盐胁迫盐芥和拟南芥的芥子油苷和蛋白质组比较
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以盐生模式植物盐芥(Thellungiella halophila)和模式植物拟南芥(Arabidopsis thaliana)为研究对象,系统地分析了盐胁迫下二者芥子油苷组成和含量的变化规律,并对二者进行了盐胁迫比较蛋白质组学研究,分别鉴定并比较了盐芥、拟南芥盐胁迫差异表达的可溶性蛋白和疏水膜蛋白,为分析盐胁迫调控芥子油苷代谢机制、比较盐生植物与非盐生植物响应盐胁迫的分子机制提供了基础资料。
     (1)利用高效液相色谱-质谱首次在盐芥中准确鉴定出7种芥子油苷,包括脂肪族的Allyl、3MSOP、10MSD、3MTP和吲哚族的I3M、4MOI3M,以及芳香族的2PE。盐芥花、角果、子叶和根中含有全部的7种芥子油苷,茎、茎生叶和叶柄中含有6种(缺少I3M),莲座叶中含有5种(缺少2PE和I3M),而种子中只含有4种(Allyl、3MSOP、10MSD和3MTP)且全部属于脂肪族。芥子油苷总量在不同器官、不同发育时期存在显著差异。
     (2)以50、150mmol/LNaCl处理拟南芥(生长4周)和盐芥(生长6周)5天,芥子油苷组成没有改变。芥子油苷总量、脂肪族芥子油苷总量、吲哚族芥子油苷总量在拟南芥中受盐胁迫的影响均不显著,而在盐芥中则随盐胁迫增强先减少、后增加并高于对照水平。拟南芥脂肪族的3MSOP、5MSOP和吲哚族的4OHI3M、4MOI3M随盐胁迫增强而含量降低,而脂肪族的6MSOH、吲哚族的I3M以及盐芥脂肪族的3MSOP则随盐胁迫增强有含量增加的趋势。拟南芥脂肪族的8MS00和吲哚族的1MOI3M,盐芥脂肪族的3MTP、Allyl、10MSD和吲哚族的4MOI3M,在盐胁迫下的含量变化与盐芥芥子油苷总量的变化趋势一致。
     (3)利用双向电泳(2D-E)分离可溶性蛋白,在拟南芥和盐芥中分别得到88和37个受盐胁迫影响而变化显著的蛋白质点。经质谱分析及MASCOT数据库检索,有意义的差异蛋白分别为79和32个。拟南芥差异表达显著的蛋白大部分在150 mmol/L NaCl胁迫下,而盐芥则是在50mmol/LNaCl胁迫下。
     (4)利用同位素标记相对和绝对定量(iTRAQ)及二维液相串联质谱(2DLC-MS/MS)分析疏水膜蛋白,拟南芥中差异表达的膜蛋白31个(21个上调,10个下调),盐芥中差异表达的膜蛋白32个(11个上调,21个下调)。这些蛋白大部分为叶绿体、线粒体和质膜蛋白及膜相关蛋白。
     (5)根据差异表达蛋白所参与的生物学过程,对非冗余可溶性蛋白和膜蛋白进行了分类和功能分析。拟南芥划分为11类,比例最大的是物质代谢相关蛋白(22%);盐芥划分为13类,蛋白合成相关蛋白的比例最大(22%)。这表明,代谢相关的蛋白对维持盐逆境下拟南芥的生长与代谢具有重要的作用,而蛋白合成相关蛋白可能在盐芥的抗盐机制中发挥重要的作用。
Here we report glucosinolate profile and comparative proteomics of Arabidopsis thaliana, a glycophyte, and its close relative Thellungiella halophila, a halophyte, under different salt stress conditions. Soluble proteins from control and NaCl treated samples were extracted and separated by two-dimensional gel electrophoresis. As a complementary approach, isobaric tag for relative and absolute quantification (iTRAQ) LC-MS was used to identify crude microsomal proteins. Collectively, this work represents the most extensive proteomic description of salinity responses of A. thaliana and T. halophila. The studies may provide the basis for the future research of the effect of salt stress on glucosinolate metabolism and salt tolerance molecular mechanism in glycophytes and halophytes.
     First, seven glucosinolates in T. halophila were unambiguously identified by high performance liquid chromatography and mass spectrometry (HPLC-MS) for the first time, including aliphatic glucosinolates Allyl,3MSOP,10MSD and 3MTP, indole glucosinolates I3M and 4MO13M, aromatic glucosinolate 2PE. The composition of glucosinolates varied considerably among different tissues, with seven compounds identified in flowers, siliques, cotyledons and roots, six in stems, cauline leaves and petioles (I3M was not detected), five in rosette leaves (2PE and I3M were not detected), only four in seeds and all four glucosinolates belong to aliphatic (including Allyl,3MSOP,10MSD and 3MTP). The total contents of glucosinolates in different organs at various developmental stages also displayed significant variations
     Second, the composition of glucosinolates was not varied in the rosette leaves of four-week-old A. thaliana and 6-week-old T. halophila, which were irrigated with 50 mM and 150 mM NaCl. The contents of total, aromatic and indole glucosinolates were not varied significantly in A. thaliana after treatment. However, the contents of total, aromatic and indole glucosinolates decreased after 50 mM NaCl treated and increased higher than control after 150 mM NaCl treated. Aliphatic glucosinolates 3MSOP,5MSOP and indole glucosinolates 4OHI3M and 4MOI3M in A. thaliana decreased with increasing NaCl concentrations, while aliphatic glucosinolates 6MSOH, indole glucosinolates I3M in A. thaliana and aliphatic glucosinolates 3MSOP in T. halophila increased with increasing NaCl concentrations. The content of 8MSOO and 1MOI3M in A. thaliana,3MTP, Allyl,10MSD and 4MOI3M in T. halophila displayed a similar pattern of variation.
     Third, soluble proteins from control and NaCl treated samples were separated by two-dimensional gel electrophoresis. A total of 88 protein spots from A. thaliana gels and 37 protein spots from T. halophila gels showed significant changes. Out of these spots, a total of 79 and 32 proteins, which were significantly regulated by salt stress, were identified by mass spectrometry in A. thaliana and T. halophila, respectively. Most of the changes were observed in A. thaliana samples treated with 150 mM NaCl. In contrast, most proteins were found to exhibit significantly changes in 50 mM NaCl treated T. halophila samples.
     Fourth, isobaric tag for relative and absolute quantification (iTRAQ) LC-MS was used to identify crude microsomal proteins. There were 31 differentially expressed (21 increased and 10 decreased) in A. thaliana. In T. halophila, there were 32 differentially expressed proteins (11 increased and 21 decreased). Most of the differentially expressed proteins are membrane proteins or membrane associated proteins in chloroplasts, mitochondria and plasma membrane
     Fifth, the non-redundant identified proteins were grouped according to functional categories. In T. halophila the proteins were grouped into 11 categories, the largest group is the protein synthesis (22%). In A. thaliana, the salt-responsive proteins were classified into 13 categories, metabolic proteins (22%) formed the largest group. This finding suggests that although proteins involved in plant metabolism play an important role in A. thaliana salt tolerance, the protein synthesis-related proteins play an important role in T. halophila salt tolerance.
引文
Abbasi FM, Komatsu S.2004. A proteomic approach to analyze salt-responsive proteins in rice leaf sheath. Proteomics,4(7):2072-2081
    Aghaei K, Ehsanpour AA, Shah AH, Komatsu S.2009. Proteome analysis of soybean hypocotyl and root under salt stress. Amino Acids,36(1):91-98
    Agrawal GK, Yonekura M, Iwahashi Y, Iwahashi H, Rakwal R.2005. System, trends and perspectives of proteomics in dicot plants. Part Ⅰ:Technologies in proteome establishment. Journal of Chromatography B, 815(1-2):109-123
    Aguilera J, Van Dijken JP, De Winde JH, Pronk JT.2005. Carbonic anhydrase (Nce103p):an essential biosynthetic enzyme for growth of Saccharomyces cerevisiae at atmospheric carbon dioxide pressure. Biochemical Journal,391 (2):311-316
    Alexander J, Au unsson GA, Benford D, Cockburn A, Cravedi J, Dogliotti E, Domenico AD, Fernandez-Cruz ML, Furst P, Fink-Gremmels J.2008. Glucosinolates as undesirable substances in animal feed. EFSA Journal,590,1-76.
    Amtmann A, Sanders D.1999. Mechanisms of Na+uptake by plant cells. Advances in Botanical Research,29:75-112
    Apel K, Hirt H.2004. Reactive oxygen species:metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology,55:373-399
    Aragao MEF, Jolivet Y, Silva Lima MG, Fernandes de Melo D, Dizengramel P. (1997) NaCl-induced changes of NAD (P) malic enzyme activities in Eucalyptus citriodora leaves. Trees-Structure and Function, 12,66-72
    Asada K, Takahashi M.1987. Production and scavenging of active oxygen in photosynthesis. Photoinhibition,9:227-288
    Ashraf M, McNeilly T.2004. Salinity tolerance in brassica oilseeds. Critical Reviews in Plant Sciences, 23(2):157-174
    Ashraf M, Foolad MR.2007. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental& Experimental Botany,59(2):206-216
    Askari H, Edqvist J, Hajheidari M, Kafi M, Salekdeh GH.2006. Effects of salinity levels on proteome ofSuaeda aegyptiaca leaves. Proteomics,6(8):2542-2554
    Aziz A, Martin-Tanguy J, Larher F.1998. Stress-induced changes in polyamine and tyramine levels can regulate proline accumulation in tomato leaf discs treated with sodium chloride. Physiologia Plantarum, 104(2):195-202
    Baginsky S, Gruissem W.2004. Chloroplast proteomics:potentials and challenges. Journal of Experimental Botany,55(400):1213-1220
    Bahrman N, Zivy M, Thiellement H.1988. Genetic relationships in the Sitopsis section ofTriticum and the origin of the B genome of polyploid wheats. Heredity,61(3):473-480
    Bak-Jensen K.S, Laugesen S, stergaard O, Finnie C, Roepstorff P, Svensson B.2007. Spatio-temporal profiling and degradation of a-amylase isozymes during barley seed germination. FEBS Journal,274(10): 2552-2565
    Bamidele JF, Malloch AJC.2006. Morphological and utrastructural studies of the salt gland of tree malow, Lavatera arborea L.(Malvaceae). International Journal of Botany,2(3):313-318
    Barreneche T, Bahrman N, Kremer A.1996. Two dimensional gel electrophoresis confirms the low level of genetic differentiation between Quercus robur L. and Quercus petraea (Matt.) Liebl. Forest Genetics, 3:89-92
    Barth C, Jander G. 2006. Arabidopsis myrosinases TGG1 and TGG2 have redundant function in glucosinolate breakdown and insect defense. The Plant Journal,46:549-562
    Bartlet E, Kiddle G, Williams I, Wallsgrove R.1999. Wound-induced increases in the glucosinolate content of oilseed rape and their effect on subsequent herbivory by a crucifer specialist. Entomologia experimentalis et applicata,91:163-167
    Batelli G, Verslues PE., Agius F, Qiu Q, Fujii H, Pan S, Schumaker KS, Grillo S, Zhu JK.2007. SOS2 promotes salt tolerance in part by interacting with the vacuolar H+-ATPase and upregulating its transport activity. Molecular and Cellular Biology,27:7781-7790
    Bell E, Mullet JE.1993. Characterization of an Arabidopsis lipoxygenase gene responsive to methyl jasmonate and wounding. Plant Physiology,103:1133-1137
    Bernstein L.1975. Effects of salinity and sodicity on plant growth. Annual Review of Phytopathology, 13:295-312
    Blake-Kalff M, Harrison KR, Hawkesford MJ, Zhao FJ, McGrath SP.1998. Distrihution of sulfur within oilseed rape leaves in response to sulfur deficiency during vegetative growth. Plant Physiology,118: 1337-1344
    Blau PA, Feeny P, Contardo L, Robson DS.1978. Allylglucosinolate and herbivorous caterpillars:a contrast in toxicity and tolerance. Science,200:1296-1298
    Bodnaryk RP.1992. Effects of wounding on glucosinolates in the cotyledons of oilseed rape and mustard. Phytochemistry,31:2671-2677
    Bodnaryk RP.1994. Potent effect of jasmonates on indole glucosinolates in oilseed rape and mustard. Phytochemistry,35:301-306
    Bones AM, Rossiter JT.1996. The myrosinase-glucosinolate system, its organisation and biochemistry. Physiologia Plantarum,97:194-208
    Booth EJ, Walker KC, Griffiths DW.1991. A time-course study of the effect of sulphur on glucosinolates in oilseed rape (Brassica napus) from the vegetative stage to maturity. Journal of the Science of Food and Agriculture,56:479-493
    Brautigam A, Hoffmann-Benning S, Weber A PM.2008. Comparative proteomics of chloroplast envelopes from C3 and C4 plants reveals specific adaptations of the plastid envelope to C4 photosynthesis and candidate proteins required for maintaining C4 metabolite fluxes. Plant Physiology,148:568-579
    Bridges M, Jones AME, Bones AM, Hodgson C, Cole R, Bartlet E, Wallsgrove R, Karapapa VK, Watts N, Rossiter JT.2002. Spatial organization of the glucosinolate-myrosinase system in brassica specialist aphids is similar to that of the host plant. Proceedings of the Royal Society B:Biological Sciences, 269(1487):187-191
    Brown PD, Tokuhisa JG Reichelt M, Gershenzon J.2003. Variation of glucosinolate accumulation among different organs and developmental stages of Arabidopsis thaliana. Phytochemistry,62:471-481
    Burdon RH, O'Kane D, Fadzillah N, Gill V, Boyd PA, Finch RR.1996. Oxidative stress and responses in Arabidopsis thaliana and Oryza sativa subjected to chilling and salinity stress. Biochemical Society transactions,24:469-472
    Champolivier L, Merrien A.1996. Effects of water stress applied at different growth stages to Brassica napus L. var. oleifera on yield, yield components and seed quality. European Journal of Agronomy,5: 153-160
    Charron CS, Sams CE.2004. Glucosinolate content and myrosinase activity in rapid-cycling Brassica oleracea grown in a controlled environment. Journal of the American Society for Horticultural Science,129: 321-330
    Charron CS, Saxton AM, Sams CE.2005a. Relationship of climate and genotype to seasonal variation in the glucosinolate-myrosinase system. I. Glucosinolate content in ten cultivars of Brassica oleracea grown in fall and spring seasons. Journal of the Science of Food and Agriculture,85:671-681
    Charron CS, Saxton AM, Sams CE.2005b. Relationship of climate and genotype to seasonal variation in the glucosinolate-myrosinase system. Ⅱ. Myrosinase activity in ten cultivars of Brassica oleracea grown in fall and spring seasons. Journal of the Science of Food and Agriculture,85:682-690
    Chartzoulakis K, Klapaki G. 2000. Response of two greenhouse pepper hybrids to NaCl salinity during different growth stages. Scientia Horticulturae,86:247-260
    Chen S, Glawischnig E, Jorgensen K, Naur P, Jorgensen B, Olsen CE, Hansen CH, Rasmussen H, Pickett JA, Halkier BA.2003. CYP79F1 and CYP79F2 have distinct functions in the biosynthesis of aliphatic glucosinolates in Arabidopsis. The Plant Journal,33:923-937
    Chen XJ, Zhu ZJ, Ni XL, Qian QQ.2006. Effect of nitrogen and sulfur supply on glucosinolates in Brassica campestris ssp. Chinensis. Agricultural Sciences in China,5:603-608
    Chitteti BR, Peng Z.2007. Proteome and phosphoproteome differential expression under salinity stress in rice (Oryza sativa) roots. Journal of proteome research,6(5):1718-1727
    Cui S, Huang F, Wang J, Ma X, Cheng Y, Liu J.2005. Aproteomic analysis of cold stress responses in rice seedlings. Proteomics,5:3162-3172
    Dai S, Chen T, Chong K, Xue Y, Liu S, Wang T.2007. Proteomics identification of differentially expressed proteins associated with pollen germination and tube growth reveals characteristics of germinated Oryza sativa pollen. Molecular& Cellular Proteomics,6:207-230
    David JL, Zivy M, Cardin ML, Brabant P.1997. Protein evolution in dynamically managed populations of wheat:adaptive responses to macro-environmental conditions. Theoretical and Applied Genetics,95: 932-941.
    Davletova S, Rizhsky L, Liang H, Zhong S, Oliver DJ, Coutu J, Shulaev V, Schlauch K, Mittler R.2005. Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis. The Plant Cell,17:268-281
    Devoto A, Turner JG 2005. Jasmonate-regulated Arabidopsis stress signalling network. Physiologia Plantarum,123:161-172
    Doughty KJ, Kiddle GA, Pye BJ, Wallsgrove RM, Pickett JA.1995. Selective induction of glucosinolates in oilseed rape leaves by methyl jasmonate. Phytochemistry,38:347-350
    Du L, Halkier BA.1998. Biosynthesis of glucosinolates in the developing silique walls and seeds of Sinapis alba. Phytochemistry,48:1145-1150
    Elstner EF.1987. Metabolism of activated oxygen species. In DD Davies, eds, The Biochemistry of Plants, Vol 11:Biochemistry of Metabolism. Academic Press, San Diego, CA, pp 253-315
    Engelen-Eigles G, Holden G, Cohen JD, Gardner G. 2006. The effect of temperature, photoperiod, and light quality on gluconasturtiin concentration in watercress(Nasturtium officinale R. Br.). Journal of Agricultural and Food Chemistry,54:328-334
    Fahey JW, Zalcmann AT, Talalay P.2001. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry,56:5-51
    Fieldsend J, Milford GFJ.1994. Changes in glucosinolates during crop development in single-and double-low genotypes of winter oilseed rape (Brassica napus):I. Production and distribution in vegetative tissues and developing pods during development and potential role in the recycling of sulphur within the crop. Annals of Applied Biology,124(3):531-531
    Flores P, Botella MA, Martinez V, Cerda A.2000. Ionic and osmotic effects on nitrate reductase activity in tomato seedlings. Journal of Plant Physiology,156:552-557
    Gadallah MAA.1999. Effects of proline and glycinebetaine on Vicia faba responses to salt stress. Biologia Plantarum,42(2),249-257
    Gao F, Zhou Y, Huang L, He D, Zhang G 2008. Proteomic analysis of long-term salinity stress-responsive proteins in Thellungiella halophila leaves. Chinese Science Bulletin,53:3530-3537
    Gao F, Zhou Y, Zhu W, Li X, Fan L, Zhang G 2009. Proteomic analysis of cold stress-responsive proteins in Thellungiella rosette leaves. Planta,230:1033-1046
    Gevaudant F, Duby G. Stedingk EV, Zhao R, Morsomme P, Boutry M.2007. Expression of a constitutively activated plasma membrane H+-ATPase alters plant development and increases salt tolerance. Plant Physiology,144:1763-1776
    Ghars MA, Parre E, Debez A, Bordenave M, Richard L, Leport L, Bouchereau A, Savoure A, Abdelly C. 2008. Comparative salt tolerance analysis between Arabidopsis thaliana and Thellungiella halophila, with special emphasis on K+/Na+selectivity and proline accumulation. Journal of Plant Physiology,165:588-599
    Ghoulam C, Foursy A, Fares K.2002. Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars. Environmental and Experimental Botany,47:39-50
    Giamoustaris A, Mithen R.1995. The effect of modifying the glucosinolate content of leaves of oilseed rape (Brassica napus ssp. oleifera) on its interaction with specialist and generalist pests. Annals of Applied Biology,126:347-363
    Gigon A, Matos AR, Laffray D, Zuily-Fodil Y, Pham-Thi AT.2004. Effect of drought stress on lipid metabolism in the leaves of Arabidopsis thaliana (Ecotype Columbia). Annals of Botany,94(3):345-351
    Giraudat J, Parcy F, Bertauche N, Gosti F, Leung J, Morris PC, Bouvier-Durand M, Vartanian N.1994. Current advances in abscisic acid action and signalling. Plant Molecular Biology,26:1557-1577
    Gomez JM, Hernandez JA, Jimenez A, del Rio LA, Sevilla F.1999. Differential response of antioxidative enzymes of chloroplasts and mitochondria to long-term NaCl stress of pea plants. Free Radical Research,31:11-18
    Groppa MD, Benavides MP.2008. Polyamines and abiotic stress:recent advances. Amino Acids,34: 35-45
    Grubb CD, Abel S.2006. Glucosinolate metabolism and its control. Trends in Plant Science,11:89-100
    Gygi SP, Rochon Y, Franza BR, Aebersold R.1999. Correlation between protein and mRNA abundance in yeast. Molecular and Cellular Biology,19(3):1720-1730
    Hericourt F, Jupin I.1999. Molecular cloning and characterization of the Arabidopsis thaliana a-subunit of elongation factor 1B. FEBS letters,464:148-152
    Ha M, Martinez CA.2001. Contribution of proline and inorganic solutes to osmotic adjustment incotton under salt stress. Journal of Plant Nutrition,24:599-612
    Hajheidari M, Abdollahian-Noghabi M, Askari H, Heidari M, Sadeghian SY, Ober ES, Salekdeh GH. 2005. Proteome analysis of sugar beet leaves under drought stress. Proteomics,5(4):950-960
    Halkier BA, Gershenzon J.2006. Biology and biochemistry of glucosinolates. Annual Reviews,57: 303-333
    Hancock JT, Henson D, Nyirenda M, Desikan R, Harrison J, Lewis M, Hughes J, Neill SJ.2005. Proteomic identification of glyceraldehyde 3-phosphate dehydrogenase as an inhibitory target of hydrogen peroxide in Arabidopsis. Plant Physiology and Biochemistry,43(9):828-835
    Hassanein AM.1999. Alterations in protein and esterase patterns of peanut in response to salinity stress. Biologia Plantarum,42:241-248
    Hatzimanikatis V, Choe LH, Lee KH.1999. Proteomics:theoretical and experimental considerations. Biotechnology progress,15:312-318
    Heazlewood JL, Tonti-Filippini JS, Gout AM, Day DA, Whelan J, Millar AH.2004. Experimental analysis of the Arabidopsis mitochondrial proteome highlights signaling and regulatory components, provides assessment of targeting prediction programs, and indicates plant-specific mitochondrial proteins. The Plant Cell,16:241-256
    Hirai MY, Yano M, Goodenowe DB, Kanaya S, Kimura T, Awazuhara M, Arita M, Fujiwara T, Saito K. 2004. Integration of transcriptomics and metabolomics for understanding of global responses to nutritional stresses in Arabidopsis thaliana. Proceedings of the National Academy of Sciences,101:10205-10210
    Hirai MY, Klein M, Fujikawa Y, Yano M, Goodenowe DB, Yamazaki Y, Kanaya S, Nakamura Y, Kitayama M, Suzukii H, Sakuraii N, Shibatai D, Tokuhisaj J, Reicheltj M, Gershenzonj J, Papenbrocke J, Saito K.2005. Elucidation of gene-to-gene and metabolite-to-gene networks in Arabidopsis by integration of metabolomics and transcriptomics.The Journal of Biological Chemistry,280:25590-25595
    Hirai MY, Sugiyama K, Sawada Y, Tohge T, Obayashi T, Suzuki A, Araki R, Sakurai N, Suzuki H, Aoki K, Goda H, Nishizawa OI, Shibata D, Saito K.2007. Omics-based identification of Arabidopsis Myb transcription factors regulating aliphatic glucosinolate biosynthesis. Proceedings of the National Academy of Sciences,104:6478-6483
    Hoecker U, Toledo-Ortiz G, Bender J, Quail PH.2004. The photomorphogenesis-related mutant red1 is defective in CYP83B1, a red light-induced gene encoding a cytochrome P450 required for normal auxin homeostasis. Planta,219:195-200
    Hoekstra, F.A., Golovina, E.A. and Buitink, J. (2001) Mechanisms of plant desiccation tolerance. Trends in Plant Science,6,431-438
    Horie T, Schroeder JI.2004. Sodium transporters in plants. Diverse genes and physiological functions. Plant Physiology,136:2457-2462
    Hussain TM, Chandrasekhar T, Hazara M, Sultan Z, Saleh BK, Gopal GR.2008. Recent advances in salt stress biology-a review. Biotechnology and Molecular Biology Reviews,3:8-13
    Inan G, Zhang Q, Li P, Wang Z, Cao Z, Zhang H, Zhang C, Quist TM, Goodwin SM, Zhu J, Shi H, Damsz B, Charbaji T, Gong Q, Ma S, Fredricksen M, Galbraith DW, Jenks MA, Rhodes D, Hasegawa PM, Bohnert HJ, Joly RJ, Bressan RA, Zhu JK.2004. Salt cress. A halophyte and cryophyte arabidopsis relative model system and its applicability to molecular genetic analyses of growth and development of extremophiles. Plant Physiology,135:1718-1737
    Jaquinod M, Villiers F, Kieffer-Jaquinod S, Hugouvieux V, Bruley C, Garin J, Bourguignon J.2007. A proteomics dissection of Arabidopsis thaliana vacuoles isolated from cell culture. Molecular& Cellular Proteomics,6:394-412
    Jensen CR, Mogensen VO, Mortensen G, Fieldsend JK, Milford GFJ, Andersen MN, Thage JH.1996. Seed glucosinolate, oil and protein contents of field-grown rape (Brassica napus L.) affected by soil drying and evaporative demand. Field Crops Research,47:93-105
    Jiang Y, Yang B, Harris NS, Deyholos MK.2007. Comparative proteomic analysis of NaCl stress-responsive proteins in Arabidopsis roots. Journal of Experimental Botany,58:3591-3607
    Jimenez-Bremont JF, Becerra-Flora A, Hernandez-Lucero E, Rodriguez-Kessler M, Acosta-Gallegos JA, Ramirez-Pimentel JG. 2006. Proline accumulation in two bean cultivars under salt stress and the effect of polyamines and ornithine. Biologia Plantarum,50:763-766
    Karowe DN, Seimens DH, Mitchell-Olds T.1997. Species-specific response of glucosinolate content to elevated atmospheric CO2. Journal of Chemical Ecology,23:2569-2582
    Khan MA, Ungar IA, Showalter AM.2000. Effects of sodium chloride treatments on growth and ion accumulation of the halophyte Haloxylon recurvum. Communications in Soil Science and Plant Analysis,31: 2763-2774
    Kiddle GA, Doughty KJ, Wallsgrove RM.1994. Salicylic acid-induced accumulation of glucosinolates in oilseed rape(Brassica napus L.) leaves. Journal of Experimental Botany,45(9):1343-1346
    Kley J, Heil M, Muck A, Svatos A, Boland W.2009. Isolating intact chloroplasts from small Arabidopsis samples for proteomic studies. Analytical Biochemistry,398(2):198-202
    Kliebenstein DJ, Kroymann J, Brown P, Figuth A, Pedersen D, Gershenzon J, Mitchell-Olds T.2001. Genetic control of natural variation in Arabidopsis glucosinolate accumulation. Plant Physiology,126: 811-825
    Kliebenstein DJ, Kroymann J, Mitchell-Olds T.2005. The glucosinolate-myrosinase system in an ecological and evolutionary context. Current Opinion in Plant Biology,8(3):264-271
    Kong-Ngern K, Daduang S, Wongkham CH, Bunnag S, Kosittrakun M, Theerakulpisut P.2005. Protein profiles in response to salt stress in leaf sheaths of rice seedlings. Science Asia,31:403-408
    Lazof DB, Bernstein N.1998. The NaCl induced inhibition of shoot growth:the case for disturbed nutrition with special consideration of calcium. Advances in Botanical Research,29:113-189
    Lee DH, Kim YS, Lee CB.2001 The inductive responses of the antioxidant enzymes by salt stress in the rice (Oryza sativa L.). Journal of Plant Physiology,158:737-745
    Li H, Cao H, Wang Y, Pang Q, Ma C, Chen S.2009. Proteomic analysis of sugar beet apomictic monosomic addition line M14. Journal of Proteomics,73:297-308
    Li J, Steen H, Gygi SP.2003. Protein profiling with cleavable isotope-coded affinity tag (cICAT) reagents:the yeast salinity stress response. Molecular& Cellular Proteomics,2:1198-1204
    Li SM, Schreiner M, Schonhof I, Krumbein A, Li L, Stiitzel H.2005 Effect of nitrogen and sulphur supply on yield and glucosinolates content of turnip root(Brassica rapa L.). In:Li CJ, Zhang FS, Doberman A et al.2005. Plant nutrition for food security, human health and environmental protection. Beijing, Tisinghua University Press:pp.358-359 (in Chinese)
    Li YC, Kiddle G, Bennett R, Doughty K, Wallsgrove R.1999. Variation in the glucosinolate content of vegetative tissues of Chinese lines ofBrassica napus L. Annals of Applied Biology,134:131-136
    Liu Y, Lamkemeyer T, Jakob A, Mi GH, Zhang F, Nordheim A, Hochholdinger F.2006 Comparative proteome analyses of maize(Zea mays L.) primary roots prior to lateral root initiation reveal differential protein expression in the lateral root initiation mutant ruml. Proteomics,6:4300-4308
    Lykkesfeldt J, Moller BL.1993. Synthesis of Benzylglucosinolate in Tropaeolum majus L.(Isothiocyanates as Potent Enzyme Inhibitors). Plant Physiology,102:609-613
    Majoul T, Bancel E, Tribo E, Hamida JB, Branlard G. 2003. Proteomic analysis of the effect of heat stress on hexaploid wheat grain:characterization of heat-responsive proteins from total endosperm. Proteomics,3:175-183
    Maruyama-Nakashita A, Inoue E, Watanabe-Takahashi A, Yamaya T, Takahashi H.2003. Transcriptome profiling of sulfur-responsive genes in Arabidopsis reveals global effects of sulfur nutrition on multiple metabolic pathways. Plant Physiology,132,597-605
    Maslenkova LT, Zanev Y, Popova LP.1993. Adaptation to salinity as monitored by PSII oxygen evolving reactions in barley thylakoids. Journal of Plant Physiology,142:629-634
    Mathys W.1977. The role of malate, oxalate, and mustard oil glucosides in the evolution of zinc-resistance in herbage plants. Physiologia Plantarum,40:130-136
    Mechin V, Thevenot C, Le Guilloux M, Prioul JL, Damerval C.2007. Developmental analysis of maize endosperm proteome suggests a pivotal role for pyruvate orthophosphate dikinase. Plant Physiology,143: 1203-1219
    Mewis I, Appel HM, Hom A, Raina R, Schultz JC.2005. Major signaling pathways modulate arabidopsis glucosinolate accumulation and response to both phloem-feeding and chewing insects. Plant Physiology,138:1149-1162.
    Mikkelsen MD, Petersen BL, Olsen CE, Halkier BA.2002. Biosynthesis and metabolic engineering of glucosinolates. Amino Acids,22:279-295
    Mikkelsen MD, Petersen BL, Glawischnig E, Jensen AB, Andreasson E, Halkier BA.2003. Modulation of CYP79 genes and glucosinolate profiles in Arabidopsis by defense signaling pathways. Plant Physiology, 131:298-308
    Mithen R.2001. Glucosinolates-biochemistry, genetics and biological activity. Plant Growth Regulation,34:91-103
    Mithen RF, Dekker M, Verkerk R, Rabot S, Johnson IT.2000. The nutritional significance, biosynthesis and bioavailability of glucosinolates in human foods. Journal of the Science of Food and Agriculture,80: 967-984
    Mitsuhashi S, Ohnishi J, Hayashi M, Ikeda M.2004. A gene homologous to β -type carbonic anhydrase is essential for the growth of Corynebacterium glutamicum under atmospheric conditions. Applied microbiology and biotechnology,63:592-601
    Mitsuya S, Takeoka Y, Miyake H.2000. Effects of sodium chloride on foliar ultrastructure of sweet potato(ipomoea batatas Lam.) plantlets grown under light and dark conditions in vitro. Journal of Plant Physiology,157:661-667
    Munnik T.2001. Phosphatidic acid:an emerging plant lipid second messenger. Trends in Plant Science, 6:227-233
    Munns R.1993. Physiological processes limiting plant growth in saline soils:some dogmas and hypotheses. Plant cell and Environment,16:15-24
    Munns R, James RA, Lauchli A.2006. Approaches to increasing the salt tolerance of wheat and other cereals. Journal of Experimental Botany,57(5):1025-1043
    Munns R, Tester M.2008. Mechanisms of salinity tolerance. Annual Reviews,59:651-681
    Ndimba BK, Chivasa S, Simon WJ, Slabas AR.2005. Identification of Arabidopsis salt and osmotic stress responsive proteins using two-dimensional difference gel electrophoresis and mass spectrometry. Proteomics,5:4185-4196
    Nikiforova VJ, Kopka J, Tolstikov V, Fiehn O, Hopkins L, Hawkesford MJ, Hesse H, Hoefgen R.2005. Systems rebalancing of metabolism in response to sulfur deprivation, as revealed by metabolome analysis of Arabidopsis plants. Plant Physiology,138:304-318
    Noctor G, Foyer CH.1998. Ascorbate and glutathione:keeping active oxygen under control. Annual Reviews,49:249-279
    Nohzadeh Malakshah S, Habibi Rezaei M, Heidari M, Hosseini Salekdeh G 2007. Proteomics reveals new salt responsive proteins associated with rice plasma membrane. Bioscience, Biotechnology, and Biochemistry,71:2144-2154
    Noret N, Meerts P, Vanhaelen M, Dos Santos A, Escarre J.2007. Do metal-rich plants deter herbivores? A field test of the defence hypothesis. Oecologia,152:92-100
    Osmond CB, Grace SC.1995. Perspectives on photoinhibition and photorespiration in the field: quintessential inefficiencies of the light and dark reactions of photosynthesis? Journal of Experimental Botany,46:1351-1362
    Ozturk ZN, Talame V, Deyholos M, Michalowski CB, Galbraith DW, Gozukirmizi N, Tuberosa R, Bohnert HJ.2002. Monitoring large-scale changes in transcript abundance in drought-and salt-stressed barley. Plant Molecular Biology,48:551-573.
    Palma JM, Sandalio LM, Javier Corpas F, Romero-Puertas MC, McCarthy I, del Rio LA.2002, Plant proteases, protein degradation, and oxidative stress:role of peroxisomes. Plant Physiology and Biochemistry, 40:521-530
    Parida A, Das AB, Das P.2002. NaCl stress causes changes in photosynthetic pigments, proteins, and other metabolic components in the leaves of a true mangrove, Bruguiera parviflora, in hydroponic cultures. Journal of Plant Biology,45:28-36
    Parida AK, Das AB, Mittra B.2004. Effects of salt on growth, ion accumulation, photosynthesis and leaf anatomy of the mangrove, Bruguiera parviflora. Trees-Structure and Function,18:167-174
    Parida AK, Das AB.2005. Salt tolerance and salinity effects on plants:a review. Ecotoxicology and Environmental Safety,60:324-349
    Pedranzani H, Racagni G, Alemano S, Miersch O, Ramirez I, Pe a-Cort6s H, Taleisnik E, Machado-Domenech E, Abdala G. 2003. Salt tolerant tomato plants show increased levels of jasmonic acid. Plant Growth Regulation,41:149-158
    Pereira FMV, Rosa E, Fahey JW, Stephenson KK, Carvalho R, Aires A.2002. Influence of temperature and ontogeny on the levels of glucosinolates in broccoli (Brassica oleracea var. italica) sprouts and their effect on the induction of mammalian phase 2 enzymes. Journal of Agricultural and Food Chemistry,50(21): 6239-6244
    Petersen BL, Chen S, Hansen CH, Olsen CE, Halkier BA.2002. Composition and content of glucosinolates in developing Arabidopsis thaliana. Planta,214:562-571
    Petersen M, Brodersen P, Naested H, Andreasson E, Lindhart U, Johansen B, Nielsen HB, Lacy M, Austin MJ, Parker JE.2000. Arabidopsis MAP kinase 4 negatively regulates systemic acquired resistance. Cell,103:1111-1120
    Pommerrenig B, Papini-Terzi FS, Sauer N.2007 Differential regulation of sorbitol and sucrose loading into the phloem of Plantago major in response to salt stress. Plant Physiology,144:1029-1038
    Porter AJR, Morton AM, Kiddle G, Doughty KJ, Wallsgrove RM.1991 Variation in the glucosinolate content of oilseed rape (Brassica napus L.) leaves. Annals of Applied Biology,118,461-467
    Qasim M, Ashraf M, Ashraf MY, Rehman SU, Rha ES.2003. Salt-induced changes in two canola cultivars differing in salt tolerance. Biologia Plantarum,46:629-632
    Qiu QS, Guo Y, Quintero FJ, Pardo JM, Schumaker KS, Zhu JK.2004. Regulation of vacuolar Na+/H+ exchange in Arabidopsis thaliana by the salt-overly-sensitive (SOS) pathway. Journal of Biological Chemistry,279:207-215
    Ramani S, Apte SK.1997. Transient expression of multiple genes in salinity-stressed young seedlings of rice (Oryza sativa L.) cultivar Bura Rata. Biochemical and Biophysical Research Communications,233: 663-667
    Rao S, Pendleton MW, Kim H, Binzel ML, Ellis EA.2008. An ultrastructural study of salt glands in Zoysia matrella. Microscopy and Microanalysis,14:1446-1447
    Rask L, Andreasson E, Ekbom B, Eriksson S, Pontoppidan B, Meijer J.2000. Myrosinase:gene family evolution and herbivore defense in Brassicaceae. Plant Molecular Biology,42:93-114
    Razavizadeh R, Ehsanpour AA, Ahsan N, Komatsu S.2009. Proteome analysis of tobacco leaves under salt stress. Peptides,30:1651-1659
    Reichelt M, Brown PD, Schneider B, Oldham NJ, Stauber E, Tokuhisa J, Kliebenstein DJ, Mitchell-Olds T, Gershenzon J.2002. Benzoic acid glucosinolate esters and other glucosinolates from Arabidopsis thaliana. Phytochemistry,59:663-671
    Romero-Aranda R, Soria T, Cuartero J.2001 Tomato plant-water uptake and plant-water relationships under saline growth conditions. Plant Science,160:265-272
    Sahu AC, Sahoo SK, Sahoo N.2001. NaCl-stress induced alteration in glutamine synthetase activity in excised senescing leaves of a salt-sensitive and a salt-tolerant rice cultivar in light and darkness. Plant Growth Regulation,34:287-292
    Salvucci ME, DeRidder BP, Portis AR.2006. Effect of activase level and isoform on the thermotolerance of photosynthesis in Arabidopsis. Journal of Experimental Botany,57(14):3793-3799
    Santoni V, Bellini C, Caboche M.1994. Use of two-dimensional protein-pattern analysis for the characterization of Arabidopsis thaliana mutants. Planta,192:557-566
    Sarwar M, Kirkegaard JA, Wong PTW, Desmarchelier JM.1998. Biofumigation potential of Brassicas. Plant and Soil,201:103-112
    Schachtman D, Liu W.1999. Molecular pieces to the puzzle of the interaction between potassium and sodium uptake in plants. Trends in Plant Science,4:281-287
    Schonhof I, Blankenburg D, Miiller S, Krumbein A.2007a. Sulfur and nitrogen supply influence growth, product appearance, and glucosinolate concentration of broccoli. Journal of Plant Nutrition and Soil Science, 170:1-8
    Schonhof I, Klaring HP, Krumbein A, Schreiner M.2007b. Interaction between atmospheric CO2 and glucosinolates in Broccoli. Journal of chemical ecology,33:105-114
    Segarra G, Casanova E, Bellido D, Odena MA, Oliveira E, Trillas I.2007. Proteome, salicylic acid, and jasmonic acid changes in cucumber plants inoculated with Trichoderma asperellum strain T34. Proteomics,7: 3943-3952
    Sengupta S, Patra B, Ray S, Majumder AL.2008. Inositol methyl tranferase from a halophytic wild rice, Porteresia coarctata Roxb.(Tateoka):regulation of pinitol synthesis under abiotic stress. Plant, Cell& Environment,31:1442-1459
    Sheffield J, Taylor N, Fauquet C, Chen S.2006. The cassava (Manihot esculenta Crantz) root proteome: protein identification and differential expression. Proteomics,6:1588-1598
    Shibato J, Jwa NS, Iwahashi Y, Iwahashi H, Shim IS, Usui K.2005. A hydroponic rice seedling culture model system for investigating proteome of salt stress in rice leaf. Electrophoresis,26:4521-4539
    Shilov I, Seymour S, Patel A, Loboda A, Tang W, Keating S, Hunter C, Nuwaysir L, Schaeffer D.2007. The Paragon Algorithm, a next generation search engine that uses sequence temperature values and feature probabilities to identify peptides from tandem mass spectra. Molecular& Cellular Proteomics,6,1638-1655
    Siemens, D.H. and Mitchell-Olds, T.1998. Evolution of pest-induced defenses in Brassica plants:tests of theory. Ecology,79,632-646
    Silveira JAG, Viegas RA, Rocha IMA, Moreira A, Moreira RA, Oliveira JTA.2003. Proline accumulation and glutamine synthetase activity are increased by salt-induced proteolysis in cashew leaves. Journal of Plant Physiology,160:115-123
    Singh BN, Mishra RN, Agarwal PK, Goswami M, Nair S, Sopory SK, Reddy MK.2004. A pea chloroplast translation elongation factor that is regulated by abiotic factors. Biochemical and Biophysical Research Communications,320:523-530
    Smart CJ, Garvin DF, Prince JP, Lucas WJ, Kochian LV.1996. The molecular basis of potassium nutrition in plants. Plant and Soil,187:81-89
    Sun J, Chen SL, Dai SX, Wang RG, Li NY, Shen X, Zhou XY, Lu CF, Zheng XJ, Hu ZM, Zhang ZK, Song J, Zhang ZK, Song J, Xu Y.2009. Ion flux profiles and plant ion homeostasis control under salt stress. Plant Signaling Behavior,4(4):261-264.
    Szekely G, Abraham E, Cseplo A, Rig6 G, Zsigmond L, Csiszar J, Ayaydin F, Strizhov N, Jasik J, Schmelzer E.2008. Duplicated P5CS genes of Arabidopsis play distinct roles in stress regulation and developmental control of proline biosynthesis. Plant Journal,53:11-28
    Taji T, Seki M, Satou M, Sakurai T, Kobayashi M, Ishiyama K, Narusaka Y, Narusaka M, Zhu JK, Shinozaki K.2004. Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis-related halophyte salt cress using Arabidopsis microarray. Plant Physiology,135:1697-1709
    Takemura T, Hanagata N, Sugihara K, Baba S, Karube I, Dubinsky Z.2000. Physiological and biochemical responses to salt stress in the mangrove, Bruguiera gymnorrhiza. Aquatic Botany,68:15-28
    Tanaka N, Fujita M, Handa H, Murayama S, Uemura M, Kawamura Y, Mitsui T, Mikami S, Tozawa Y, Yoshinaga T.2004. Proteomics of the rice cell:systematic identification of the protein populations in subcellular compartments. Molecular Genetics and Genomics,271:566-576
    Tanksley SD, McCouch SR.1997. Seed banks and molecular maps:unlocking genetic potential from the wild. Science,277:1063-1066
    Tester M, Davenport R.2003. Na+tolerance and Na+transport in higher plants. Annals of Botany,91: 503-527
    Thiellement H, Bahrman N, Damerval C, Plomion C, Rossignol M, Santoni V, de Vienne D, Zivy M. 1999. Proteomics for genetic and physiological studies in plants. Electrophoresis,20:2013-2026
    Tolra RP, Poschenrieder C, Alonso R, Barcelo D, Barcelo J.2001. Influence of zinc hyperaccumulation on glucosinolates in Thlaspi caerulescens. New Phytologist,151:621-626
    Tripathi MK, Mishra AS.2007 Glucosinolates in animal nutrition:A review. Animal Feed Science and Technology,132:1-27
    Ueda A, Kathiresan A, Bennett J, Takabe T.2006. Comparative transcriptome analyses of barley and rice under salt stress. Theoretical and Applied Genetics,112:1286-1294
    Ulm R, Ichimura K, Mizoguchi T, Peck SC, Zhu T, Wang X, Shinozaki K, Paszkowski J.2002. Distinct regulation of salinity and genotoxic stress responses by Arabidopsis MAP kinase phosphatase 1. The EMBO Journal,21:6483-6493
    Vaidyanathan R, Kuruvilla S, Thomas G 1999. Characterization and expression pattern of an abscisic acid and osmotic stress responsive gene from rice. Plant Science,140:21-30
    Vallejo F, Tomas-Barberan FA, Benavente-Garcia AG, Garcia-Viguera C.2003. Total and individual glucosinolate contents in inflorescences of eight broccoli cultivars grown under various climatic and fertilization conditions. Journal of the Science of Food and Agriculture,83:307-313
    Velasco P, Cartea ME, Gonzalez C, Vilar M, Ordas A.2007 Factors affecting the glucosinolate content of kale (Brassica oleracea acephala group). Journal of Agricultural and Food Chemistry,55:955-962
    Vera-Estrella R, Barkla BJ, Garcia-Ramirez L, Pantoja O.2005 Salt stress in Thellungiella halophila activates Na+transport mechanisms required for salinity tolerance. Plant Physiology,139:1507-1517
    Verbruggen N, Villarroel R, Van Montagu M.1993. Osmoregulation of a pyrroline-5-carboxylate reductase gene in Arabidopsis thaliana. Plant Physiology,103:771-781
    Verpoorte R, Alfermann AW.2000. Metabolic engineering of plant secondary metabolism, pp.1-30. Dordrecht:Kluwer Academic Publishers.
    Volkov V, Wang B, Dominy PJ, Fricke W, Amtmann A.2004. Thellungiella halophila, a salt-tolerant relative of Arabidopsis thaliana, possesses effective mechanisms to discriminate between potassium and sodium. Plant cell and Environment,27:1-14
    Waditee R, Hibino T, Nakamura T, Incharoensakdi A, Takabe T.2002 Overexpression of a Na+/H+ antiporter confers salt tolerance on a freshwater cyanobacterium, making it capable of growth in sea water. Proceedings of the National Academy of Sciences,99:4109-4114
    Wakeel A, Hanstein S, Pitann B, Schubert S.2010. Hydrolytic and pumping activity of H+-ATPase from leaves of sugar beet(Beta vulgaris L.) as affected by salt stress. Journal of Plant Physiology (online), doi:10.1016/j.jplph.2009.12.018
    Walia H, Wilson C, Condamine P, Liu X, Ismail AM, Close TJ.2007. Large-scale expression profiling and physiological characterization of jasmonic acid-mediated adaptation of barley to salinity stress. Plant cell and Environment,30:410-421
    Wang HL, Lee PD, Liu LF, Su JC.1999. Effect of sorbitol induced osmotic stress on the changes of carbohydrate and free amino acid pools in sweet potato cell suspension cultures. Botanical Bulletin of Academia Sinica,40,219-225
    Wang W, Vinocur B, Shoseyov O, Altman A.2004a. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends in Plant Science,9:244-252
    Wang Y, Nii N.2000. Changes in chlorophyll, ribulose bisphosphate carboxylase-oxygenase, glycine betaine content, photosynthesis and transpiration in Amaranthus tricolor leaves during salt stress. Journal of Horticultural Science and Biotechnology,75:623-627
    Wang Z, Li P, Fredricksen M, Gong Z, Kim CS, Zhang C, Bohnert HJ, Zhu JK, Bressan RA, Hasegawa PM.2004b. Expressed sequence tags from Thellungiella halophila, a new model to study plant salt-tolerance. Plant science,166:609-616
    Washburn MP, Koller A, Oshiro G, Ulaszek RR, Plouffe D, Deciu C, Winzeler E, Yates JR.2003. Protein pathway and complex clustering of correlated mRNA and protein expression analyses in Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences,100:3107-3112
    Wieland J, Nitsche AM, Strayle J, Steiner H, Rudolph HK.1995 The PMR2 gene cluster encodes functionally distinct isoforms of a putative Na+pump in the yeast plasma membrane. The EMBO Journal,14: 3870-3872
    Wittstock U, Halkier BA.2002. Glucosinolate research in the Arabidopsis era. Trends in Plant Science, 7:236-270
    Wong CE, Li Y, Labbe A, Guevara D, Nuin P, Whitty B, Diaz C, Golding GB, Gray GR, Weretilnyk EA. 2006. Transcriptional profiling implicates novel interactions between abiotic stress and hormonal responses in Thellungiella, a close relative of Arabidopsis. Plant Physiology,140:1437-1450
    Yamada A, Saitoh T, Mimura T, Ozeki Y.2002. Expression of mangrove allene oxide cyclase enhances salt tolerance in Escherichia coli, yeast, and tobacco cells. Plant and Cell Physiology,43:903-910
    Yan X, Chen S.2007. Regulation of plant glucosinolate metabolism. Planta,226:1343-1352
    Yang Y, Zhang F, Zhao M, An L, Zhang L, Chen N.2007. Properties of plasma membrane H+-ATPase in salt-treated Populus euphratica callus. Plant Cell Reports,26:229-235
    Yeo AR, Lee S, Izard P, Boursier PJ, Flowers TJ.1991. Short-and long-term effects of salinity on leaf growth in rice (Oryza sativa L.). Journal of Experimental Botany,42:881-889
    Zangerl AR, Bazzaz FA.1992. Theory and pattern in plant defense allocation. Page 363-391 in Plant Resistance to Herbivores and Pathogens:Ecology, Evolution, and Genetics, edited by Fritz RS, Simms EL. Chicago:University of Chicago Press
    Zapata PJ, Serrano M, Pretel MT, Botella MA.2008. Changes in free polyamine concentration induced by salt stress in seedlings of different species. Plant Growth Regulation,56:167-177
    Zhao F, Evans EJ, Bilsborrow PE, Syers JK.1994. Influence of nitrogen and sulphur on the glucosinolate profile of rapeseed (Brassica napus L). Journal of the Science of Food and Agriculture,64: 295-340
    Zhu JK, Shi J, Singh U, Wyatt SE, Bressan RA, Hasegawa PM, Carpita NC.1993. Enrichment of vitronectin-and fibronectin-like proteins in NaCl-adapted plant cells and evidence for their involvement in plasma membrane-cell wall adhesion. The Plant Journal,3:637-646
    Zhu JK.2000. Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiology,124: 941-948
    Zhu JK.2001a. Plant salt tolerance. Trends in Plant Science,6:66-71
    Zhu JK.2001b. Cell signaling under salt, water and cold stresses. Current Opinion in Plant Biology,4: 401-406
    Zhu JQ, Zhang JT, Tang RJ, Lv QD, Wang QQ, Yang L, Zhang HX.2009a. Molecular characterization of ThIPK2, an inositol polyphosphate kinase gene homolog from Thellungiella halophila, and its heterologous expression to improve abiotic stress tolerance in Brassica napus. Physiologia Plantarum,136: 407-425
    Zhu M, Dai S, McClung S, Yan X, Chen S.2009b. Functional differentiation of Brassica napus guard cells and mesophyll cells revealed by comparative proteomics. Molecular& Cellular Proteomics,8:752-766
    Ziegler J, Stenzel I, Hause B, Maucher H, Hamberg M, Grimm R, Ganal M, Wasternack C.2000. Molecular cloning of allene oxide cyclase. The Journal of Biological Chemistry,275:19132-19138
    陈建中,戴剑.2002.植物蛋白质合成延伸因子.植物生理学通讯,38:406-411
    陈少裕.1991膜脂过氧化对植物细胞的伤害.植物生理学通讯,27:84-90
    戴松香,陈少良,Fritz E, Olbrich A, Kettner C, Polle A, Huttermann A.2006.盐胁迫下胡杨和毛白杨叶细胞中的离子区隔化.北京林业大学学报,28(增刊2):1-5
    何承坤,郭素枝.1996.干旱胁迫对番茄活性氧代谢的影响.福建农业大学学报,25:307-311
    李常健,林清华,张楚富,李泽松,彭进,朱英国,Peng S, Bennett J.1999. NaCl对水稻谷氨酰胺合成酶活性及同工酶的影响.武汉大学学报:自然科学版,45:497-500
    李常健,林清华.2001.高等植物谷氨酰胺合成酶研究进展.生物学杂志,18:1-3
    李合生.2000.植物生理生化实验原理和技术.北京:高等教育出版社.pp.165-167
    李明,王根轩.2002.干早胁迫对甘草幼苗保护酶活性及脂质过氧化作用的影响.生态学报,22: 503-507
    李晓燕,宋占年,董志贤.2004.植物的盐胁迫生理.西北师范大学学报:自然科学版,40:106-111
    李彦,张英鹏,孙明,高弼模.2008盐分胁迫对植物的影响及植物耐盐机理研究进展.中国农学通报,24:258-265
    李艳华,杨敏生,王海英,梁海永,王进茂.2000树木抗盐生理研究进展.河北林果研究,15:189-196
    梁涵,张欣欣,管清杰,罗秋香,柳参奎.2008.盐胁迫下虎尾草上调基因的筛选和鉴定.分子植物育种,6:886-892
    梁宇,荆玉祥,沈世华.2004.植物蛋白质组学研究进展.植物生态学报,28:114-125
    刘爱荣,赵可夫.2005.盐胁迫下盐芥渗透调节物质的积累及其渗透调节作用.植物生理与分子生物学学报,31:389-395
    刘振林,戴思兰.2004.植物甜菜碱醛脱氢酶基因研究进展.西北农林科技大学学报,32:104-112
    罗秋香,2006,碳酸盐逆境下虎尾草叶片蛋白质组学研究.东北林业大学博士学位论文,11-12
    罗治文,朱樑,谢谓芬.2006.同位素标记相对和绝对定量技术研究进展.中国生物工程杂志,26:83-87.
    马焕成,王沙生.1998.胡杨膜系统的盐稳定性及盐胁迫下的代谢调节.西南林学院学报,18:15-23.
    马丽清,韩振海,周二峰,许雪峰.2006.盐胁迫下珠眉海棠与山定子叶片Na+区域化的研究.西北植物学报,26:1378-1383
    马文月.2004.植物抗盐性研究进展.农业与技术,24:95-99
    裘丽珍,黄有军,黄坚钦,夏国华,龚宁.2006.不同耐盐性植物在盐胁迫下的生长与生理特性比较研究.浙江大学学报:农业与生命科学版,32(4):420-427
    任欢,钟海秀,戴绍军,陈思学,阎秀峰.2009.拟南芥莲座叶芥子油苷含量对水分胁迫的响应.生态学报,29(8):4372-4379
    阮松林,马华升,王世恒,忻雅,钱丽华,童建新,赵杭苹,王杰.2006.植物蛋白质组学研究进展Ⅱ蛋白质组技术在植物生物学研究中的应用.遗传,28:1633-1648
    沈义国,陈受宜.2001.植物盐胁迫应答的分子机制.遗传,23:365-369
    王素平,李娟,郭世荣,胡晓辉,李王景,汪天.2006. NaCl胁迫对黄瓜幼苗植株生长和光合特性的影响.西北植物学报,26:455-461
    杨敏生,李艳华.2003.盐胁迫下白杨无性系苗木体内离子分配及比较.生态学报,23:271-277
    杨少辉,季静,王罡,宋英今.2006.盐胁迫对植物影响的研究进展.分子植物育种,4:139-142
    尹文兵,黄勤妮,印莉萍.2004.模式植物蛋白质组研究进展.生物信息学,2:47-50
    张国,王玮,邹琦.2004. Rubisco活化酶的分子生物学.植物生理学通讯,40:633-637
    赵可夫,李法曾.1999.中国盐生植物.植物学通报,16:201-207
    赵琳琳,徐启江,姜勇,李玉花.2008生物和非生物胁迫下的植物细胞中丝裂原活化蛋白激酶(MAPK)信号转导.植物生理学通讯,44:169-174

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700