樟子松顶芽休眠与萌发转换的蛋白质组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物芽休眠是植物生长发育过程中经过长期演化而获得的一种对环境条件及季节性变化的生物学适应性。芽的休眠特性不仅对物种的保存、繁衍具有特殊的生物学意义,而且在农林生产中具有重要的经济意义。樟子松是我国北方半干旱风沙地区营造防风固沙林、农田防护林、牧场防护林、水土保持林和用材林的主要树种之一。但若不能正确掌握樟子松顶芽休眠与萌发生物学特性及萌发过程中的生理生化变化规律,尤其是对樟子松芽休眠解除机理的认识不足,往往会对引种、选种以及杂交育种等工作产生较大影响,严重制约了樟子松遗传改良的进程。植物芽休眠与解除是个复杂的生命过程,涉及到新陈代谢,激素调控,营养物质合成及转运,细胞信号转导,细胞分裂及分化等多方面。多年来,科研工作者对休眠进行了许多研究和探索,在种子休眠的研究方面取得了丰硕的成果,但在芽休眠方面起步较晚、研究较少,特别是在芽休眠机理、遗传学基础、休眠解除的调控等方面尚不清楚。随着新技术、新方法的出现,在芽休眠的研究上取得了较快的进展。蛋白质组学从一个生物体具有特定功能的器官、组织、细胞着手,在不同生理条件下研究表达蛋白质的变化,通过对蛋白质的表达模式和功能模式进行直接分析。它是后基因组学的一个重要部分,也是当前生物学领域研究的热点。
     本研究针对樟子松顶芽从冬季休眠到春季解除这一现象,观察从休眠到解除过程中樟子松芽的形态变化,从而确定对樟子松芽进行蛋白质组学研究的关键时期。采用蛋白质双向电泳和质谱联用的方法鉴定和分析樟子松顶芽休眠转换过程中表达丰度变化蛋白点的110个蛋白质点中,通过质谱鉴定了96个点,通过功能结构域搜索和相似性比较,对其中71个(74%)在数据库中已经有功能注释,25(26%)个为未知的或推测的蛋白质。利用KEGG PATHWAY对在数据库中已经有功能注释蛋白进行了GO分类进一步鉴定和分析其生物学功能。将这些蛋白质归属于7个主要的功能类群,包括:(1)细胞代谢和周期调控、(2)细胞构建、(3)蛋白质代谢、(4)胁迫反应、(5)木质素合成、(6)信号转导、转录调控、碳代谢等其它生物学功能,并且探讨了ABA诱导相关蛋白与胁迫相关蛋白质可能在芽休眠诱导和解除中发挥的作用,表明胁迫相关蛋白可能是樟子松顶芽休眠的诱导和解除过程的关键因子之一。鉴定出一个细胞周期调控因子Cell division cycle protein 48,具ATP活性并且参与质膜的重建,可能参与了芽休眠的诱导和解除调控的复杂过程。采用RACE-PCR技术继续对樟子松ACO基因进行克隆,得到1551bp的cDNA序列,编码516个氨基酸,计算分子量为56.58 kD,等电点为6.21。其氨基酸序列与其他物种的Aconitate hydratase (ACO)氨基酸序列具有较高的相似性。经生物信息学分析其结构和功能均具有顺乌头酸酶的特征。有研究也表明顺乌头酸酶与生长素和脱落酸的调控密切相关并且在植物发育过程中发挥作用,这预示,在植物生长发育过程中生长素、激素及顺乌头酸酶直接或间接的相互作用,从而在调控休眠与解除的过程中起一定作用。本研究初步揭示了参与樟子松芽休眠解除过程的蛋白质表达变化规律和生物学功能。这将有助于从整体水平上揭示林木芽休眠与解除的分子机理,对加快林木遗传育种的进程具有重要理论意义和应用价值。
The bud dormancy in perennial plants, which formed during a long evolutional process, is a biological adaptability to the changes of environmental factors and different seasons. In particular, it is a characteristic feature of buds dormancy of many species which are of ecological interest in multiplication and economic interest in wood production. Pinus sylvestris L.is a major species for sand-fixation and major source of timber in North China for its high genetic adaptability to tolerate severe climatic conditions.Importantly, it will not provide a reference frame for future studies such as selection of elite trees, genetic breeding if we can not understand the complex molecular mechanisms of induce or break bud dormancy. Bud dormancy is a complex physiological process characterized by the cellular activities that involve metabolism, stress/defense response, gene regulation, signal transduction, and cell formation.Although many significant mileposts have been reached in our understanding of mechanisms of seed dormancy in the past years.it is not clear for mechanistic regulation of bud dormancy. Proteomics has become a basic method for the largescale analysis of proteins in many fields of plant biology. In combination with the availability of genome sequence data, proteomics has opened up enormous possibilities for identifying the total set of expressed proteins as well as expression changes both during growth and development.
     We focus on 4 critical stages of apical buds of Pinus sylvestris I.within periods of dormancy that are typically transition during bud development in a systems biology approach to unravel the underlying morphologic observation of apical bud development in Pinus. To identify key proteins related to bud dormancy and burst, a proteomic approach is being utilized. 2-DE was done using apical buds of 4 critical stages during the dormancy-to-growth transitions in Pinus sylvestris as a result of subsequent 110 differential expression protein spots(were detected in Coommassie-stained gels within the 4-7 pH) related to different stages.It allowed the confident identification of 96 out of the 110 protein spots subjected to LC MS/MS that was used to generate tryptic peptide masses that were submitted to Mascot for identification, Of the differentially expressed proteins,74%(71 protein points), a putative function was assigned based on similarity of sequences with previously characterized proteins,26%(25 protein points) did not hit any protein or were hypothetical proteins.Proteins were classified into 7 groups subject to KEGG PATHWAY analysis based on their biological process/pathway categories, respectively,(1)Cell metabolism;(2)cell wall formation;(3)protein metabolism;(4) stress/defense response;(5)lignin biosynthetic process;(6)other cellular functions that involve carbohydrate metabolism, transcriptional regulation, signal transduction. In the present study, dormancy and breaking of buds and the participation of the hormones ABA and stress-induced protein in this process were analyzed by means of proteomics.A cell division cycle protein 48 which may control bud development was identified.A putative germination-associated cDNA,aconitase (Psy-ACO)were cloned by means of RACE-PCR; The high identity match to available aconitase sequence,it has character of ACO by analysis amino acid polypeptide encoded by Psy-ACO.Taken together, these results suggest that aconitase plays a role in regulating the bud development.This study expands our understanding of the changes in protein expression associated with the dormancy-to-growth transitions in Pinus sylvestris and provides insights into the molecular mechanisms of induce or break bud dormancy. It is important in both theory and application to forest genetic breeding.
引文
[1]周以良,董世林,聂绍荃.黑龙江树木志[M].哈尔滨:黑龙江科学技术出版社.1986.
    [2]胡先马肃.中国松杉植物之分布[J].中国植物学杂志.1958,3(2):33-35.
    [3]吴中伦.中国松属的分布和分类[J].植物学报.1956,5(3):12-15.
    [4]彭镇华.樟子松[J].中国城市林业.2004,2(2):55-57.
    [5]戴继先,杨国林,杨战阳.治沙造林先锋树种-樟子松造林技术研究[J].林业实用技术.2003,(10):527.
    [6]姜凤歧,曹有成,曾德慧,等.科尔沁沙地生态系统退化号恢复[M].北京:中国林业出版社.2002,17-245.
    [7]蒋德明,刘志民,曹有成,等.科尔沁沙地荒漠化过程与生态恢复[M].北京:中国环境科学出版社.2003,291-292.
    [8]戴继先.苗龄对樟子松造林成活率的影响[J].内蒙古林业科技.1997,(3):21,24.
    [9]红玉,郭连生,德永军.科尔沁沙地樟子松造林技术研究[J].内蒙古农业大学学报.2003,24(2):33-39.
    [10]赵晓彬,刘光哲.沙地樟子松引种栽培及造林技术研究综述.西北林学院学报.2007,22(5):86-89.
    [11]高凤山,魏建华,胡英阁,等.樟子松遗传改良研究概述[J].辽宁林业科技,2001,3:5-8.
    [12]刘桂丰,杨书文,夏得安,等.樟子松种源试验的研究(Ⅲ)-地理变异规律[J].东北林业大学学报.1991,9(育种专集):96-102.
    [13]刘录,张景林,毛玉琪,等.樟子松杂交亲本及杂交组合选择阶段研究[J].林业科技通讯.1997(5):10-12.
    [14]金小红,金志明,张连才,等.白城市林科所试验林中形成的樟子松×长白松和樟子松×黑松天然杂种选择[J].吉林林业科技,.1999(1):1-3.
    [15]田成玉,李春英,赵春建,祖元刚.樟子松受精作用和原胚的选择.植物研究.2007,27(1):34-37.
    [16]李慧玉,董京祥;姜静.樟子松突变丛生枝蛋白质的双向电泳分析.生物技术.2004,14(1):35-37.
    [17]Perry T O.Dormancy of trees in winter.Science.1971,171:29-36.
    [18]Lang G A,Early J D,Martin G C.Endo-,para-,and eco-dormancy:physiological terminology and classification for dormancy research.HortSci.1987,22:371-377.
    [19]高东升,束怀瑞,李宪利.几种适宜设施栽培果树需冷量的研究.园艺学报.2001,28(4):283-289.
    [20]简令成,卢存福,邓江明,等.木本植物休眠的诱导因子及其细胞内Ca2+水平的调节作用.应用与环境生物学报.2004,10(1):1-6.
    [21]Jian L C,.Li P H,Sun L H,et al.Alteration in ultrastructure and subcellular localization of Ca2+ in poplar apical bud cells during the induction of dormancy.Journal of Experimental Botany.1997,48:1195-1270.
    [22]王海波,高东升,王孝娣,等.短时间高温对“曙光”油桃芽自然休眠调控的研究.园艺学报.2006,33(3):601-604.
    [23]Clements R.F.. Short day treatment may be answer to producing second crop Redgauntlet.Grower, London.1972,77:795-768.
    [24]Carner W.W.,Allard H.A.. Further studies in photoperiodism the response of the plant to relative length of day and night. Journal of Agriculture Reseach.l923,23:871-920.
    [25]Van Hugstee R B, Weiser C J, Li P H. Cold acclimation in cornus stolonifera under natural and controlled photoperiod. Journal of Botanical Gazette.1967,128:200-205.
    [26]Okuba H. Growth cycle and dormancy in plants.In Dormancy in Plants-From Whole Plant Behavior to Cellular Control(Viemont,J.D.and Crabbe,J.,eds).2000,1-22,CABI
    [27]S Shimizu-Sato,H Mori.Control of outgrowth and dormancy in axillary buds.Plant Physiol.2001,127(4):1405-14013.
    [28]Fennel A. and E Hoover. Photoperiod influences growth, bud dormancy and cold acclimation in Vitis labruscana and V. riparia.American Society for Horticultural Science.1991,116:270-273.
    [29]Tung C.H.,and Deyoe D.R..Dormancy induction in container-grown Abies seedlings: Efeets of environmental cues and seedlings age. New For.1991,5:13-22.
    [30]Cornforth J.W.,Millborrow B.V.,Ryback G.. Identification and estmation of abscisin Ⅱ in plant extracts by spectropolarimetry.Nature.1966,210,627-628.
    [31]Whitelam G.C.,and Devlin P. Roles of different phytochromes in Arabidopsis photomorphogenesis.Plant,Cell&Environment.1997,20:752-758.
    [32]Chen T H H,Howe G T,Bradshaw H D Jr. Molecular genetics analysis of dormancy-related raits in poplars.Weed Science.2002,50:232-240.
    [33]Olsen J E, Junttila O.Far red end-of-day treatment restores wild type-like plant length in hybrid aspen over-expressing phytochrome A. Physiology of Plant.2002,115:448-457.
    [34]Tom Ruttink, Matthias Arend, Kris Morreel, et al.A molecular timetable for apical bud formation and dormancy induction in poplar. The Plant Cell.2007,19:2370-2390.
    [35]Tanino K K,Fuchigami L H. Dormancy2breaking agents on acclimation and deacclimation of dogwood[J].HortScience.1989,24(2):353-354.
    [36]Cook gel C, Bellen An:Cronje, paul J.R. et,.al. Freezing temperature treatment induces bud dormancy in"GrannySmith"apple shoots.Scientia Horticulturae.2005,106(2):170-176.
    [37]Arora,R.,M.E.Wisniewski,and L.J.Rowland.Cold acclimation and alterations in dehydrin-like and bark storage proteins in the leaves of sibling deciduous and evergreen peach. American Society for Horticultural Science.1996,121:915-919.
    [38]John carter, E.Hummer. Gooseberry mite infestation decreases the cold hardiness of dormant black current lower buds. Hort science.1999,34(2):218-220.
    [39]Anne Fennell. Systems and approaches to studying dormancy:introduction to the workshop. Hortscience.1999,34(7):1171-1173.
    [40]王成章,韩锦峰,胡喜峰,等.光周期对不同秋眠性苜蓿品种ABA含量的影响.作物学报.2005,31(10):1370-1372.
    [41]Welling A,Moritz T,Palva E T,etal. Independent activation of cold acclimation by low temperature and short photoperiod in hybridaspens.Plant Physiology.2002,129:1633-1641.
    [42]黄鑫,戴思兰,郑国生,盖树鹏.木本植物芽内休眠机制的研究进展.林业科学.2008,44(2):129-133.
    [43]赵文东,赵海亮,高东升,金钊.温度对落叶果树休眠解除影响的研究进展.北方园艺.2008(3):55-57.
    [44]Linder L.Reanalyzing historical records of winter injury in finnish apple orchards.Can J Plant Sci.2001,81:479-485.
    [45]Erez A,Faust M, Line MJ.Changes in water status in peach buds on induction. development and release from dormancy. HortSci.1998,73:111-123.
    [46]Or E,Vilozny I,Fennell A,et al.Dormancy in grape buds:Isolation and characterization of catalase cDNA and analysis of its expression following chemical induction of bud dormancy release. Plant Sci.2002,162:121-130.
    [47]刘波,郑国生,闫志佩,等.低温处理对牡丹春节催花及营养类物质变化的影响.西北植物学报.2004,24(9):1635-1639.
    [48]Falvre-Rampant O, Cardle L,Marshall D,et al.Changes in gene expression during meristem activation processes in Solanum tuberosum with a focus on the regulation of an auxin response factor gene. J Experi Bot.2004,55(397):603-612.
    [49]Welling A,Kaikuranta P,Rinne P. Photoperiodic induction of dormancy and freezing tolerance in Betula puvescens. Involvement of ABA and dehydrins.Physiol.Plant.1997,100:119-125.
    [50]Khanizadeh S,Buszard D,Zarkadas C G. Seasonal variation of hydrophilic, hydrophobic, and charged amino acids in developing apple flower buds. Plant Nature.1994,17:2025-2030.
    [51]Pacey-Miller T,Scott K,Ablett E, et al.Genes associated with the end of dormancy in grapes.Funct.Integr.Genomics.2003,3:144-152.
    [52]Fuchigami L H and Wisniewski M. Quantifying bud dormancy:physiological approaches.HortSci.1997,32:618-629.
    [53]高东升,束怀瑞,李宪利.几种落叶果树H2O2含量变化与自然休眠关系的研究.园艺学报.2002,29:20-23.
    [54]Wang S YJiao H J,Faust M.Changes in the activities of catalase,peroxidase,and polyphenol oxididase in apple buds during bud break induced by thidiazuron. Plant Growth Regul.1991,10:33-39.
    [55]Arora R M,Wisniewski E,Scorza R.Cold accilimation in genetically related(sibling)deciduous and evergreen peach(Prunus persica L.Batch).Plant Physiol.1992,99:1562-1568.
    [56]Lang G A and Tao J.Dormant Peach flower bud proteins associated with chill unit accumulation of negation temperature.HortSci.1991,26:733.
    [57]高东升,夏宁.休眠桃树枝条中碳水化合物的含量变化和外源生长调节剂对打破休眠的效应.植物生理学通讯.1999,35:10-12.
    [58]李宪利,闫田力,高东升,等.低温在诱导油桃芽解除休眠过程中对代谢的影响.中国生态农业学报.2002,10:27-29.
    [59]Rinne P L.Kaikuranta P M,van der Schoot C.The shoot apical meristem restores its symplasmic organization during chilling-induced release from dormancy. Plant J.2001,26:249-264.
    [60]Rohde A,Van Montagu M,Inze D,et al.Factors regulating the expression of cell cycle genes in individual buds of Populus.Planta.1997,201:43-52.
    [61]Owens J N and Molder M.A study of DNA and mitotic activity in the vegetative apex of Douglas fir during the annual growth cycle.Can.J.Bot.1973,51:1395-1409.
    [62]Gevaudant F,Petel QGuilliot A. Differential expression of four members of the H+-ATPase gene family during dormancy of vegetative buds of peach trees.Planta.2001,212:619-626.
    [63]Clark S E,Jacobsen S E,Levin J Z,Meyerowitz E M.The ClAVATA and shoot meristemless loci competitively regulate meristem activity in Arabidopsis. Development. 1996,122:1567-1575.
    [64]Brunel N,Leduc N,Poupard P,et al.KNAP2,a class I KNl-like gene is a negative marker of bud growth potential in apple trees(Malus domestica[L.]Borkh.)J.Exp.Bot.2002,53:2143-2149.
    [65]Rosin F M,Hart J K,Horner H T,et al.Overexpression of a KNOTTED-like homeobox gene of potato alters vegetative development by decreasing gibberellin accumulation. Plant Physiol.2003,132:106-117.
    [66]Hauagge R and Cummins J N.Genetics of length of dormancy period in Malus vegetative buds.J.Amer.Soc.Hort.Sci.1991,116:121-126.
    [67]Lawson D M,Hemmat M,Weeden N F. The use of molecular marker to analyze the inheritance of morphological and developmental traits in apple.J.Amer.Soc.Hort.Sci.1995,120:532-537.
    [68]Olsen J E,Junttila O,Nilsen J,et al.Ectopic expression of oat phytochrome A in hybrid aspen changes critical daylenth for growth and prevents cold acclimatization.Plant J.1997,12:1339-1350.
    [69]Frewen B E,Chen H H,Howe G T,et al. Quantitative trait loci and candidate gene mapping of bud set and bud flush in Populus.Genetics.2000,154:837-845.
    [70]Muthalif M M,and Rowland L G. Identification of dehydrin-like proteins responsive to chilling in floral buds of blueberry(Vaccinium,section Cyanococcus).Plant Physiol.1994,104:1439-1447.
    [71]Welling A,Rinne P,Annell V A,et al. Photoperiod and temperature differentially regulate the expression of two dehydrin genes during overwintering of birch.J Experi.Bot.2004,55:507-517.
    [72]Tom Ruttink, Matthias Arend, Kris Morreel, et al. A Molecular Timetable for Apical Bud Formation and Dormancy Induction in Poplar. The Plant Cell.2007,19:2370-2390.
    [73]Raili Ruonala, Paivi L.H.Rinne, Jaakko Kangasjarvi, et al. CENL1 Expression in the Rib Meristem Affects Stem Elongation and the Transition to Dormancy in Populus Raili Ruonala,. The Plant Cell.2008,20:59-74.
    [74]Law R D and Suttle J C.Transient decreases in methylation at 50-CCGG-30 sequences in potato(Solarium tuberosum L.)meristem DNA during progression of tubers through dormancy precede the resumption of sprout growth. Plant Mol.Biol.2003,51:437-447.
    [75]Devitt M L and Stafstrom J P. Cell cycle regulation during growth-dormancy cycles in pea axillary buds.Plant Mol.Biol.1995,29:255-265.
    [76]Campbell M A,Suttle J C,Sell T W. Changes in cell cycle status and expression of p34 cdc2 Kinase during potato tuber meristem dormancy.Physiol.Plant.1996,98:743-752.
    [77]Horvath D P,Chao W S,Anderson J V.Molecular analysis of signals controlling dormancy and growth in underground adventitious buds of leafy spurge. Plant Physiol.2002,128:1439-1446.
    [78]Gutierrez C,Ramirez-Parra E,Castellano M M,et al.,Gl to S transition:more than a cell cycle engine switch. Curr.Opin.Plant Biol.2002,5:480-486
    [79]Freeman D,Riou-khamlichi C,Oakenfull E A,et al.,Isolation,characterization and expression of cyclin and cyclin-dependent kinase genes in Jerusalem artichoke(Helianthus tuberosus L.)J.Exp.Bot.2003,54:303-308.
    [80]Horvath D P and Anderson J V. The effect of photosynthesis on underground adventitious shoot bud dormancy/quiescence in leafy spurge(Euphorbia esuld).In.2nd International Symposium On Plant Dormancy:Short Communications(Viemont,J-D.and Crabbe,J.,eds).2000,pp.30-34,Presses de l'University d'Angers.
    [81]Cline M G. Apical dominance.Bot.Rev.1991,57:318-358.
    [82]Cline M GConcepts and terminology of apical dominance.Am.J.Bot.1997,84:1064-1069.
    [83]Francis D and Sorrell D A. The interface between the cell cycle and plant growth regulators:a mini review. Plant Growth Regul.2001,33:1-12.
    [84]Beveridge C A,Symons G M,Turnbull C G. Auxin inhibition of decapitation-induced branching is dependent on graft-transmissible signals regulated by genes Rmsl and Rms2.Plant Physiol.2000,123:689-697.
    [85]Ogawa M,Hanada A,Yamauchi Y,et al.Gibberellin biosynthesis and response during Arabidopsis seed germination. Plant Cell.2003,15:1591-1604.
    [86]Fan X D and Harberd N P.Auxin promote Arabidopsis root growth by modulating gibberellin response.Nature.2003,421:740-743.
    [87]Champagnat P. Rest and activity in vegetative buds of trees.Ann.Sci.For.1997,46(suppl.):9-26.
    [88]Stafstrom J P,Ripley B D,Debitt M L,et al. Dormancy-associated gene expression in pea axillary buds.Planta.1998,205:547-552.
    [89]Jia Y,Anderson J V,Horvath D P,et al.Subtracive cDNA libraries identify differentially expressed genes in dormant and growing buds of leafy spurge(Euphorbia esula).Plant Mol.Biol.2006,61:329-344.
    [90]Gilmour S J and Thomashow M F. Cold acclimation and cold-regulated gene expression in ABA mutants of Arabidopsis thaliana.Plant Mol.Biol.1991,16:1233-1240.
    [91]Wang H,Qi Q,Schorr P,et al.ICKl,a cyclin-dependent pritein kinase inhibitor from Arabidopsis thaliana interacts with both Cdc2a and CycD3,and its expression is induced by abscisic acid. Plant J.1998,15:501-510.
    [92]Wasinger V C, Cordwell S J, Cerpa-Poljak A, Yan, J X, Gooley A A, Wilkins M R, Duncan M W, Harris R, Williams K L, Humphery-Smith I. Progress with gene-product mapping of the mollicutes:mycoplsma genitalium. Electrophoresis.1995,16(1):1090-1094.
    [93]阮松林,马华升,王世恒,忻雅,等.植物蛋白质组学研究进展.Ⅰ.蛋白质组关键技术遗传HEREDITAS (Beijing).2006,28(11):1472-1486.
    [94]Sixue Chen, and Alice C.Harmon. Advances in plant proteomics. Proteomics. 2006,6:5504-5516.
    [95]Kerby K, Kuspira J. The phylogeny of the polyploidy wheats Triticum aestivum (bread wheat) and Triticum turgidum (maca-roni wheat).Genome.1987,29(6):722-737.
    [96]Bahrman N, Zivy M, Thiellement H. Genetic relationships in the sitopsis section of Triticum and the origin of the B genome of the polyploidy wheats. Heredity.1988,61(6):473-480.
    [97]David J L, Zivy M, Cardin M L, Brabant P. Protein evolution in dynamically managed populations of wheat:adaptative responses to macro-environmental conditions.Theorl Appl Genet.1997,95(5-6):932-941.
    [98]Bahrman N, Zivy M, Damerval C, Baradat P. Organisation of the variability of abundant proteins in seven geographical origins of maritime pine (Pinus pinaster Ait).Theor Appl Genet.1994,88(3-4):407-411.
    [99]Skylas D J, Copeland L, Rathmell W G, Wrigley C W. The wheat grain proteome as a basis for more efficient cultivar identifica-tion. Proteomics.2001,1(12):1542-1546.
    [100]Abe T, Gusti R S,Ono M, Sasahara T. Variation in glutelin and high molecular weight endosperm protein among subspecies of rice (Oryza sativa L.)detected by two-dimensional gel elec-trophoresis.Genes Genet Syst.1996,71(1):63-68.
    [101]Saruyama H, Shinbashi N. Identification of specific proteins from seed embryos by two-dimensional gel electrophoresis for the discrimination between indica and japonica rice. Theor Appl Genet.1992,84(7-8):947-951.
    [102]Komatsu S,Tanaka N.Rice proteome analysis:A step toward functional analysis of the rice genome. Proteomics.2005,5(4):938-949.
    [103]Bryna E. Donnelly, Robin D.Maddenl,Patricia Ayoubi, David R. Porter and JackW. Dillwith The wheat (Triticum aestivum L.)leaf proteome.Proteomics.2005,5,1624-1633.
    [104]Francisco M. Canovas, Eliane Dumas-Gaudot,et al.Ghislaine Recorbet, Plant proteome analysis.Proteomics.2004,4:285-298.
    [105]Bahrman N, Petit R. Genetic polymorphisms in maritime pine (Pinus pinaster Ait) assessed by two-dimensional gel electropho-resis of needle, bud and pollen. J Mol Evol. 1995,41(2):231-237.
    [106]Leonardi A, Damerval D, de Vienne D.Organ-specific variability and inheritance of maize proteins revealed by two-dimensional electrophoresis.Genet Res Camb.1988,52(1):97-103.
    [107]Posch A, van den Berg B M, Postel W, Gorg A. Genetic variabil-ity of pepper (Capsicum annuum L.) seed proteins studied by 2-D electrophoresis with immobilized pH gradients. Electrophoresis.1992,13(1):774-777.
    [108]Fukao Y, Hayashi M, Nishimura M. Proteomic analysis of leaf peroxisomes in greening cotyledons of Arabidopsis thaliana. Plant Cell Physiol.2002,43(7):689-696.
    [109]Carter C, Pan S Q, Zouhar J, Avila E L, Thomas G, Raikhel N V. The vegetative vacuole proteome of Arabidopsis thaliana reveals predicted and unexpected proteins.Plant Cell.2004,16(11):3285-3303.
    [110]Szponarski W, Sommerer N, Boyer J C,Rossignol M, Gibrat R. Large-scale characterization of integral proteins from Arabidop-sis vacuolar membrane by two-dimensional liquid chromatogra-phy. Proteomics.2004,4(2):397-406.
    [111]Boudart G, Jamet E, Rossignol M, Lafitte C, Borderies G, Jauneau A, Esquerre-Tugaye M T, Pont-Lezica R. Cell wall pro-teins in apoplastic fluids of Arabidopsis thaliana rosettes: Identi-fication by mass spectrometry and bioinformatics. Proteomics.2005,5(1):212-221.
    [112]Kleffmann T, Russenberger D, von Zychlinski A, Christopher W, Sjolander K, Gruissem W, Baginsky S.The Arabidopsis thaliana chloroplast proteome reveals pathway abundance and novel pro-tein functions. Curr Biol.2004,14(5):354-362.
    [113]Friso G, Giacomelli L, Ytterberg A J, Peltier J B, Rudella A, Sun Q, van Wijk K J. In-depth analysis of the thylakoid membrane proteome of Arabidopsis thaliana chloroplasts: new proteins, new functions, and a plastid proteome database. Plant Cell.2004,16(1):478-499.
    [114]Kruft V, Eubel H, Jansch L, Werhahn W, Braun H P. Proteomic approach to identify novel mitochondrial proteins in Arabidopsis. Plant Physiol.2001,127(12):1694-1710.
    [115]Millar A H, Sweetlove L J, Giege P, Leaver C J. Analysis of the arabidopsis mitochondrial proteome. Plant Physiol.2001,127(12):1711-1727.
    [116]Finnie C, Melchior S, Roepstorff P, Svensson B.Proteome analy-sis of grain filling and seed maturation in barley. Plant Physiol.2002,129(6):1308-1319.
    [117]Finnie C, Maeda K, ostergaard O, Bak-Jensen K S,Larsen J, Svensson B.Aspects of the barley seed proteome during devel-opment and germination. Biocheml Soc Trans.2004,32(3):517-519.
    [118]Franco O L, Rigden D J, Melo F R, Grossi-de-Sa M F. Plant a-amylase inhibitors and their interaction with insect a-amylases Structure, function and potential for crop protection. Eur J Bio-chem.2002,269(2):397-412.
    [119]Gallardo K, Signor C L, Vandekerckhove J, Thompson R D,Burstin J. Proteomics of Medicago truncatula seed development establishes the time frame of diverse metabolic processes related to reserve accumulation. Plant Physiol.2003,133(9):664-682.
    [120]Hajduch M, Gapathy A, Stein J W, Thelen J J. A systematic pro-teomic study of seed filling in soybean.Eestablishment of high-resolution two-dimensional reference,maps, expression pro-files, and an interactive proteome database.Plant Physiol.2005,137(4):1397-1419.
    [121]Gallardo K, Job C,Groot S P C,Puype M, Demol H, Vande-kerckhove J, Job D. Proteomics of Arabidopsis seed germination:A comparative study of wild-type and gibberellin deficient seeds.Plant Physiol.2002,129(5):823-837.
    [122]Shen S,Sharma A, Komatsu S.Characterization of proteins re-sponsive to gibberellin in the leaf-sheath of rice (Oryza sativa L.)seedling using proteome analysis. Biol Pharm Bull.2003,26(2):129-136.
    [123]Rakwal R, Komatsu S.Role of jasmonate in the rice (Oryza sa-tiva L.)self-defense mechnism using proteome analysis.Electo-phoresis.2000,21(12):2492-2500.
    [124]Salekdeh G H, Siopongco J, Wade L J, Ghareyazie B,Bennett J. A proteomic approach to analyzing drought-and salt-respon-siveness in rice. Field Crop Res,2002,76(2-3):199-219.
    [125]Hajheidari M, Abdollahian-Noghabi M, Askari H, Heidari M, Sadeghian S Y, Ober E S, Salekdeh G H. Proteome analysis of sugar beet leaves under drought stress. Proteomics.2005,5(4):950-960.
    [126]Lee S, Lee E J, Yang E J, Lee J E, Park A R, Song W H, Park 0 K. Proteomic identification of annexins, calcium-dependent membrane binding proteins that mediate osmotic stress and ab-scisic acid signal transduction in Arabidopsis.Plant Cell.2004;16(5):1378-1391.
    [127]Dani V, Simon W J, Duranti M, Croy R R D.Changes in the to-bacco leaf apoplast proteome in response to salt stress.Pro-teomics.2005,5(3):737-745.
    [128]Ndimba B K, Chivasa S,Simon W J, Slabas A R. Identification of Arabidopsis salt and osmotic stress responsive proteins using two-dimensional difference gel electrophoresis and mass spec-trometry. Proteomics.2005,5(16):4185-4196.
    [129]Yan S P, Tang Z C, Su W A,Sun W N. Proteomic analysis of salt stress-responsive proteins in rice root. Proteomics.2005,5(1):235-244.
    [130]Rep M, Dekker H L, Vossen J H, de Boer A D, Houterman P M, Speijer D, Back J W, de Koster C G, Comelissen B J C. Mass spectrometric identification of isoforms of PR proteins in xylem sap of fungus-infected tomato.Plant Physiol.2002,130(10):904-917.
    [131]Colditz F, Nyamsuren 0, Niehaus K, Eubel H, Braun H P, Kra-jinski F. Proteomic approach:Identification of Medicago trunca-tula proteins induced in roots after infection with the pathogenic oomycete Aphanomyces euteiches. Plant Mol Biol.2004,55(1):109-120.
    [132]Chen R Z, Weng Q M, Huang Z, Zhu L L, He G C.Analysis of resistance-related proteins in rice against brown planthopper by two-dimensional electrophoresis.Acta Bot Sin.2002,44(4):427-432.
    [133]Mann, M.,Jensen, O.N.,Proteomic analysis of post-translational modifications.Nature. 2003,21,255-261.
    [134]Venter, J.C.,Adams, M.D.,Myers E.W., et al.,The sequence of the human genome.Science.2001,291,1304-1351.
    [135]Wang, B. C., Wang, H. X., Feng, J. X., Meng, D. Z., Qu,L. J., Zhu, Y.X., Post-translational modifications, but not transcriptional regulation, of major chloroplast RNA-binding proteins are related to Arabidopsis seedling development.Proteomics.2006,6,2555-2563.
    [136]Jansson S,Douglas CJ:Populus:a model system for plant biology.Annu Rev Plant Biol. 2007,58:435-458.
    [137]Abul K.M. Ekramoddoullah.Molecular tools in the study of the white pine blister rust [Cronartium ribicola] pathosystem. Can. J. Plant Pathol.2005,27:510-520.
    [138]Tuskan G A, Difazio S P, Teichmann T. Poplar genomics is getting popular:the impactof the poplargenome projecton tree research. PlantBiology.2003,5:1-3.
    [139]Bahrman N, Damerval C.Linkage relationships of loci controlling protein amounts in maritime pine (Pinus pinaster Ait).Heredity.1989,63:267-274.
    [140]Gerber S,Rodolphe F, Bahrman N, et a.l Seed-protein variation in maritime pine (Pinus pinaster Ait.)revealed by two-dimensional electrophoresis, genetic determinism and construction of a linkage map.Theor App Genet.1993,85:521-528.
    [141]Plomion C, BahrmanN,DurelC E, eta.l Genomic analysis in Pinus pinaster (Maritime pine) using RAPD and protein markers.Heredity.1995,74:661-668.
    [142]Plomion C,Costa P, Bahrman N, et a.l Genetic analysis of needle proteins in maritime pine.1.Mapping dominant and codominant protein markers assayed on diploid tissue, in a haploid-based geneticmap. Silvae genetica.1997,46:161-165.
    [143]Costa P, PotD, Dubos C, et a.l A genetic map ofMaritime pine based on AFLP, RAPD and protein markers. TheorAppl Genet.2000,100:39-48.
    [144]Bahrman N, ZivyM, Damerval C, et al.Organisation of the variability of abundant proteins in seven geographical origins of maritime pine(Pinus pinaster Ait.).Theor Appl Genet.1994,88:407-411.
    [145]Luis Valledor, Maria A. Castillejo, Christof Lenz,et al.Proteomic Analysis of Pinus radiata Needles:2-DE Map and Protein Identification by LC/MS/MS and Substitution-Tolerant Database Searching..J. Proteome Res.2008,7(7),2616-2631.
    [146]Jenny Renaut, Lucien Hoffmann and Jean-Francois Hausman. Biochemical and physiological mechanisms related to cold acclimation and enhanced freezing tolerance in poplar plantlets.Physiologia Plantarum.2005,125:82-94.
    [147]GABRIELLA S.SCIPPA, DALILA TRUPIANO, MARIAPINA ROCCO, ANTONINO DIIORIO and DONATO CHIATANTE. Unravelling the response of poplar (Populus nigra) roots to mechanical stress imposed by bending. Plant Biosystems.2008,142(2):401-413.
    [148]Jorge I, Navarro R M, Lenz C, et a.l The Holm Oak leaf proteome:Analytical and biological variability in the protein expression level assessed by 2-DE and protein identification tandem mass spectrometry de novo sequencing and sequence similarity searching. Proteomics.2005,5:222-234.
    [149]Danilo D.Fernando.Characterization of pollen tube development in Pinus strobus (Eastern white pine) through proteomic analysis of differentially expressed proteins. Proteomics.2005,5,4917-4926.
    [150]VanderMijnsbruggeK, MeyermansH, VanMontaguM, et al.Wood formation in poplar:identification, characterization, and seasonal variation of xylem proteins. Planta.2000,210:589-598.
    [151]Plomion C,Pionneau C, Bailleres H. Analysis of protein expression along the normal to tension wood gradient in Eucalyptus gunnii. Holzforschung.2003,57:353-358.
    [152]Plomion C, Pionneau C, Brach J, et al. Compression wood-responsive proteins in developing xylem ofmaritime pine (Pinus pinaster Ait).Plant Physiol.2000,123:959-969.
    [153]Gion JM, Lalanne C, ProvostG L, et al. The proteome of maritime pinewood forming tissue. Proteomics.2005,5(14):3731-3751.
    [154]Jorge A.P. Paiva, Marcelo Garces, Ana Alves, et al.Molecular and phenotypic profiling from the base to the crown in maritime pine wood-forming tissue. New Phytologist.2008,178:283-301.
    [155]Max Bylesjo, Robert Nilsson,Vaibhav Srivastava, Integrated Analysis of Transcript, Protein and Metabolite Data To Study Lignin Biosynthesis in Hybrid Aspen. Journal of Proteome Research.2009,8,199-210.
    [156]Xia Yang, Ji Huang, Yan Jiang, Hong-Sheng Zhang,Cloning and functional identification of two members of the ZIP(Zrt, Irt-like protein) gene family in rice (Oryza sativa-L.).Mol Biol Rep.2009,36:281-287.
    [157]Pavesi A, Ficarelli A, Tassi F, et al. Cloning of two glutamate dehy-drogenase cDNAs fromAsparagusof ficinalis:sequence analysis and evo-lutionary implication. Genome.2000, 43:306-316.
    [158]Gao M, Chibbar R N. Isolation, characterization and expression analysis of starch synthase Ⅱa cDNA from wheat(Triticum aes-tivumL.).Genome.2000,43:768-775.
    [159]Connie S.Yarian, Dikran Toroser, Rajindar S.Sohal. Aconitase is the main functional target of aging in the citric acid cycle of kidney mitochondria from mice.Mechanisms of Ageing and Development.2006,127:79-84.
    [160]Wolfgang Moeder, Olga del Pozo,Duroy A. Navarre, Gregory B.Martin, Daniel F. Klessig. Aconitase plays a role in regulating resistance to oxidative stress and cell death in Arabidopsis and Nicotiana benthamiana. Plant Mol Biol.2007,63:273-287
    [161]Janaki Narahari,Rong Ma, Man Wang, and William E.Walden. The Aconitase Function of Iron Regulatory Protein 1.The Journal of Biological Chemistry.2000,275(21):16227- 16234.
    [162]Navarre DA,Wendehenne D,Durner J et al..Nitric oxide modulates the activity of tobacco aconitase.Plant Physiol.2000,122:573-582.
    [163]Auldridge, M. E.,McCarty D.R.,Klee, H. J. Plant carotenoid cleavage oxygenases and their apocarotenoid products.Current Opinion in Plant Biology.2006,9:315-321.
    [164]Brouquisse R,Gaillard J,Douce R. Electron paramagnetic resonance characterization of membrane bound iron2sulfur clusters and aconitase in plant mitochondria. Plant Physiol.1986,81:247-252.
    [165]Hayashi M,Bellis LD,Alpi A et al.Cytosolic aconitase participates in the glyoxylate cycle in etiolated pumpkin cotyledons.Plant Cell Physiol.1995,36:669-680.
    [166]Peyret P,Perez P,Alric M. Structure genomic organization and expression of the A rabi dopsis thaliana aconitase gene. J Biol Chem.1995,270:8131-8137.
    [167]Yung-Chieh Huang, Yueh-Long Chang, Jen-Jen Hsu, Huey-wen Chuang.Transcriptome analysis of auxin-regulated genes of Arabidopsis thaliana. Gene.2008,420:118-124.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700