broad-spectrum of antifungal activity and high virulence. Especially, theantifungal protein exhibited a stronger antifungal to pathology fungi, such as genericAlternaria. EC_(50) value of antifungal protein to Rhizoctonia solani, Botrytis cinerea,Alternaria oleracea and A. brassicae were 4.01、2.74、0.08 and 0.055μM, respectively.The mechanism to antifungal activity of Bacisubin caused mycelia alimentation obstacle.Mycelia apex appeared distortion, tumescence, rupture and cell wall thickened. HoweverBacisubin did not showed protease activity, protease inhibitory activity, but exhibited acertain ribonuclease activity and hemagglutinating activity,.
     Antifungal protein bacisubin was identified with MALDI-TOF-MS and Q-TOFafter digested with trypsin. When Bacisubin (digested with trypsin) was identified withMALDI-TOF-MS, 22 peaks of absorbance were found and identification in MatrixScience Database, where were no observably protein related. Then mixed peptides wereidentified with Q-TOF-MS, five peptide tags (PT) were get. Five PT sequence wasVTIVDEKGR, FSFSDSDVHNR, VYIADSTNFK, ELPISENLASVNMR, and EAEWAYMITGK respectively. These PTs were used to search in Matrix Science Database; we found two proteins were observably related with this antifungal protein. The two proteinswas oxalte decarboxylase. One was an oxalte decarboxylase from Bacillus subtilis strainB-168, another was an oxalte decarboxylase from the Bacillus licheniformis ATCC14580.However, antifungal activity of oxalte decarboxylase was not reported elsewhere.
引文
[1] 王友红,张鹏飞,陈建群.植物抗病基因及其作用机理.植物学通报,2005,22(1):92-99.
    [2] 陈中云 闵 航干,张夫道 赵秉强,农药污染对水稻田土壤硫酸盐还原菌种群数量及其活性影响的研究,土壤学报,2004;41(1):97-82.
    [3] 陈志谊,刘永锋,陆凡,井冈霉素和生防菌Bs-916协同控病作用及增效机理,植物保护学报,2003;30(4):430-433.
    [4] Torsten, S., Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol Microbiol. 2005, 56(4):845~857.
    [5] Marahiel, MA.,MM Nakano., and Zuber, P. Regulation of peptide antibiotic production in Bacillus. Mol Microbiol. 1993, 7(5):631~636.
    [6] Finking, R., and Marahiel, M.A. Biosynthesis of non-ribosomal peptides. Annu Rev Micr -obiol. 2004, 58:453~488.
    [7] Tjalsma H, Antelmann H, Jongbloed JDH, Braun GP, Darmon E, Dorenbos R, et al. Proteo mics of protein secretion by Bacillus subtilis: Separating the "secrects" of the secretome, Microbiology and Molecular Biology Review. 2004;68:207-233.
    [8] F.Kunst, N.Ogasawara, I.Moszer, et al The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. Nature,1997,390:249-256.
    [9] 沈卫锋,张炳欣,沈立荣,大麦赤霉病菌拮抗细菌CC41的鉴定,浙江农业学报 2004,16(2):84~87.
    [10] 游春平,肖爱萍,李湘明.稻瘟病菌拮抗微生物的筛选及鉴定,江西农业大学学报 23(4):519~521.
    [11] 华菊玲,李湘民,罗任华,拮抗细菌B~77的种类鉴定及对水稻恶苗病的防治效果江西农业学报 2004,16r3):62~64.
    [12] 游春平,肖爱萍,裘盛财.拮抗细菌对6种植物病原菌的抑菌作用,仲恺农业技术学院学报,2003,16(1):28~31.
    [13] 谌晓曦,陈卫良,马志超,抗水稻纹枯病菌拮抗蛋白质的理化性质研究浙江大学学报(农业与生命科学版):1999,25(5):491~494.
    [14] 丁国春,付鹏,李红梅,枯草芽孢杆菌AR11菌株对南方根结线虫的生物防治,南京农业大学学报 2005,28(2):46~49.
    [15] 张颖,王刚,王云帆,等.枯草芽孢杆菌B2~47对小麦全蚀病的防治及其病原的抑制作用,河南大学学报(自然科学版):2006,36(1):79~81.
    [16] 穆常青,潘玮,陆庆光,等.枯草芽孢杆菌对稻瘟病的防治效果评价及机制初探,中国生物防治,2006,22(2):158~160.
    [17] 彭化贤,刘波微,陈小娟等,水稻稻瘟病拮抗细菌的筛选与防治初探,中国生物防治,2002,18(1):25~27.
    [18] 余桂容,张敏,叶华智,小麦赤霉病的生物防治研究Ⅰ.拮抗芽孢杆菌的分离、筛选、鉴定和防病效果,四川农业大学学报,1998,16(3):314~419.
    [19] 韩艳霞,王刚,王俊芳,等.枯草芽孢杆菌B1~41对小麦全蚀病及其病原的防治和抑制作用,开封大学学报,2005,19(1):83~84.
    [20] 陈志谊,许志刚,高泰东等,水稻纹枯病拮抗细菌的评价与利用,中国水稻科学,2000,14(2):98~102.
    [21] 陈志谊,高太东,严大富,等.枯草芽孢杆菌B—916防治水稻纹枯病的田间试验,中国生物防治 1997,13f2):75~78.
    [22] 黄海婵,裘娟萍,枯草芽孢杆菌防治植物病害的研究进展,浙江农业科学,2005,3:213~217
    [23] 李社增,鹿秀云,马平,等.防治棉花黄萎病的生防细菌NCD22的田间效果评价及其鉴定植物病理学报2005,35(5):451~455.
    [24] 曹君,高智谋,潘月敏等,枯草芽孢杆菌BS菌株和哈茨木霉TH-1对棉花黄萎病菌的拮抗作用,植物病理学报,2005,35(6):170~172.
    [25] 辛玉成,枯草芽孢杆菌BL03对苹果霉心病和棉苗病害田间防治效果,中国生物防治2000,16(1):47.
    [26] 杨敬辉,朱桂梅,潘以楼,枯草芽孢杆菌K12发酵液对核盘菌的抑菌活性,江苏农业科学2006,1,54~56.
    [27] 张淑梅,王玉霞,王佳龙,等.,枯草芽孢杆菌防治大豆菌核病效果初报,大豆通报 2006,80:18~19.
    [28] 晏立英,周乐聪,谈宇俊,等,油菜菌核病拮抗细菌的筛选和高效菌株的鉴定,中国油料作物学报,27(2):55~59.
    [29] 陈志谊,任海英,刘永锋,戊唑醇和枯草芽孢杆菌协同作用防治蚕豆枯萎病及增效机理初探,农药学学报,2002,4(4):40~44.
    [30] Guo J H, Qi H Y, Guo Y H, et al. Biocontrol of tomato wilt by plant growth promoting rhizobacteria. Biological Control, 2004.29: 66~72.
    [31] 杜立新,冯书亮,王容燕,等.拮抗BS2208菌株对番茄灰霉病诱导抗性的初步研究,华北农学报·2005,20(6):84~87.
    [32] 郑爱萍,闫敏,李平,等.黄瓜枯萎病新型抑制蛋白L37的研究,园艺学报,2005,32(6):1102~1104.
    [33] 朱茂山,赵奎华,刘长远,等.枯草芽孢杆菌B18菌株对黄瓜枯萎病菌抑菌作用研究,辽宁农业科学2003(3):39.
    [34] 杜立新,冯书亮,曹克强,等.枯草芽孢杆菌BS-208和BS-209菌株防治番茄灰霉病研究,农药学学报,2004,6(3):37~42.
    [35] 何红,蔡学清,关雄等,辣椒内生枯草芽孢杆菌BS-2和BS-1防治辣椒炭疽病研究。2003:33(2):170~173.
    [36] Algam A.Soad,谢关林,李斌.等.利用枯草芽孢杆菌在温室环境中控制发青桔病,植物病理学报,2006;36(1):80~85
    [37] 黎起秦,叶云峰2,蒙显英内生细菌B47菌株的鉴定及其对番茄青枯病的防效测定.中国生物防治 2005,21(3):178~182.
    [38] 徐韶,庄敬华,高增贵等,内生细菌与木霉复合处理诱导甜瓜对枯萎病的抗性,中国生物防治,200521(4):254~259.
    [39] 柳春燕,郭敏,林学政拟康氏木霉和枯草芽孢杆菌对黄瓜枯萎病的协同防治作用,中国生物防 治,200521(3):206~208.
    [40] 王玉霞,李晶,张淑梅,枯草芽孢杆菌对黄瓜根腐病的防治效果,生物技术,2004,14(3):57
    [41] Gluliano B, Andres H, Luigi C. Isolation and partial purification of a metabolite from a mutant strain of Bacillus sp. with antibiotic activity against plant pathogenic agents. Journal of Biotechnology, 2002, 5:1~8.
    [42] 李晶,孙宇峰,张淑梅.等,枯草芽孢杆菌水剂防治黄瓜枯萎病田间防效研究,生物技术,2004,14,(15):77~78.
    [43] 辛玉成,秦淑莲,刘希光,几种拮抗菌株对苹果霉心病菌抑制作用的研究,中国果树1999(3):14~15.
    [44] 胡洪涛,王开梅,李芒,等.几种枯草芽孢杆菌发酵液防治,草莓病害的药效试验,湖北农业科学,2002,2:52
    [45] 范青,田世平,李永兴,等.枯草芽孢杆菌(B~912):对桃和油桃褐腐病的抑制效果,植物学报 2000,42(11):1137~1143.
    [46] 范青,田世平,李永兴,等.枯草芽孢杆菌(Bacillus subtilis):B~912对采后柑桔果实青、绿霉病的抑制效果,植物病理学报,000,30(4):343~348.
    [47] 刘振宇,柳韶华,赵春青,等.枯草芽孢杆菌(Bacillus subtilis):对桑炭疽病菌的抑制作用,蚕业科学2005;31(4):409~413.
    [48] 赵白鸽,孔建,王文夕,等.枯草芽孢杆菌B2903对苹果轮纹菌的抑菌作有及其对病害的控制效果,植物病理学报,1996,27(3):213~214.
    [49] 辛玉成,祝庆岱,郝寿青,等.枯草芽孢杆菌CN620菌株制剂对板栗烂果病的防治及病原的抑制作用初报,莱阳农学院学报 2000,17(4):247~249.
    [50] 杨佐忠,叶建仁,枯草芽孢杆菌PRS5菌剂控制水果贮藏期病害的研究,南京林业大学学报(自然科学版),2006,30(1):89~82.
    [51] 辛玉成,秦淑莲,李宝笃,等.枯草芽孢杆菌XM16菌株制剂对苹果霉心病的防治及病原的抑制作用,植物病理学报,2000,30(1):66~71.
    [52] 朱天辉,罗孟军,杨佐忠,枯草芽孢杆菌对金花梨果腐病控制的研究,四川林业科技,2000,21(3):14~17.
    [53] 徐淑华,蒋继志,,姚克文等,两株拮抗细菌对草莓根腐病菌的抑制作用,河北农业大学学报,2005,28(3):81~84.
    [54] 张荣意,谭志琼,简日明,芒果炭疽病菌生防细菌的筛选、鉴定及生防潜能的初步研究,热带作物学报,1998,19(3):21~27.
    [55] 张丽萍,张根伟,黄亚丽,等.复合生物制剂防治苹果轮纹病,农药,2006:45(3):201~203.
    [56] 刘永锋,高渊,黄建华,等.拮抗细菌B2916及其分泌物对几种植物病原菌的毒力分析,中国生物 防治2002,8(1):45~46.
    [57] 曾会才,张开明,文衍堂,香草兰根腐病生防菌OBS-2的鉴定,中国生物防治,1998,19(3):14~17.
    [58] 周文文 敖常伟 牛天贵,中药源芽孢杆菌抗病原真菌菌株的筛选与鉴定,微生物学通报 2006,33(2):90~94.
    [59] 吴玉柱,季延平,刘殷,等,6种生防真菌、细菌防治牡丹根腐病的研究,山东林业科技 2004,(6):39~40.
    [60] 刘邮洲,陈志谊,刘永锋,等.拮抗细菌B~916对水稻病原菌的抑制效果及其定殖动态研究,江苏农业科学 2005.6:48~50.
    [61] 邱思鑫,何红,阮宏椿,等.具有抑菌促生作用的植物内生细菌的筛选,应用与环境生物学报2004,10(5):655~659.
    [62] 程洪斌,刘晓桥,陈红漫枯草芽孢杆菌防治植物真菌病害研究进展,上海农业学报 2006,22(1):109~112.
    [63] 顾真荣,马承铸,韩长安,产几丁质酶芽孢杆菌的筛选鉴定和酶活力测定,上海农业学报 2001,17(3):92~96.
    [64] 沈锦玉,尹文林,曹铮,枯草芽孢杆菌B115抗菌蛋白的分离纯化及部分性质水生生物学报2005.29(6):689~683.
    [65] 高学文,姚仕义,HuongPham,等.枯草芽孢杆菌B2菌株产生的抑菌活性物质分析,中国生物防治,2003,19(4):175~179.
    [66] 张学君,刘焕利,潘小玫等,小麦纹枯病生防菌B3产生抗菌物质的条件,南京农业大学学报,1995,18(1):26~30.
    [67] Kenji T, Takahashi A, Makoto S. Isolation of a gene essential for biosynthesis of the lipopep tide antibiotics p lipastatin B1 and surfactin in Bacillus subtilis YB8. Archive Microbiology, 1996, 165: 243~251.
    [68] Cho S J, Lee S K, Cha B J, et al. Detection and characterization of the Gloeosporium gloesp -orioides growth inhibitory compound iturin A from Bacillus subtiIis strain KS03. Fermentation Microbiology Letters, 2003, 223:,17~51.
    [69] Bie Xiaomei, Lu Zhaoxin, Lu Fengxia, et al. Screening the main factors affecting extraction of the antimicrobial substance from Bacillus sp.fmbusing the Plackett Burman method [J]. World Journal of Microbiology and Biotechnology, 2005, 21: 925~928.
    [70] 顾真荣,马承铸,韩长安,产几丁质酶芽孢杆菌对病原真菌的抑菌作用2001,17(4):88~92.
    [71] 林福呈,李德堡,枯草芽孢杆菌(bacillus subtilis):S9对植物病原菌的溶作用,植物病理学报,2003,33(2):174~177.
    [72] Bennett AJ, Leifert C, Whipps JM. Survival of the biological agents Coniothyrium minitans and Bacillus subtilis MBI600 in troduced into pasteurized, sterilized and nonsterile soils. Soil Biol Biochem, 2003,35:1565~1573.
    [73] 周燕,成志军,晒黄烟内生菌株筛选及对青枯病生物防治,湖南农业大学学报(自然科学版),2005,31(5):500~501.
    [74] 高学文,姚仕义,HuongPham,等.枯草芽孢杆菌B2菌株产生的表面活性素变异体的纯化和鉴定,微生物学报,2003,43(5):647~643.
    [75] 杨敬辉,孙庭东,朱桂,枯草芽孢杆菌K12摇瓶发酵条件的确定和抗菌谱测定,上海农业科技,2006,1:27~28.
    [76] 高学文,齐放军,姚仕义.枯草芽孢杆菌和苏云金芽孢杆菌的共培养及其对生物活性物质产生的影响,南京农业大学学报2003,26(3):32~35.
    [77] Bonkowski M, Cheng W,Griffiths BS, et al. Microbial faunal interactions in the rhizosphere and effects on plant growth. Eur J Soil Biol, 2000.36:135~147.
    [78] Kloepper J W. A review of issues related to measuring colonization of plant roots by bacteria. Can J Microbiol, 1992, 38 (6): 667-672.
    [79] 陈京元,徐红梅,蔡三山,等.松苗猝倒病不同病原物的致病性差异及其生防细菌的筛选,北林业大学学报,2006,34(2):5~7.
    [80] 蔡学清,何红,胡方平,等.双抗标记法测定枯草芽孢杆菌BS-2和BS-1在辣椒体内的定殖动态,福建农林大学学报(自然科学版)2003,32(1)41-45.
    [81] 张昕,张炳欣等,生防菌ZJY21及ZJY2116的GFP标记及其在黄瓜根围的生态适应性应用生态学报 2005,16(11):2144~2148.
    [82] 阎斌伦,王笃彩,李士虎等,枯草芽孢杆菌的活性与环境因子的相关性研究,淡水渔业,2005,35(1) 13-15.
    [83] 谢海平,黄晖,黄登峰,海洋枯草芽孢杆菌Bs-1产生多种抗真菌活性物质,中山大学学报(自然科学版),2003,42(3)122-123.
    [84] 谌晓曦,陈卫良,马志超,抗水稻纹枯病菌拮抗蛋白质的理化性质研究浙江大学学报(农业与生命科学版):1999,25(5):491~494.
    [85] 齐东梅,梁启美,惠明等,棉花枯萎、黄萎病拮抗芽孢杆菌的抗菌蛋白特性,微生物学通报,2005年32(4):42~46.
    [86] 谢海平,黄晖,黄登峰,等.海洋枯草芽孢杆菌Bs—1产生多种抗真菌活性物质,中山大学学报(自然科学版2003:122~123.
    [87] 彭广茜,张学君.枯草芽孢杆菌生防菌株Bp产生抗菌物质的条件,贵州农业科学 1999,27(1):6~9.
    [88] Leenders F, Stein T H, Kablitz B, et al. Rapid typing of Bacillus subtilis strains by their secondary metabolites using matrix-assisted laser desorption Pionization mass spectrometry of intact cells. Rapid Commun Mass Spectrom, 1999,13: 943~949.
    [89] Eppelmann K, Stachelhaus T, Marahiel MA. Exploitation of the selectivity conferring code of nonribosomal peptide synthetases for the rational design of novel peptide antibiotics. Biochemistry, 2002,41 (30): 9718~9726.
    [90] DAVID M W. Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Ann Rev Phytopathol, 1988, 26: 397-407.
    [91] 孔建,赵白鸽,王文夕.等.枯草芽孢杆菌抗菌物质对镰刀菌抑菌机理的镜下研究,植物病理学报,1998,28(4):337~340.
    [92] 卢志军,云霄敏,刘西莉,生防菌HL29的鉴定及其抑菌活性的研究,植物病理学报,2005,35(6):79~85.
    [93] 余桂容,叶华智,张敏,小麦赤霉病的生物防治研究Ⅱ.拮抗芽孢杆菌在麦穗上的消长动态及生物学特性,四川农业大学学报,2002,20(4):324~327.
    [94] 别小妹,陆兆新,影响枯草芽孢杆菌fmbR菌株抗菌物质提取的主要因子,南京农业大学学报,2005,28(4):126~129.
    [95] Sturz AV, Christie BR, Nowak J. Bacterial entophytes: potential role in developing sustainable systems of crop production. Critical Rev Plant Sci, 2000,19 (1): 1~30.
    [96] Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper JW. Bacterial endophytes in agricultural crops. Can JMicrobiol, 1997,43(10): 895~914.
    [1] Yiu C,Wayne A, McCormick K, et al. Characterization of an antifungal soil bacterium and its antagonistic activities and against Fusarium species. Canadian Journal of Microbiology, 2003,(49):253~267.
    [2] AmparocM,Fred G,Juan F,et al. Histopathological effects and growth reduction in a suscep tible and a resistance of heliothis virescens caused by sublethal doses of pure CrylA crystal p roteins from Bacillus thuringiesis. Biocontrol Science and Technology,1999, 9 (2):239~246.
    [3] 3高学文,姚仕义,Huong P,等.枯草芽孢杆菌B2菌株产生的抑菌活性物质分析.中国生物防治,2003,19(4):175~179.
    [4] 高学文,姚仕义,Huong P,等.枯草芽孢杆菌B2菌株产生的表面活性素变异体的纯化和鉴定.微生物学报,2003,5(43):647~752.
    [5] 刘伊强,王雅平,潘乃穟,等.拮抗菌TG26的鉴定及其抗菌蛋白BI的纯化和部分特性.植物学报,1994,36(3):197~203.
    [6] 童有仁,马志超,陈卫良,等.枯草芽孢杆菌B034拮抗蛋白的分离纯化及特性分析.微生物学报,1999,399(4):339~394.
    [7] Soo-Jin Cho, Sam Keun Lee, Cha, et al. Detection and characterization of the Gloeosporium gloeosporioides growth inhibitory compound iturin A from Bacillus subtilis strain KSO3. FEMS Microbiology Letters, 2003, 223:47~51.
    [8] Koutmousi, A., X. H. Chen, A. Henne, H. Liesegang, G. Hitzeroth, P. Franke, J. Vater, and R. Borriss. Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42. J. Bacteriol. 2004. 186:1084~1096.
    [9] 程洪斌,刘晓桥,陈红漫,枯草芽孢杆菌防治植物真菌病害研究进展,上海农业学报 2006,22(1):109~112.
    [10] 黄海婵,裘娟萍,枯草芽孢杆菌防治植物病害的研究进展,浙江农业科学,2005,3:213~217
    [11] Charles W. Bacon,Ida E. Yates,Dorothy M. Hinton,et al. Biological Control of Fusarium moniliforme in Maize. Environmental Health Perspective, 2001, 109:325-332.
    [12] Yoshida S. Hiradate S.,Tsukamoto T. et al.Antimicrobial activity of culture filtrate of Bacillus amyloliquefaciens RC22 isolated from mulberry leaves. Phytopathology, 2001,91:181~187.
    [13] Maget-Dana, R., L. Thimon, F. Peypoux, and M. Ptak. 1992. Surfactin/iturin A interactions may explain the synergistic effect of surfactin on the biological properties of iturin A. Biochimie 74:1047-1051.
    [14] Harsh Pal Bais, Ray Fall, Jorge M. Vivanco. Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production[J]. Plant Physiology, 2004, 134:307~319.
    [15] Maktot Shoda, Bacterial control of plant disease, Journal of Bioscience And Bioengineering, 2000,Vol.89,No,6,515~521.
    [16] Zuber, P., M. M. Nakano, and M. A. Marahiel. In A. L. Sonenshein, J. A. Hoch, and R. Losick (ed.), Bacillus subtilis and other gram-positive bacteria. American Society for Microbiology, Peptide antibiotics, Washington, D.C. 1993.897~916
    [17] Kugler, M., W. Loeffier, C. Rapp, A. Kem, and G. Jung. 1990. Rhizocticin A, an antifungal phosphono-oligopeptide of Bacillus subtilis ATCC 6633:biological properties. Arch. Microbiol. 153:276~281.
    [18] Patel, P. S., S. Huang, S. Fisher, D. Pimik, C. Aklonis, L. Dean, E. Meyers, P. Femandes, and F. Mayerl.. Bacillaene, a novel inhibitor of prokaryotic protein synthesis produced by Bacillus subtilis:production, taxonomy, isolation, physico-chemical characterization and biological activity. J. Antibiot. (Tokyo) 1995, 48:997~1003.
    [19] Zimmerman, S. B., C. D. Schwartz, R. L. Monaghan, B. A. Pelak, B. Weissberger, E. C. Gilfillan, S. Mochales, S. Hemandez, S. A. Currie, E. Tejera, et al.. Difficidin and oxydifficidin:novel broad spectrum antibacterial antibiotics produced by Bacillus subtilis. I. Production, taxonomy and antibacterial activity. J. Antibiot. (Tokyo) 1987, 40:1677-168l.
    [20] 谢栋,彭憬,王津红,等.枯草芽孢杆菌抗菌粗蛋白质X98III的纯化与性质.微生物学报,1998,38(1):13~19.
    [21] 林东,徐庆,刘忆舟,等.枯草芽孢杆菌SO113分泌蛋白的抑菌作用及抗菌蛋白的分离纯化.农业生物技术学报,2001,9(1):77~80.
    [22] 郑爱萍,阎敏,李平,等.黄瓜枯萎病新型抑制蛋白L37的研究,园艺学报,2005,32(6):1102~1104.
    [23] 沈锦玉,尹文林,曹铮,枯草芽孢杆菌B115抗菌蛋白的分离纯化及部分性质,水生生物学报2005.29(6):689~683
    [24] 齐东梅,梁启美,惠明等,棉花枯萎、黄萎病拮抗芽孢杆菌的抗菌蛋白特性,微生物学通报,2005,32(4):42~46.
    [25] 汪澈,何月秋,张永庆枯草芽孢杆菌B9601 2Y2抑菌蛋白活性及产生条件的研究,植物病理学报,2005,35(1):30~36.
    [26] Anne-latumre M,Thomas E.C,Sadisk T., Molecular characterization and analysis of operon encoding the antifungal lipopeptide bacillomycin D,FEMS Micribiology Letters, 2004; 234:43~49.
    [27] Babasaki, K., T. Takao, Y. Shimonishi, and K. Kurahashi.. Subtilosin A, a new antibiotic peptide produced by Bacillus subtilis 168:isolation, structural analysis, and biogenesis. J. Biochem. (Tokyo) 1985, 98:585-603.
    [28] Stover, A. G., and A. Driks. 1999. Secretion, localization, and antibacterial activity of Tas A, a Bacillus subtilis spore associated protein. J. Bacteriol. 181:1664~1672.
    [29] Paik, S. H., A. Chakicherla, and J. N. Hansen.Identification and characterization of the structural and transporter genes for, and the chemical and biological properties of, sublancin 168, a novel lantibiotic produced by Bacillus subtilis 168. J. Biol. Chem. 1998,273:23134~23142.
    [30] Kunst, F., Ogasawara, N., Moszer, I., Albertini, A.M., Alloni,G., Azevedo, V., et al. The complete genome sequence of the gram~positive bacterium Bacillus subtilis. Nature 1997,390:249~256.
    [31] Benecke U. Bacillus chitinovorus, eien chitin zersetzenden spaltpilz. Bot Ztg, 1995,63:227~231.
    [32] 曾林,苏云金芽孢杆菌杀虫晶体蛋白cry基因研究的现状,微生物学通报,1998,25(4):49~51.
    [33] 郑洪武,环状芽孢杆菌C22几丁质酶基因的克隆,生物工程学报,1998,14(1):28~32.
    [34] Wiwat C,Siwayprahm P,Bhumiratana A. Purification and characterizatation of chitinase from Bacillus circulans,Current Microlgy, 1999,39:134~140.
    [35] 顾真荣,魏春妹,马承铸,枯草芽孢杆菌G3菌株抑制立枯丝核菌菌核形成的影响因子分析,中国生物防治,2005,21(1)33~36.
    [36] 顾真荣,吴畏,高新华等,枯草芽孢杆菌G3的抗菌物质及其特性,植物病理学报,2004,34(2)166~172.
    [37] 顾真荣,马承铸,韩长安.枯草芽孢杆菌G3防治植病盆栽试验.上海农业学报,2002,18(1):77~80.
    [38] 朱茂山,,赵奎华,刘长远,等.枯草芽孢杆菌B18菌株酶类抑菌物质分析研究初报,辽宁农业科学2003(2):41~42.
    [39] 程爱丽,唐文华,王益民,枯草芽孢杆菌B2908几丁质酶基因的转化及表达,植物病理学报,1996,26:204.
    [40] Masatake A, Kinya K, Yuji H, et al, A novel β-glucanase gene from Bacillus halodurans C-125. 2005, 248:9~15
    [41] San-Lang Wang, Tzu Yin Lin,b Yue Horng Yen, et al, Bioconversion of shellfish chitin wastes for the production of Bacillus subtilis W-118 chitinase, Carbohydrate Research 2006,34:2507~2515.
    [42] Wessels J GH, Sietsma J H. Fungal cell walls:A survey. In Tanner w, loewus FA (eds), Encyclopedia of plant physiol. 1981,352~394.
    [43] 蔡应繁,叶鹏盛,张利,等.β-1,3-葡聚糖酶及其在植物抗真菌病基因工程中的应用,西南农业学报,2001,14(2)78~81.
    [44] 何国庆,张秀艳,陈启和,等.枯草芽孢杆菌ZJF β-1,3-葡聚糖酶基因的克隆、序列分析和表达,农业生物技术学报,2006,14(1):147~148.
    [45] Wichitra Leelasuphakul,Pranom Sivanunsakul, Souwalak Phongpaichit, et al, Purification, characterization and synergistic activity of β-1,3-glucanase and antibiotic extract from an antagonistic Bacillus subtilis NSRS 89-24 against rice blast and sheath blight, Enzyme and Microbial Technology,2006,38:990~997.
    [46] Mckeen CD, Reily CC, Pusey PL. Production and partial characterization of antifungal substances antagonistic to Monilinia fructicola from Bacillus subtilis. Phytopathology 1986;76:136~9.
    [47] 蓝海燕,张丽华,等1,表达β-1,3-葡聚糖酶及几丁质酶基因的转基因烟草及其抗真菌病的研究,遗传学报,2000,11.
    [48] 李明,邱国华,等1 含多种抗真菌病基因植物表达载体的构建,中山大学学报(自然科学版) 11999,38(5):69~711.
    [49] Meins F J r etc. The biology of plants transformed with chimeric class Ⅰ chitinase andβ-1, 3 -glucanase genes. Workshopon engeneering plants against pest and pathogens. 1993, 27.
    [50] 侯磊,裴炎,蔡应繁,等.β-1,3-葡聚糖酶基因植物表达载体的构建,西南农业大学学报,1999,21(3):251~2531.
    [51] Duitman, E.H., Hamoen, L.W., Rembold, M., Venema, G., Seitz, H., Saenger, W., et at. The mycosubtilin synthetase of Bacillus subtilis ATCC 6633:a multifunctional hybrid between a peptide synthetase, an amino transferase and a fatty acid synthase. Proc Natl Acad Sci USA 1999,96:13294~13299.
    [52] 程洪斌,刘晓桥,陈红漫,枯草芽孢杆菌防治植物真菌病害研究进展,上海农业学报 2006,22(1):109~112.
    [53] 高学文,姚仕义,Huong Pham,等.基因工程菌枯草芽孢杆菌B3产生的脂肽类抗生素及其生物活性研究.中国农业科学,2003,36(12):1496~1501.
    [54] Charles W. Bacon,lda E. Yates,Dorothy M. Hinton,et al. Biological Control of Fusarium moniliforme in Maize. Environmental Health Perspectives, 2001,109:325~332.
    [55] Patel, P. S., S. Huang, S. Fisher, D. Pimik, C. Aklonis, L. Dean, E. Meyers, P. Fernandes, and F. Mayerl.. Bacillaene, a novel inhibitor of prokaryotic protein synthesis produced by Bacillus subtilis:production, taxonomy, isolation, physicochemical characterization and biological activity. J. Antibiot. 1995.48:997~1003.
    [56] Thimon, L., Peypoux, F., Wallach, J., and Michel, G. Effect of the lipopeptide antibiotic, iturin A, on morphology and membrane ultrastructure of yeast cells. FEMS Microbiol Lett 1995,128:101-106.
    [57] Wilson, K.E., Flor, J.E., Schwartz, R.E., Joshua, H., Smith, J.L., Pelak, B.A., et al. Difficidin and oxy difficidin: novel broad spectrum antibacterial antibiotics produced by Bacillus subtilis. Ⅱ. Isolation and physicochemical characterization. JAntibiot (Tokyo) 1987,40:1682~1691.
    [58] Patel, P.S., Huang, S., Fisher, S., Pimik, D., Aklonis, C.,Dean, L., et al. Bacillaene, a novel inhibitor of prokaryotic protein synthesis produced by Bacillus subtilis: production, taxonomy, isolation, physico-chemical characterization and biological activity. J Antibiot, 1995,48:997-1003.
    [1] Almeida, M. S., K. M. Cabral, R. B. Zingali, and E. Kurtenbach..Characterization of two novel defense peptides from pea (Pisum sativum) seeds. Arch. Biochem. Biophys. 2000, 378:278~286.
    [2] Shaoyun Wanga, Tzi Bun Ngb, Tianbao Chen,First report of a novel plant lysozyme with both antifungal and antibacterial, Biochemical and Biophysical Research Communications, 2005,327: 820~827
    [3] Claude P. Seliterrmikoff, Antifungal Proteins, Applied and environmental microbiology, 2001, 67(7):2883~2894
    [4] T.B. Ng,Antifungal proteins and peptides of leguminous and non-leguminous origins, Peptides 2004,25,1215~1222
    [5] Gooday, G., and N. Gow.. Enzymology of tip growth in fungi, Tip growth in plant and fungal cells. Academic Press, 1990,31~58.
    [6] H.X. Wang and T.B. Ng,Alocasin, an antifungal protein from rhizomes of the giant taro Alocasia macrorrhiza, Protein Expression and Purification 2003,28:9~14
    [7] H.X. Wang and T.B. Ngb, Purification of castamollin, a novel antifungal protein from Chinese chestnuts,Protein Expression and Purification, 2003,32:44~51
    [8] Shaoyun Wanga, Tzi Bun Ngb, Tianbao Chen,First report of a novel plant lysozyme with both antifungal and antibacterial, Biochemical and Biophysical Research Communications 2005,327: 820~827
    [9] Pyoung Il Kim, Ki-Chul Chung, Production of an antifungal protein for control of Colletotrichum lagenarium by Bacillus amyloliquefaciens MET0908,FEMS Microbiology Letters,2004,234:177~183
    [10] Kitajima, S., and F. Sato. Plant pathogenesis-related proteins: molecular mechanisms of gene expression and protein function. J. Biochem. 1999,125:1—8.
    [11] Agrawal, G. K., N. S. Jwa, and R. Rakwal.. A novel rice (Oryza sativaL.) acidic PR1 gene highly responsive to cut, phytohormones, and protein phosphatase inhibitors. Biochem. Biophys. Res. Commun. 2000,274:157—165.
    [12] Molina, A., J. Gorlach, S. Volrath, and J. Ryals. Wheat genes encoding two types of PR-1 proteins are pathogen inducible, but do not respond to activators of systemic acquired resistance. Mol. Plant Microbe Interact. 1999,12:53—58.
    [13] Cote, F., J. R. Curt, A. Asselin, and D. F. Klessig.. Pathogenesis related acidic β-1,3-glucanase genes of tobacco are regulated by both stress and developmental signals. Mol. Plant Microbe Interact. 1991,4:173—181.
    [14] Jach, G., B. Gornhardt, J. Mundy, J. Logemann, E. Pinsdorf, R. Leah, J. Schell, and C. Maas.. Enhanced quantitative resistance against fungal disease by combinatorial expression of different barley antifungal proteins in transgenic tobacco. Plant J. 1995,8:97—109.
    [15] Nielsen, K. K.., J. E. Nielsen, S. M. Madrid, and J. D. Mikkelsen.. Characterization of a new antifungal chitin-binding peptide from sugar beet leaves. Plant Physiol. 1997,113:83—91.
    [16] Ye XY, Wang HX, Ng TB. Structurally dissimilar proteins with antiviral and antifungal potency from cowpea (Vigna unguiculata) seeds. Life Sci 2000;67:3199—207.
    [17] Ye XY, Ng TB. Peptides from pinto bean and red bean with sequence homology to cowpea 10kDa protein precursor exhibit antifungal, mitogenic, and HIV-1 reverse transcriptase inhibitory activities. Biochem Biophys Res Commun 2001; 285:424—9.
    [18] Nielsen, K. K., J. E. Nielsen, S. M. Madrid, and J. D. Mikkelsen..Characterization of a new antifungal chitin-binding peptide from sugar beet leaves. Plant Physiol. 1997,113:83—91.
    [19] Friedrich, L., M. Moyer, E. Ward, and J. Ryals.. Pathogenesis related protein 4 is structurally homologous to the carboxy-terminal domains of hevein, Win-1 and Win-2. Mol. Gen. Genet. 1991,230:113-119.
    [20] Bormann, C., D. Baier, I. Horr, C. Raps, J. Berger, G. Jung, and H. Schwartz.. Characterization of a novel, antifungal, chitin-binding protein Streptomyces tendae Tu901 that interferes with growth polarity. J. Bacteriol. 1999,181:7421-7429.
    [21] Chae, K. S., I. H. Lee, C. S. Choi, and H. R. Kim.. Purification and characterization of chitin-binding proteins from the hemolymph of sweet potato hornworm, Agrius convolvuli. Comp. Biochem. Physiol. 1999,124:475—481.
    [22] Destoumieux, D., P. Bulet, D. Loew, A. Van Dorsselaer, J. Rodriguez, and E. Bachere. Penaeidins, a new family of antimicrobial peptides isolated from the shrimp Penaeus vannamei (Decapoda). J. Biol. Chem. 1997.272: 28398-28406.
    [23] Kawabata, S., R. Nagayama, M. Hirata, T. Shigenaga, S. L. Agarwala, T. Saito, J. Cho, H. Nakajima, T. Takagi, and S. Iwanaga. Tachycitin, a small granular component in horseshoe crab hemocytes, is an antimicrobial protein with chitin-binding activity. J. Biochem. 1996,120:1253—1260.
    [24] Coca, M. A., B. Damsz, D. J. Yun, P. M. Hasegawa, R. A. Bressan, and M. L.Narasimhan. Heterotrimeric G-proteins of a filamentous fungus regulate cell wall composition and susceptibility to a plant PR-5 protein. Plant J. 2000,22:61 - 69.
    [25] Coutos-Thevenot, P., T. Jounenne, O. Maes, F. Guerbette, M. Grosbois, J. P. Le Caer, M. Boulay, A. Deloire, J. C. Kader, and J. Guern. 1993. Four 9-kDa proteins excreted by somatic embryos of grapevine are isoforms of lipid-transfer proteins. Eur. J. Biochem. 217:885-889.
    [26] 158. Selitrennikoff, C. P., S. J. Wilson, K. V. Clemons, and D. A. Stevens. Zeamatin, an antifungal protein. Curr. Opin. Anti-Infect. Investig. Drugs, 2000, 2:368—374.
    [27] Roberts, W., and C. P. Selitrennikoff. Zeamatin, an antifungal protein from maize with membranep ermeabilizing activity. J. Gen. Microbiol. 1990, 136: 1771 — 1778.
    [28] Landon, C, A. Pajon, F. Vovelle, and P. Sodano. The active site of drosomycin, a small insect antifungal protein, delineated by comparison with the modeled structure of Rs-AFP2, a plant antifungal protein. J. Pept. Res. 2000,56:231—238.
    [29] Kristensen, A. K., J. Brunsted, J. W. Nielsen, J. D. Mikkelsen, P. Roepstorff, and K. K. Nielsen. Processing, disulfide pattern, and biological activity of a sugar beet defensin, AX2, expressed in Pichia pastoris. Protein Expr. Purif. 1999,16:377—387.
    [30] Fant, F., W. Vranken, W. Broekaert, and F. Borremans. Determination of the three-dimensional solution structure of Raphanus sativus antifungal protein 1 by ~1H NMR. J. Mol. Biol. 1998,279:257-270.
    [31] Ostoa-Saloma, P., J. C. Carrero, P. Petrossian, P. Herion, A. Landa, and J. P. Laclette. Cloning, characterization and functional expression of a cyclophilin of Entamoeba histolytica. Mol. Biochem. Parasitol. 2000. 107:219—225.
    [32] 199. Ye, X. Y., and T. B. Ng. Mungin, a novel cyclophilin-like antifungal protein from the mung bean. Biochem. Biophys. Res. Commun. 2000.273:1111 — 1115.
    [33] Lee, Y. J., T. J. Chung, C. W. Park, Y. Hahn, J. H. Chung, B. L. Lee, D. M. Han, Y. H. Jung, S. Kim, and Y. Lee. Structure and expression of the tenecin 3 gene in Tenebrio molitor. Biochem. Biophys. Res. Commun. 1996. 218: 6—11.
    [34] Lee, Y. T., K. H. Kim, J. Y. Suh, J. H. Chung, B. L. Lee, Y. Lee, and B. S.Choi. Structural characteristics of tenecin 3, an insect antifungal protein. Biochem. Mol. Biol. Int. 1999. 47:369—
    [35] Lin, A., T. M. Lee, and J. C. Rern. Tricholin, a new antifungal agent from Trichoderma viride, and its action in biological control of Rhizoctonia solani. J. Antibiot 1993. 47:799-805.
    [36] Parente, A., P. De Luca, A. Bolognesi, L. Barbieri, M. G. Batelli, A. Abbondanza.M. J. W. Sande, G. S. Gigliano, P. L. Tazzari, and F. Stripe. Purification and partial characterization of single-chain ribosome inactivating proteins from the seeds of Phytolacca dioica L. Biochim. Biophys. Acta 1993. 1216:43—49.
    [37] Tassin, S., W. Broekaert, D. Marion, D. Acland, M. Ptak, F. Vovelle, and P. Sodano. Solution structure of Ace-AMP1, a potent antimicrobial protein extracted from onion seeds. Structural analogies with plant nonspecific lipid transfer proteins. Biochemistry1998. 37:3623—3637.
    [38] Torres-Schumann, S., J. A. Godoy, and J. A. Pintor-Toro. A probable lipid transfer protein gene is induced by NaCl in stems of tomato plants. Plant Mol. Biol. 1992.18:749—757.
    [39] Magliani, W., S. Conti, M. Gerloni, D. Bertolotti, and L. Polonelli. Yeast killer systems. Clin. Microbiol. Rev. 1997.10:369—400.
    [40] Suzuki, C, and Y. I. Shimma. P-type ATPase spfl mutants show a novel resistance mechanism to killer toxin SMKT. Mol. Microbiol. 1999. 32:813-823.
    [41] Park, K. S., J. J. Cheong, S. J. Lee, M. C. Suh, and D. Choi. A novel proteinase inhibitor gene transiently induced by tobacco mosaic virus infection. Biochim. Biophys. Acta, 2000. 1492:509— 512.
    [42] Segura, A., M. Moreno, F. Madueno, A. Molina, and F. Garcia-Olmedo. Snakin-1, a peptide from potato that is active against plant pathogens. Mol. Plant Microbe Interact. 1999. 12:16—23.
    [43] Huynh, Q. K., J. R. Borgmeyer, C. E. Smith, L. D. Bell, and D. M. Shah. Isolation and characterization of a 30 kDa protein with antifungal activity from leaves of Engelmannia pinnatifida. Biochem. J. 1996. 15:723—727
    [44] Wang SL, Yen YH, Tzeng GC, Hsieh CY. 2005,Production of antifungal material by bioconversion of shellfish wastes fermented by Pseudomonas fluorescens K-188, Enzyme and Microbial Technology;36-A9--56
    [45] Wang HX, Ng TB. Dendrocin, a distinctive antifungal protein from bamboo shoot, Biochem. Biophys. Res. Commun., 2005;307:750-755.
    [46] Claude P. Sehtrennikoff, Antifungal proteins, Applied and environmental microbiology, 2001,7.2883-2894
    [1] 钱小红,贺福初,蛋白质组学:理论与方法,科学出版社,2003
    [2] 郭尧君,蛋白质电泳试验技术,科学出版社,2005
    [3] 汪家政,范明,蛋白质技术手册,科学出版社,2002
    [4] 张成岗,贺福初,生物信息学:方法与实践,科学出版社,2003
    [5] 王延华,邹晓莉主编,蛋白质理论与实践,科学出版社,2005
    [6] Ye, X. Y., and T. B. Ng. Mungin, a novel cyclophilin-like antifungal protein from the mung bean. Biochem. Biophys. Res. Commun. 2000.. 273: 1111~1115.
    [7] Lee, Y. J., T. J. Chung, C. W. Park, Y. Hahn, J. H. Chung, B. L. Lee, D. M. Han, Y. H. Jung, S. Kim, and Y. Lee. Structure and expression of the tenecin 3 gene in Tenebrio molitor. Biochem. Biophys. Res. Commun. 1996. 218: 6~11.
    [8] S.K. Lam, T.G. Ng, First simultaneous isolation of a ribosome inactivating protein and an antifungal protein from a mushroom (Lyophyllum shimeji): together with evidence for synergism of their antifungal effects, Arch. Biochem. Biophys. 2001, 393: 271~280.
    [9] Y.X. Guo, H.X Wang, T.B. Ng, Isolation of trichogin, an antifungal protein from fresh fruit bodies of the edible mushroom Tricholoma giganteum, Peptides. 2005, 26: 757~580.
    [10] G. K.Agrawal, N. S.Jwa, R. Rakwal.. A novel rice (Oryza sativaL.): acidic PR1 gene highly responsive to cut, phytohormones, and protein phosphatase inhibitors, Biochem. Biophys. Res. Commun. 2000, 274: 157~165.
    [11] D.R.马歇克,J.T.门永,R.R.布格斯,M.W.克努特,W.A.布伦南,S.H林,蛋白质纯化与鉴定试验指南,科学出版社,1999
    [12] 陈毓荃主编,生物化学试验方法与技术,科学出版社,1999
    [13] 周先碗,胡晓倩编,生物化学仪器分析与试验技术,化学工业出版社,2003
    [14] 梁宋平主编,生物化学与分子生物学试验教程,高等教育出版社,2003
    [15] R.J.辛普森主编,蛋白质纯化与试验指南,科学出版社,2004
    [16] 严希康编著,生化分离工程,化学工业出版社,2001
    [17] Kristensen, A. K., J. Brunsted, J. W. Nielsen, J. D. Mikkelsen, P. Roepstorff, and K. K. Nielsen. Processing, disulfide pattern, and biological activity of a sugar beet defensin, AX, expressed in Pichia pastoris. Protein Expr. Purif. 1999, 16: 377~387.
    [18] Fant, F., W. Vranken, W. Broekaert, and F. Borremans. Determination of the three-dimensional solution structure of Raphanus sativus antifungal protein 1 by ~1H NMR. J. Mol. Biol. 1998, 279: 257~270.
    [19] A.Molina, J. Gorlach, S. Volrath, J. Ryals, Wheat genes encoding two types of PR-1 proteins are pathogen inducible, but do not respond to activators of systemic acquired resistance, Mol. Plant Microbe Interact. 1999, 12: 53~58.
    [20] Wang SL, Yen YH, Tzeng GC, Hsieh CY. Production of antifungal material by bioconversion of shellfish wastes fermented by Pseudomonas fluorescens K-188, Enzyme and Microbial Technology; 2005, 36: 49~56
    [21] Wang HX, Ng TB. Dendrocin, a distinctive antifungal protein from bamboo shoot, Biochem. Biophys. Res. Commun. 2005; 307: 750~755.
    [22] Claude P. Selitrennikoff, 2001, Antifungal proteins, Applied and environmental micro biology, 7. 2883~2894
    [23] GAO Xue-wen1, YAO Shi-yi, Huong Pham, Lipopeptide Antibiotics Produced by the Engineered Strain Bacillus subtilis GEB3 and Detection of Its Bioactivity, Agricultural Sciences in China 2004, 3 (3): 192~197
    [24] 杨原,钱小红,盛龙生编著,生物质谱技术与方法,科学出版社,2003
    [25] 朱金勇,黄河清,MALDI TOF质谱技术分析细胞与组织多肽组成的研究进展,分析仪器,2004,2~7
    [26] 黄河清,孔波,林庆梅,等,MALDI-TOF质谱技术研究铁蛋白蛋白壳表层的电荷分布,生物物理学报第,2002,18(1):99~104
    [27] Zhang Zhuoyong, Wang Gdan, Liu Sidong, etal, Radial Basis Function Networks Applied in Bacterial Classification Based on MALD I-TOF-MS, Chem res. Chinese U. 2002, 18(4):, 453~457
    [28] 王红霞,何昆,李卫华,等,部分结构特殊多肽的纳升电喷雾串联质谱测序分析,军事医学科学院院刊 2003,27(1):36~40
    [29] 王京兰,万晶宏,罗凌,等,蛋白质组研究中肽质量指纹谱鉴定方法的建立及应用,生物化学与生物物理学报2000,32(4)::373~378
    [30] 王红霞,张学敏,杨松成,电喷雾四极杆飞行时间串联质谱(ESI-Q-TOF2):鉴定重组人FKBP12,药学学报2002,37(7)::539~542
    [31] Guo Yiming, Shen Shihua, Jing Yuxiang, et al, Plant Proteomics in the Post-genomic Era,植物学报,2002,44(6):631~641
    [32] 徐小龙,刘清亮,吴双顶,等,尖吻蝮蛇毒抗凝血因子Ⅱ与活化凝血因子Ⅹ的结合性质,生物化学与生物物理进展,2000;27(5):516~520
    [33] 陈平,梁宋平利用飞行时间质谱进行蛋白质和多肽C端序列测定,湖南师范大学自然科学学报,2004(1):58~62
    [34] 孙明忠,丁兰,赵大庆,等,长白山白眉蝮蛇蛇毒磷脂酶A2的分离和初步表征,生物化学与生物物理学报,1999,31(1):104~106
    [35] 刘清萍,刘中华,唐新科,等,串联质谱在多肽测序中的应用,生命科学研究,2004,8(2):114~118
    [36] 周新文,张玲,谢锦云,等,蛋白质的肽质谱指纹图分析方法的优化,中国生物化学与分子生物学报,2005,21(6):831~839
    [37] 王红霞,靳宝锋,王杰,等,纳升电喷雾串联质谱技术对阻断泛素通路诱导凋亡相关蛋白质的鉴定,生物化学与生物物理学报,2002,34(5):630~634
    [38] 王京兰,张养军,蔡耘,等,生物质谱结合IMAC亲和提取和磷酸酶水解分析蛋白质磷酸化修饰,生物化学与生物物理学报,2003,35(5):459~466.
    [39] 陈平,谢锦云,梁宋平,双向凝胶电泳银染蛋白质点的肽质谱指纹图分析,生物化学与生物物理学报,2000,32(4)::387~391
    [40] 宋晟,夏立秋,黄江丽,等,苏云金杆菌410718菌株杀虫晶体蛋白的双向电泳飞行时间质谱分析,微生物学报,2005,45(3):467~451
    [41] 邓慧敏,赖志辉,黎军,碎片结构分析在MALDI-TOF-MS法,测定多肽序列中的应用,生物化学与生物物理学报2000,32 (2)::179~182
    [42] 谢江碧,郭振泉,翁宁,等,一种凋亡相关蚯蚓丝氨酸蛋白酶的纯化、活性鉴定及部分性质研究,生物化学与生物物理进展,2003;30(3):453~452
    [43] 严兴,饶桂荣,熊盛,等,重组人源性抗HBsAg单链抗体的纯化与性质鉴定,华南理工大学学报(自然科学版):2002.30(6):14~20
    [44] F.Kunst, N.Ogasawara, I.Moszer, et al. The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. Nature, 1997, 390: 249-256.
    [1] Shoda, M. Bacterial control of plant diseases. J. Biosci. Bioeng. 2000, 89: 515~521.
    [2] 何迎春等,立枯丝核菌的生物防治,中国生物防治,2000,16(1):31~34
    [3] 周而勋等,枯草芽孢杆菌的筛选及其对棉花苗期立枯病的防治作用,广东农业科学,2000,(1):44~46.
    [4] Harsh Pal Basi, Ray Fall, Jorge Mvivanco, Biocotrol of bacillus subtillis against infection of Arabidopsis Roots by Pseudomonas syringae Is Facilitated by Biofilm formation and Surfactin Production, Plant Phtsiology. 2004, 134(1): 307~320.
    [5] Bharathi R, Vivekananthan R, Harish S, Ramanathan A, Saniyappan R. Rhizobacteria-based bio-formulations for the management of fruit rot infection in chillies, Crop Protection. 2004; 23: 835~843.
    [6] Vivekananthan R, Ravi M, Saravanakumar D, Kumar N, Praksam V, Samiyappan R. Microbially induced defence related proteins against postharvest anthracnose infection in mango, Crop Protection. 2004; 23: 1061~1067
    [7] 陈春年主编,农药生物测定技术.北京农业大学出版社,1991,149~160
    [8] 陈以仁等,枯草芽孢杆菌Ⅱ号复配生物农药对水稻纹枯病菌的防治效果,江苏农业科学 1999,(4)48~49.
    [9] Tjalsma H, Antelmann H, Jongbloed JDH, Braun GP, Darmon E, Dorenbos R, et al. Proteomics of protein secretion by Bacillus subtilis: Separating the "secrects" of the secretome, Microbiology and Molecular Biology Review. 2004; 68: 207~233.
    [10] Torsten, S., Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol Microbiol. 2005, 56(4): 845~857.
    [11] 陈志谊,枯草芽孢杆菌Bs-916防治水稻纹枯病作用机理研究,博士论文,南京农业大学,1998.
    [12] 陈志谊等,枯草芽孢杆菌Bs-916培养液对水稻纹枯病菌的抗生活性及其抗菌物质的研究,江苏农业学报,2000,16(3):148~152
    [13] 汪家政,范明.蛋白质技术手册,北京,科学出版社,2002.
    [14] 周而勋等,枯草芽孢杆菌的筛选及其对棉花苗期立枯病的防治作用,广东农业科学,2000(1):44~46.
    [15] 孔建等,枯草芽孢杆菌B-903菌株的研究:Ⅰ.对植物病原菌的抑制作用和防治试验,中国生物防治,1999,15(4):157~161
    [16] 杨佐忠.枯草杆菌拮抗体在植物病害生物防治中的应用.四川林业科技,2001,22(3):41~44
    [17] 张晓舟,徐剑宏,李顺鹏.植病生防芽孢杆菌的分离筛选与初步鉴定.土壤,2005,37(1):85~88
    [18] 司美茹,薛泉宏,余博,袁虎林,蔡艳,来航线,陈占全.36株生防菌对辣椒疫病等4种病原真菌的拮抗作用研究.西北农林科技大学学报(自然科学版),2005,33(1):49~54.
    [19] 沈锦玉,尹文林,曹铮,潘晓艺,吴颖蕾.枯草芽孢杆菌B115抗菌蛋白的分离纯化及部分性质[J].水 生生物学报,2005.(6):589~684.
    [20] Finking, R., and Marahiel, M.A. Biosynthesis of non-ribosomal peptides. Annu Rev Microbiol. 2004, 58: 453~488.
    [21] Jan Grunewald and Mohamed A. Marahiel, Chemoenzymatic and Template-Directed Synthesis of Bioactive Macrocyclic Peptides, Microbiology and Molecular Biology Reviews, 2006, 70(1): 121~146.
    [22] 刘伊强.王雅平.潘乃裢等,拮抗菌TG26的鉴定及其抗菌蛋白BI的纯化和部分特性,植物学报 1994,36(3):197~203.
    [23] 林东,徐庆,刘忆舟等,枯草芽孢杆菌SO113分泌蛋白的抑菌作用及抗菌蛋白的分离纯化,农业生物技术学报,2001,9(1):77~80.
    [24] 刘静,王军,姚建铭,潘仁瑞等,枯草芽孢杆菌JA抗菌物特性的研究及抗菌肽的分离纯化,2004.44(4):511~514.
    [25] Anne-lature M, Thomas E.C, Sadisk T., Molecular characterization and analysis of operon encoding the antifungal lipopeptide bacillomycin D, FEMS Microbiology Letters. 2004; 234: 43~49.
    [1] 1 Yiu C, Wayne A, McCormick K, et al Characterization of an antifungal soil bacterium and its antagonistic activities and against Fusarium species. Canadian Journal of Microbiology, 2003,(49): 253~267.
    [2] 2Amparoc.M, Fred G, Juan F, et al. Histopathological effects and growth reduction in a susceptible and a resistance of heliothis virescens caused by sublethal doses of pure cry1A crystal proteins from Bacillus thuringiesis. Biocontrol Science and Technology, 1999, 9,(2) :239~246.
    [3] 12Makotos S. Bacterial control of plant disease [J]. Journal of Bioscience And Bioengineering, 2000, 89(6): 515~521.
    [4] 13Harsh P, Jorge M. Biocotrol of Bacillus subtilis against infection of arabidopsis roots by pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plan Phtsiology. 2004, 134(1); 307~320.
    [5] 3高学文,姚仕义,Huong P,等.枯草芽孢杆菌B2菌株产生的抑菌活性物质分析.中国生物防治,2003,19(4):175~179。
    [6] 4高学文,姚仕义,Huong P,等.枯草芽孢杆菌B2菌株产生的表面活性素变异体的纯化和鉴定.微生物学报,2003,5(43):647~752.
    [7] 5刘伊强,王雅平,潘乃穟,等.拮抗菌TG26的鉴定及其抗菌蛋白BI的纯化和部分特性.植物学报,1994,36(3):197~203.
    [8] 6童有仁,马志超,陈卫良,等,枯草芽孢杆菌B034拮抗蛋白的分离纯化及特性分析,微生物学报,1999,399(4):339~394
    [9] 7谢栋,彭憬,王津红,等.枯草芽孢杆菌抗菌粗蛋白质X98Ⅲ的纯化与性质.微生物学报,1998,38(1):13~19
    [10] 10陈毓荃.生物化学实验方法和技术[M],北京,科学出版社,2002,49,214.
    [11] 11汪家政,范明.蛋白质技术手册,[M],北京,科学出版社,2002,77~99.
    [12] 8林东,徐庆,刘忆舟,等.丰占草芽孢杆菌SO113分泌蛋白的抑菌作用及抗菌蛋白的分离纯化.农业生物技术学报2001,9(1):77~80.
    [13] 9陈志谊,刘永锋,陆凡,等.井冈霉素和生防菌Bs-916协同控病作用及增效机理.植物保护学报,2003,30(4)430~433.
    [14] 14刘颖,徐庆,陈章良.抗真菌肽LP-1的分离纯化及特性分析[J].微生物学报,1999,39(5).441~447
    [15] 15孔建,王文夕,赵白鸽,申效诚.枯草芽孢杆菌-903菌株的研究Ⅰ.对植物病原菌的抑制作用和防治试验.中国生物防治,1999,15(4)157~161
    [16] 16杨佐忠.枯草杆菌拮抗体在植物病害生物防治中的应用.四川林业科技,2001,22(3)41~44.
    [17] 17何红,邱思鑫,蔡学清,关雄,胡方平.辣椒内生细菌BS-1和Bs-2在植物体内的定殖及鉴定.微生物学报,2004,44(1)13~18.
    [18] 23高学文,姚仕义,Huong Pham, Joachim Vater,王金生.基因工程菌枯草芽孢杆菌GEB3产生的脂肽类抗生素及其生物活性研究[J].中国农业科学,2003,36(12):1496~1501
    [19] 陈志谊,陆凡,刘永锋,杨新宁,防治水稻病害微生物农药纹曲宁的研制及产业化,江苏农业学报,2003,19(2)108~108
    [20] S.L.Wang, Y.H. Yen, G.C. Tzeng, C.Y. Hsieh, Production of antifungal material by bioconversion of shellfish wastes fermented by Pseudomonas fluorescens K-188, Enzyme and Microbial Technology 36(2005)49~56
    [21] Molina, A. segura, F. Garia-Olmedo, Lipid transfer proteins(nsLTPS) from barely and maize leaves are potent inhibitor of bacterial and fungal plant pathogens, FEBS Lett, 316(1993)119~122
    [22] 21蒋琳,马承铸.生物农药研究进展(综述).上海农业学报,2000,(16增刊).73~77
    [23] 22戴晓燕,关桂兰.两株对辣椒疫霉菌有拮抗作用的拮抗菌分泌蛋白的研究.中国生物防治,1999,15(2),81~84.
    [24] 24Shen S, Arun S, Setsuko K, et al. Characterization of proteins responsive to gibberellin in the Leaf-shealth of rice (Oryza sativa L.) seedling using proteome analysis, Bio.Pharm.bull. 2003, 26(2): 129~136.
    [1] Wang HX, Ng TB, Liu Q. Isolation of a new heterodimeric lectin with mitogenic activity from fruiting bodies of the mushroom Agrocybe cylindracea. Life Sci 2002;70:877—85.
    
    [2] Wang H.X, Ng T.B., Isolation of cicadin, a novel and potent antifungal peptide from juvenile cicadas, Peptides.2002:23:7- 11.
    [3] S.Y. Lee, H.J. Moon, S. Kurata, S. Natori, S. Lee, Purification and cDNA cloning of an antifungal protein from the hemolymph of Holotrichia diomphalia larvae, Biol. Pharmaceut. Bull. 18 ( 1995 ) 1049-1052.
    [4] P.I. Kim,K.C. Chung, Production of an antifungal protein for control of Colletotrichum lagena rium by Bacillus amyloliquefaciens MET0908, Ferns Microbiology Letters,234 (2004) 177 -- 183.
    [5] S.K. Lam, T.G. Ng, First simultaneous isolation of a ribosome inactivating protein and an antifungal protein from a mushroom (Lyophyllum shimeji) together with evidence for synergism of their antifungal effects, Arch. Biochem. Biophys. 393 (2001) 271-280.
    [6] Y.X. Guo,H.X Wang, T.B. Ng, Isolation of trichogin, an antifungal protein from fresh fruit bodies of the edible mushroom Tricholoma giganteum, Peptides. 26 ( 2005 ) 757-580.
    [7] G. K-Agrawal, N. S.Jwa, R. Rakwal.. A novel rice (Oryza sativaL.) acidic PR1 gene highly responsive to cut, phytohormones, and protein phosphatase inhibitors, Biochem. Biophys. Res. Commun. 274(2000)157-165.
    [8] A.Molina, J. Gorlach, S. Volrath, J. Ryals, Wheat genes encoding two types of PR-1 proteins are pathogen inducible, but do not respond to activators of systemic acquired resistance, Mol. Plant Microbe Interact. 12 (1999)53-58.
    [9] H.X Wang, T.B. Ng, Dendrocin, a distinctive antifungal protein from bamboo shoot, Biochem. Biophys. Res. Commun. 307 (2005) 750—755.
    [10] S.K. Lam, T.B. Ng, Isolation of a novel thermolabile heterodimeric ribonuclease with antifungal and antiproliferative activities from roots of the sanchi ginseng Panax notoginseng, Biochem.Biophys. Res. Commun. 285 (2001) 419—423.
    
    [11] H.X Wang, T.B. Ng, An antifungal protein from ginger rhizomes, Biochem. Biophys. Res. Commun.336 (2005) 100—104.
    
    [12] F.Kunst, N.Ogasawara, I.Moszer, et al The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. Nature,1997,390:249—256.
    [13] Harsh Pal Basi,Ray Fall, Jorge Mvivanco, Biocotrol of bacillus subtillis against infection of Arabidopsis Roots by Pseudomonas syringae Is Facilitated by Biofilm formation and Surfactin Production 1, Plant Phtsiology. 2004, 134(1): 307~320.
    [14] Bharathi R, Vivekananthan R, Harish S, Ramanathan A, Saniyappan R. Rhizobacteria-based bio-formulations for the management of fruit rot infection in chillies, Crop Protection. 2004; 23: 835~843.
    [15] Vivekananthan R, Ravi M, Saravanakumar D, Kumar N, Praksam V, Samiyappan R. Microbially induced defence related proteins against postharvest anthracnose infection in mango, Crop Protection. 2004; 23: 1061~1067.
    [16] 高学文,姚仕义等,枯草芽孢杆菌B2菌株产生的表面活性素变异体的纯化和鉴定,微生物学报,2003,5(43),647~752
    [17] Peypoux F, Bonmatin JM, Wallach J. Recent trends in the biochemistry of surfactin, App Microbiol Biotechnol. 1999; 51: 553~563.
    [18] 刘伊强.王雅平.潘乃穟等,拮抗菌TG26的鉴定及其抗菌蛋白BI的纯化和部分特性,植物学报 1994,36(3)197~203
    [19] 童有仁,马志超,陈卫良等,枯草芽孢杆菌B034拮抗蛋白的分离纯化及特性分析,微生物学报 1999,39(4):339~403.
    [20] 20谢栋,彭憬,王津红等,枯草芽孢杆菌抗菌蛋白质X98Ⅲ的纯化与性质,微生物学报,1998,38(1):13~19
    [21] 林东,徐庆,刘忆舟等,枯草芽孢杆菌SO113分泌蛋白的抑菌作用及抗菌蛋白的分离纯化,农业生物技术学报,2001,9(1):77~80
    [22] K. Wurms, D. Greenwood, K. Sharrock, P. Long, Thaumatin~like protein in kiwi fruit, J. Sci. Food Agric. 79 (1999) 1448~1452.
    [23] B.N. Joshi, M.N. Sainani, K.B. Bastawade, V.S. Gupta, P.K.Ranjekar, Cysteine protease inhibitor from pearl millet: a new class of antifungal protein, Biochem. Biophys. Res. Commun. 246 (1998) 382~387.
    [24] X.Y. Ye, T.B. Ng, P.F. Rao, A Bowman Birk type trypsin chymotrypsin inhibitor from broad beans, Biochem. Biophys. Res. Commun. 289 (2001) 91~96.
    [25] R. Leah, H. Tommerup, I. Svendsen, J. Mundy, Biochemical and molecular characterization of three barley seed proteins with antifungal properties, J. Biol. Chem. 246 (1991) 1564~1573.
    [26] A.J. Vigers, W.K. Roberts, C.P. Selitrennikoff, A new family of plant antifungal proteins, Mol. Plant-Microbe Interact. 4 (1991) 315~323
    [27] X.Y. Ye, H.X. Wang, T.B. Ng, Dolichin, a new chitinase-like antifungal protein isolated from field beans (Dolichos lablab), Biochem. Biophys. Res. Commun. 269 (2000) 155~159.
    [28] X.Y. Ye, T.B. Ng, Isolation of a new cyclophilin~like protein from chickpeas with mitogenic, antifungal and anti-HIV-1 reverse transcriptase activities, Life Sci. 70 (2002) 1129-1138.
    [29] X.Y. Ye, T.B. Ng, Mungin, a novel cyclophilin-like antifungal protein from the mung bean, Biochem. Biophys. Res. Commun. 273 (2000) 1111~1115.
    [30] T.B. Ng, H.X.Wang, Isolation of an antifungal thaumatin-like protein from kiwi fruits, Phytochemistry 61 (2002) 1~7.
    [31] 刘永峰,陈志谊,张杰,等,枯草芽孢杆菌Bs-916胞外抗菌蛋白质的性质,江苏农业学报,2005,21(4)288~293.
    [32] 陈志谊,陆凡,刘永锋,杨新宁,防治水稻病害微生物农药纹曲宁的研制及产业化,江苏农业学报,2003,19(2)108~108
    [33] Anne-lature M, Thomas E.C, Sadisk T., Molecular characterization and analysis of operon encoding the antifungal lipopeptide bacillomycin D, FEMS Microbiology Letters. 2004; 234: 43~49.
    [34] T. Theis, F.Marax, W. Salvenmoser, U.Stahl, V.Meyer, New insight into the target site and mode of action of the antifungal protein of Aspergillus giganteus, Research in Microbiology 156(2005)47~56.
    [35] H. Tjalsma, H. Antelmann, J.D.H. Jongbloed, et al, Proteomics of protein secretion by Bacillus subtilis: Separating the "secrects" of the secretome, Microbiology and Molecular Biology Review. 68(2004) 207~233
    [36] S.L.Wang, Y.H. Yen, G.C. Tzeng, C.Y. Hsieh, Production of antifungal material by bioconversion of shellfish wastes fermented by Pseudomonas fluorescens K-188, Enzyme and Microbial Technology 36(2005)49~56
    [37] A. Molina, A. segura, F. Garia-Olmedo, Lipid transfer proteins(nsLTPS) from barely and maize leaves are potent inhibitor of bacterial and fungal plant pathogens, FEBS Lett, 316(1993)119~122
    [38] S.W. Wang, J.H. Wu, T.B. Ng, X.Y. Ye, P.F. Rao, A non-specific lipid transfer protein with antifungal and antibacterial activities from the mung bean, Petides, 25(2004)1325~1242.
    [1] S.S.L. Lam, H.X. Wang, T.B. Ng, Purification and characterization of novel ribosome inactivating proteins, alpha and beta pisavins, from seeds of the garden pea Pisum sativum, Biochem. Biophys. Res. Comrnun. 1998, 253: 135~142.
    [2] Y.W. Lam, H.X. Wang, T.B. Ng, A robust cysteine-deficient chitinase-like antifungal protein from inner shoots of the edible chive Allium tuberosum, Biochem. Biophys. Res. Commun. 2000, 279: 74~80.
    [3] T.B. Ng, H.X. Wang. Panaxagin, a new protein from Chinese ginseng possesses anti-fungal, anti-viral, translation-inhibiting and ribonuclease activities. Life Sci 2001, 68:739~49
    [4] S.K. Lam, T.B. Ng, Isolation of a novel thermolabile heterodimeric ribonuclease with antifungal and antiproliferative activities from roots of the sanchi ginseng Panax notoginseng, Biochem Biophys Res Commun. 2001; 285: 419~23.
    [5] X.Y. Ye, T.B. Ng, A novel and potent ribonuclease from fruiting bodies of the mushroom Pleurotus pulmonarius, Biochem Biophys Res Commun. 2002, 293: 857-61.
    [6] T.B. Ng, Antifungal proteins and peptides of leguminous and non-leguminous origins, Peptides. 2004, 25: 1215~1222.
    [7] R. Vogelsang, W. Barz, Purification, characterization and differential hormonal regulation of a β-1,3-glucanase and two chitinases from chickpea (Cicer arietinum L.), Planta 1993, 189: 60~69.
    [8] 宫霞,施用晖,乐国伟.抗菌活性肽与细菌染色体DNA的相互作用机理[J].自然科学进展,2004,(5).509-513
    [9] 徐进署,张双全.昆虫抗菌肽对病原微生物作用的研究进展[J].昆虫学报,2002,45(5):673-678
    [10] 汪家政,范明.蛋白质技术手册,北京,科学出版社,2002,77~99.
    [11] 陈春年主编,农药生物测定技术.北京农业火学出版社,1991,149~160
    [12] 刘伊强,王雅平,潘乃穟,等.拮抗菌TG26的鉴定及其抗菌蛋白BI的纯化和部分特性.植物学报,1994,36(3):197~203.
    [13] 童有仁,马志超,陈卫良,等,枯草芽孢杆菌B034拮抗蛋白的分离纯化及特性分析,微生物学报,1999,399(4):339~394
    [14] 谢栋,彭憬,王津红,胡剑,王岳五.枯草芽孢杆菌抗菌蛋白X98Ⅲ的纯化与性质.微生物学报,1998,38(1).13-19
    [15] 林东,徐庆,刘忆舟,等.枯草芽孢杆菌SO113分泌蛋白的抑菌作用及抗菌蛋白的分离纯化[J].农业生物技术学报2001,9(1):77~80.
    [16] 谌晓曦,陈卫良,马志超,阮红,李德葆.抗水稻纹枯病菌拮抗蛋白质的理化性质研究[J].浙江大学学报(农业与生命科学版),1999,25(5):491~494,
    [17] A.L. Moyne, T.E. Cleveland, S. Tuzun, Molecular characterization and analysis of operon encoding the antifungal lipopeptide Bacillomycin D, FEMS Microbiology Lett 2004, 234: 43~49.
    [18] F. Peypoux, J.M. Bonmatin, J.Wallach, Recent trends in the biochemistry of surfactin, App Microbiol Biotechnol. 1999, 51: 553~563.
    [19] R.Bharathi, R.Vivekananthan, S.Harish, A. ramanathan, R.Saniyappan, Rhizobacteria based bio-formuations for the management of fruit rot infection in chillies, Crop Protection. 2004, 23: 835~843
    [20] H.X. Wang, T.B. Ng, Purification and characterization of a potent homodimeric guanine-specific ribonuclease from fresh mushroom (Pleurotus tuber-regium) sclerotie, Int. J. Biochem. Cell Biol. 2001, 33: 483~490.
    [21] 郑怡,余萍,刘艳如.蛋白核小球藻凝集素的分离纯化及部分性质研究.水生生物学报,2003,(1).
    [22] H. Tjalsma, H. Antelmann, J.D.H. Jongbloed, et al, Proteomics of protein secretion by Bacillus subtilis: Separating the "secrects" of the secretome, Microbiology and Molecular Biology Review. 2004, 68: 207~233
    [23] 19K.Arima, A. Kakinuma, G. Tamura, Surfactin, a crystalline peptidelipid surfactant produced by Bacillus subtilis: Isolation, characterization and its inhibition of fibrin clot formation, Biochem Biophys Res Commun. 1968, 31: 488~494.
    [24] R.Vivekananthan, M.Ravi, D.Saravanakumar, N.Kumar, V.Praksam, R.Samiyappan, Microbially ind-uced defence related proteins gainst postharvest anthracnose infection in manguo, Crop Protection. 2004, 23: 1061~1067
    [1] O'Farrell PH. High reslution two dimsensional electrophoresis of proteins. J Biol Chen, 1975, 250: 4007~4201
    [2] Bin L, Zwilling R, Pallin V, et al. Twodimensional gel eletrophoresis of Caenorhabdilis elegans homgenates and identification of protein spots by microsequence. Eletrophoresis, 1997, 18: 557~562
    [3] Strupat K, Karas M, Hillenkamp F, et al. Matrix~assisted laster desorption ionozation mass spectrometry of proteins electroslotted after PAGE. Anal Chem, 1994, 66: 646~470.
    [4] Mann, M, Hojrup P, Roepstorff P, et al. Use of mass spectrometric molecular weight information to identify proteins in seqence database. Biol Mass spectrometry, 1993, 22: 238~245
    [5] carcinoma cell line, HCCM, and identification of the separated proteins by mass spectrometry. Electrophoresis, 2000, 21: 1787
    [6] TAN Chen, LI Jiang, Wang Jie, ZHANG Xiao, CAO Li, LIANG Song, LI Gui, Identification and Significance of Down regulated Proteins in HNE1 Cells Transfected with NAG7, Chinese Journal of Biochemistry and Molecular Biology, 2001, 17 (6): 687~692.
    [7] Debora F. VIEIRA, Leandra WATANABE, Carolina D. SANTANA, etal, Purification and Characterization of Jararassin-I, A Thrombin-like Enzyme from othrops jararaca Snake Venom, Acta Biochimica et Biophysica Sinica 2004, 36(12): 798~802.
    [8] 盛泉虎,解涛,丁达夫,串联质谱数据的从头解析与蛋白质的数据库搜索鉴定,生物物理和生物化学学报,2000,32(6):595~600.
    [9] 柳亦松,谢锦云,梁宋平,大腹园蛛粗毒双向电泳及质谱分析,生命科学研究,2004,8(2)117~121.
    [10] 11汪志平,蛋白质SD-SPAGE用于螺旋藻分类及突变体鉴定的研究,浙江大学学报(农业与生命科学版)2000,26(6):583~587.
    [11] 兰海燕,李立会,蛋白质凝胶电泳技术在作物品种鉴定中的应用,中国农业科学,2002,35(8):916~920.
    [12] LAU Andy T. Y., HE Qing, CHIU Jen, Proteomic Technology and Its Biomedical Applications, Acta Biochimica et Biophysica Sinica 2003, 35 (11): 965~975.
    [13] 14王京兰,蔡耘,王杰,董方霆,贺福初,钱小红,蛋白质组研究中肽质量指纹图制备与鉴定方法初探,军事医学科学院院刊 1999,23(1),71~72.
    [14] 王红霞,张学敏,杨松成.电喷雾 四极杆2飞行时间串联质谱(ESI2Q2TOF2)鉴定重组人FKBP12药学学报,2002,37(7):539-542.
    [15] L I Sheng, ZHAO Zhi, L I Ming, GU Zhen, BAI Chen, HUAN G Wei2Da Purification and Characterization of a Novel Chitinase from Bacillus brevis. Acta Biochimica et Biophysica Sinica, 2002, 34 (6): 690-696.
    [16] 曹锐,张丽军,聂松,王贤纯,梁宋平,多维色谱2串联质谱联用技术分离和鉴定小鼠肝脏质膜蛋白质.中国生物化学与分子生物学报,2005,21(1):134~142.
    [17] 江勇,魏令波,费云标,舒念红,高素琴.分离和鉴定沙冬青抗冻蛋白质.植物学报 1999,41(9):967~971.
    [18] 陈平,聂松,谢锦云,梁宋平,彭聪,李桂源.固相化学辅助MALDI-TOF质谱源后衰变技术对2D-胶 银染蛋白质点的鉴定,生物化学与生物物理学报,2003,35(7):635~642.
    [19] 杨兵,应万涛,董鸿晔,钱小红.规模化蛋白质鉴定中的串联质谱数据评价方法,生命的化学,2005 25(5):407~400.
    [20] 汪家政,范明主编,蛋白质技术手册,科学技术出版社,2002。
    [21] Huang RenHuai, Liu ZhongHua, Liang SongPing, Purification and Characterization of a Neurotoxic Peptide Huwentoxin-Ⅲ and a Natural Inactive Mutant from the Venom of the Spider Selenocosmia huwena Wang (Ornit hoctonus huwena Wang), Acta Biochimica et Biophysica Sinica 2003, 35 (11): 976~980.
    [22] 王红霞,靳宝锋,王杰,何昆,杨松成,沈倍奋,张学敏,纳升电喷雾串联质谱技术对阻断泛素通路诱导凋亡相关蛋白质的鉴定.生物化学与生物物理学报,2002,34(5):630~634.
    [23] 周俊宜,罗超权.亲和层析法分离鉴定人类端粒酶复合体及其蛋白质组分分析,中国生物化学与分子生物学报2000,16,(5),574~579.
    [24] 谢玲,应万涛,张开泰,项小琼,钱小红,王玉芝,吴德昌.双向电泳和肽质量指纹谱技术鉴定支气管上皮细胞恶性转化相关蛋白质ANX1-human,中国生物化学与分子生物学报,2000,16(5):569~573.
    [25] 发云,邵晓霞,夏其昌.高效液相色谱~电喷雾四极杆离子阱质谱鉴定蛋白质磷酸化位点,中国科学(C)2000,30(4)421~427.
    [26] Wang HX, Gao JQ, Ng TB. A new lectin with highly potent antihepatoma and antisarcoma activities from the oyster mushroom Pleurotus ostreatus, Biochem. Biophys. Res. Commun. 2000, 275: 810-816.
    [27] Ye XY, Ng TB. A novel and potent ribonuclease from fruiting bodies of the mushroom Pleurotus pulmonarius. Biochem. Biophys. Res. Commun. 2002; 293: 857-861.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700