金属离子改性吸附剂的制备及其对焦化苯中噻吩的脱除研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苯是重要的化工原料,主要来源于石油和焦化行业。近年来,化工企业迅速发展,苯乙烯、苯酚等下游产品的生产规模不断扩大,导致我国对纯苯的需求量持续增长。我国的石油资源相对短缺,煤炭资源相对丰富,焦化行业迅速发展,伴随着大量焦化苯的生产。焦化苯中存在一定量的噻吩类硫化物,这不仅会腐蚀金属设备,在后续生产应用时导致催化剂中毒,而且可能会带来环境污染,严重限制了焦化苯进一步加工利用。为此,国家标准对焦化苯中硫化物的含量要求越来越高。
     吸附法脱除噻吩类硫化物是近年发展起来的一种脱硫方法,该方法具有反应条件温和,投资费用少,脱硫效果好,并且可回收噻吩,吸附剂可再生,环境污染少等优点。从节能环保和资源充分利用的角度看,吸附法是一种非常有应用前景的脱硫方法。但存在吸附剂的选择性差、硫容较小等缺点,高性能吸附剂的研发是实现工业应用的关键。基于此,论文对苯中噻吩脱除用吸附剂的制备及其金属离子改性的条件进行了优化,并对其脱硫性能进行了考察,得出的主要结果如下。
     1)γ-Al2O3负载金属离子改性吸附剂
     γ-Al2O3是一种多孔性物质,每克的内表面积高达数百平方米,具有良好的吸附性和热稳定性,廉价易得,且结构比较简单,有助于在实验中对吸附机理的研究。实验首先选用γ-Al2O3作为载体,采用等体积浸渍法,负载金属元素制取了系列改性吸附剂,并对其脱除噻吩的性能进行了考察,发现硝酸银溶液负载改性制得的吸附剂的吸附性能最好。
     等体积浸渍法虽然可以准确控制活性组分的负载量,但存在活性组分分散不均的问题。而超声波具有空化作用,可以提高相间质量传递速率,改变吸附相平衡关系,进而提高活性组分的分散性。鉴于此,实验采用超声辅助对常规等体积浸渍法进行了优化改进。实验结果发现,超声辅助不仅缩短了吸附剂的制备时间,而且能丰富吸附剂的孔隙结构,细化活性组分Ag颗粒,使其分布均匀,有利于吸附剂对噻吩的脱除。
     吸附剂中Ag含量的改变可以引起吸附剂孔结构分布和比表面积的变化,进而对吸附剂的脱硫效果产生影响,超声辅助等体积浸渍法制备的Ag含量为15%的吸附剂,吸附噻吩效果最佳。其在室温、常压、剂液比为1:4(g/mL)时,可将噻吩浓度从500 mg/L降为1.7 mg/L,脱硫效率高于99%。
     在噻吩-苯、噻吩-环己烷、四氢噻吩-苯、四氢噻吩-环己烷四种溶液中的吸附实验结果,表明Ag改性的y-A1203型吸附剂脱除噻吩主要存在Ag与噻吩环的兀络合和与硫原子成键两种作用机理。
     2)Y型分子筛金属离子交换改性吸附剂
     Y型分子筛是一种具有网状晶体结构的硅铝酸盐,具有均一的孔道和晶穴,且具有比表面积大、热稳定性好、选择性吸附能力强等特点,可用于分离不同种类的分子。对NaY分子筛进行金属离子交换改性,可以明显提高其对苯中噻吩的吸附脱硫性能。其中,铈离子改性制得的CeY分子筛的脱硫效果最好,最佳的改性制备条件为:在0.1 mol/L的硝酸铈溶液中,加热回流离子交换4 h,然后在马弗炉中700℃下焙烧2 h,重复进行两次离子交换。制得的最佳吸附剂在室温、常压、剂液比为1:4(g/mL)时,可将噻吩浓度为500 mg/L的噻吩-苯溶液中的噻吩完全脱除;剂液比为1:14时,其脱硫效率为51.7%,吸附量趋于饱和,平衡硫容为5.74 mg/g。
     以静态脱硫实验中筛选出的最佳改性CeY分子筛作为吸附剂,进行固定床吸附性能研究,得到以下实验结果。吸附剂的粒径越小,越有利于吸附,但是粒径太小会增大床层间的传质阻力,增大能耗。溶液流速在0.2mL/min时较好,流速太大或太小都会使穿透时间变短。吸附反应在室温下进行即可,高温可能会减弱吸附剂与噻吩之间的作用力,从而使吸附性能降低。吸附法更适用于低浓度噻吩的脱除,当噻吩浓度为200 mg/L时,吸附剂的硫容为4.18 mg/g,处理量为20.91 mL/g。
Benzene is an important chemical raw material and comes mainly from petroleum and coking industry. Along with the rapid development of chemical industry in recent years, styrene, phenol and other downstream products expand gradually, resulting in continued growth of the demand for pure benzene. Currently, the oil resources become more and more scarce, while the coal resources is relatively rich in China. The abundant coking benzene is generated with the rapid development of coking industry. But the existence of thiophenic sulfides in coking benzene, which can corrode metal equipment, poison catalysts during the following application, cause environmental pollution, and so on. This will seriously limit its utilization range. So the national standard of the sulfur content in coking benzene becomes more and more rigid.
     Adsorption removal of thiophenic sulfides has developed in recent years as a desulfurization method, which has the advantages of milder reaction conditions, smaller equipment corrosion, lower operating costs, recyclability of thiophene, less environmental pollution, and so on. From the point of energy saving and full utilization of resources, this method is very promising. However, and so on. So the research and development of highly efficient sorbents is the key to achieve industrial applications of this method.
     1) Sorbent ofγ-Al2O3 modified by supporting metallic ion
     γ-Al2O3 is a good sorbent carrier, with the features of high surface area, good thermal stability, simple structure, low expense, easy acquirement, and so on. It was selected as the sorbent carrier and was modified by incipient-wetness impregnation method in the different metallic nitrate solution. According the adsorption behavior in thiophene-benzene solution, it is found that the sorbent modified in silver nitrate solution has the best desulfurization ability.
     The amount of active component loaded onγ-Al2O3 can be accurately controlled by incipient-wetness impregnation method, but there is the problem of uneven dispersion of active component. The ultrasound can improve the rate of mass transfer between phases, change the equilibrium between adsorption phases. In view of this, the sorbent was prepared by the ultrasound-assisted impregnation method to improve impregnation performance. Experimental results show that the assistant ultrasound during sorbent preparation can not only shorten the preparing time, but also enrich the pore structure of sorbent and improve the size and distribution of the Ag particles, which is favorable to the removal of thiophene from benzene.
     The desulfurization capacity of sorbent changes with the content of Ag loaded inγ-Al2O3. The sorbent with 15% quality content of Ag prepared by ultrasound-assisted impregnation method has the highest desulfurization efficiency. It could reduce the thiophene concentration to 1.7 mg/L from 500 mg/L at room temperature and ambient pressure, with the desulfurization mg/L at room temperature and ambient pressure, with the desulfurization efficiency of more than 99%, when the ratio of sorbent to solution was 1:4 (g/mL).
     Comparing the desulfurization results in thiophene-cyclohexane, thiophene-benzene, tetrahydrothiophene-benzene, tetrahydrothiophene-cyclohexane solutions, it is found that there exist two kinds of connection between thiophene and sorbent modified in silver nitrate solution, theπ-complexation and the S-Ag bond.
     2) Sorbent of Y-type zeolite modified by metallic ion-exchange
     Y-type zeolite is a crystalline aluminosilicate with uniform pore structure and crystal cave, large surface area, good thermal stability, strong adsorption selectivity, which can be used to separate different types of molecules. So it was chosen as the sorbent carrier, and modified by liquid ion exchange method with different nitrate solutions. It is found that the desulfurization efficiency of the modified sorbents are all significantly improved, among which the sorbent modified in cerium nitrate solution has the best desulfurization ability. The optimum preparation conditions are that NaY zeolite is ion-exchanged in 0.1 mol/L Ce(NO3)3 solution at 100℃for 4 h, calcined at 700℃for 2 h, and repeated the above steps for two times. The sorbent prepared under the optimum conditions could remove entirely the thiophene in thiophene-benzene solution with 500 mg/L thiophene concentration, at room temperature and ambient pressure, when the ratio of sorbent to solution is 1:4 (g/mL). When the ratio of sorbent to solution was 1:14 (g/mL), its adsorptive capacity tends to saturation with the balance sulfur capacity of 5.74 mg/g.
     The fixed bed equipment was set up to study the adsorption ability of the optimal sorbent in the flow state. The results show that the smaller the sorbent the resistance of mass transfer and the energy consumption if the particle size was too small. The 0.2 mL/min flow rate of the solution presents the good desulfurization capacity. If it is too large or too small, the breakthrough time would be shortened. Room temperature is fine for the adsorption of thiophene because the interaction between sorbent and thiophene may be weakened and the adsorption ability is decreased at high temperature. Adsorption method is more suitable for the removal of thiophene with low concentration. When the thiophene concentration is 200 mg/L, the sulfur capacity of the sorbent is 4.18mg/g and the processing capability is 20.91 mL/g.
引文
[1]陈飙.中国纯苯市场现状及发展前瞻[J].经济管理论坛,2005,(18):70-77.
    [2]邵强.国内外纯苯生产消费现状及市场分析[J].石油化工技术与经济,2008,24(1):15-20.
    [3]吕志国,叶煌.国内焦化粗苯加工发展趋势[J].燃料与化工,2006,37(1):35-38.
    [4]胡益之,聂影,鲁自卫.焦化三苯在应用领域对石油三苯的替代性分析[J].煤化工,2007,35(3):6-10.
    [5]米多,宋岩,谢利群.世界纯苯市场分析[J].化工科技市场,2006,29(5):22-24.
    [6]何建平,李辉.炼焦化学产品回收技术[M].北京:北京工业出版社,2006.
    [7]Stephen H, Tarun K, Jose A, etc. Process for BTX purification[P]. US:6500996,2002.
    [8]李晓良.焦化苯中杂质的分析与脱除[D].中国学位论文全文数据库,太原理工大学,2010年.
    [9]《炼焦化产理化常数》编写组编.炼焦化产理化常数[M].冶金工业出版社.1980.
    [10]Tong S, Dalla L G, Chuang K T. Appraisal of catalysts for the hydrolysis of carbon disulfide[J]. The Canadian Journal of Chemical Engineering,1992,70(4):516-522.
    [11]王颖,张兴文,杨凤林,等.治理粘胶纤维生产废气的研究进展[J].环境污染治理技术与设备,2001,2(3):31-35.
    [12]范明霞.对焦化纯苯进行脱硫精制的研究[D].武汉:武汉科技大学,2004.
    [13]徐志达,曾汉民.吸附分离含硫化合物的进展[J].材料科学与工程,1997,15(4):22-26.
    [14]Kim, Ryungs. Differences Between Drugs-sensitive and Resistant Human Leukemic CEM Cells in c-jun Expression,AP-1 DNA-Building Ctivity, and Formation of Jun/fos Family Dimers, and their Association with Intermucleosomal DNA ladders after Treatment with VM-26[J]. CancerRes,1999,54(18):4958-4966.
    [15]Byron D, Matharu A, Wilson R, et al. The synthesis and liquid crystal properties of certain 5,5"-distributed 2,2'/5,2"-terthiophenes[J]. Molecular Crystals and Liquid Crystals,1995,61(4):261-265.
    [16]刘平,胡建华.低聚噻吩衍生物的合成及液晶性能[J].华南理工大学学报(自然科学版),2003,31(5):11-15.
    [17]王箴.化工辞典[M].第四版.北京:化学工艺出版社.2000,833-834.
    [18]刘光启,马连湘,刘杰.化学化工物性数据手册[M].北京:化学工业出版社,273-286.
    [19]曹忠,王英龙,王武谦.联产法焦化苯脱硫新工艺[J].山东化工,2007,36(9):24-26.
    [20]赵守全,陈佩文.焦化粗苯加氢技术的发展与展望[J].燃料与化工,2007,38(6):43-45.
    [21]马春旭,王俊文,张林香,等.焦化粗苯加氢精制工艺及催化剂研究进展[J].应用化工,2008,37(11):1368-1372.
    [22]Wang D H, Qian W H, Ishihara A, et al. Elucidation of sulfidation state and hydrodesulfurization mechanism on Mo/TiO2 catalyst using 35S radioisotope tracer methods[J]. Applied Catalysis A:General,2002,224(1-2):191-199.
    [23]Wang A J, Ruan L F, Teng Y, et al. Hydrodesulfurization of dibenzothiophene over siliceous MCM-41-supported nickel phosphide catalysts[J]. Journal of Catalysis,2005, 229(2):314-321.
    [24]Huang Z D, Bensch W, Lotnyk A, et al. SBA-15 as support for NiMo HDS catalysts derived from sulfur-containing molybdenum and nickel complexes:Effect of activation mode[J]. Journal of Molecular Catalysis A:Chemical,2010,323(1-2):45-51.
    [25]王五喜.炼焦化学产品的精制与加工利用[M].北京:冶金工业出版社,1989:7.
    [26]郭树才.煤化工工艺学[M].北京:化学工艺出版社,1996:114-119.
    [27]Peter K, Vollhardt C, Schore Neil E. Organic Chemistry [M]. the 3td ed. NEW YORK:W H Freeman and Company,1999:1124-1128.
    [28]王榕,李永红,张丽萍.固体磷酸催化FCC汽油烷基化脱硫的活性和稳定性[J].化学反应工程与工艺,2008,24(1):40-44.
    [29]柯明,周爱国,赵振盛,等.FCC汽油烷基化脱硫技术进展[J].化工进展,2006,25(4):357-361.
    [30]张泽凯,蒋辉,刘盛林,等.汽油烷基化脱硫反应中噻吩及其衍生物的烷基化性能[J].催化学报,2006,27(4):309-313.
    [31]Otsuki S, Nonaka T, Takashima N, et al. Oxidative desulfurization of light gas oil and vacuum gas oil by oxidation and solvent extraction [J]. Energy & Fuels,2000,14(6): 1232-1239.
    [32]李春晶,沈健.汽油和柴油的氧化脱硫技术新进展[J].化学工业与工程,2009,26(3):268-272.
    [33]Ma X L, Zhou A N, Song C S. A novel method for oxidative desulfurization of liquid hydrocarbon fuels based on catalytic oxidation using molecular oxygen coupled with selective adsorption[J]. Catalysis Today,2007,123(1-4):276-284.
    [34]罗国华,徐新,杨春育,等.用氯甲基化脱除焦化苯中噻吩的研究[J].燃料与化工,2001,32(2):86-87.
    [35]王宇,李福祥.焦化苯中噻吩脱除的研究进展[J].山西化工,2008,28(5):37-40.
    [36]赵维鹏,郑英娥.用萃取蒸馏分离焦化苯中的噻吩[J].燃料与化工,1989,20(4):31-36.
    [37]Berg L, Yeh An-I. The unusual Behavior of Extractive Distillation-Reversing the Acetone-isopropyl ether system[J]. AIChe,1985,31(3):504-506.
    [38]阮湘泉,刘家琪,郭崇涛.萃取精馏法苯中噻吩的分离[J].煤化工,1989,46(1):48-53.
    [39]王军民,袁铁.超低硫清洁汽油的生产技术进展[J].天然气与石油,2001,19(4):14-17.
    [40]罗国华,杨春育,徐新.一种由粗苯制备纯苯和浓缩噻吩的方法.中华人民共和国:CN 1552682A[P].2004-12-8.
    [41]Toshiki F, Yoshitaka I, Ken-ichi N, et al. Thermophilic biodesulfurization of hydrodesulfurized light gas oils by Mycobacterium phlei WU-F1[J]. Fems Microbiology Letters,2003,221(1):137-142.
    [42]Bhatia S, Sharma D K. Biodesulfurization of dibenzothiophene, its alkylated derivatives and crude oil by a newly isolated strain Pantoea agglomerans D23W3[J]. Biochemical Engineering Journal,2010,50(3):104-109.
    [43]王云芳,尹风利,史德清,等.车用燃料油吸附法深度脱硫技术进展[J].石油化工,2006,35(1):94-99.
    [44]杨华,李明.吸附工艺脱除噻吩类有机硫的研究进展[J].科技进展,2006,(20):16-19.
    [45]Irvine R L. Process for desulfurizing gasoline and hydro-carbon:US,5730860[P]. 1998-03-24.
    [46]Irvine R L, Frye B A. IRVAD process-low cost breakthrough for low sulfur gasoline. In: Paper Presented at 1999 NPRA Annual Meeting, San Antonio, TX, March 21-23,1999.
    [47]Ma X L, Velu S, Kim J H, et al. Deep desulfurization of gasoline by selective adsorption over solid adsorbents and impact of analytical methods on ppm-level sulfur quantification for fuel cell applications [J]. Applied Catalysis,2005,56(2):137-147.
    [48]Song C S. An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel[J]. Catalysis Today,2003,86(1-4):211-263.
    [49]崔立勇.S-Zorb技术生产低硫汽油、低硫柴油[J].山东化工,2004,33(4):37-39.
    [50]Babich I V, Moulijn J A. Science and technology of novel processes for deep desulfurization of oil refinary streams[J]. Fuel,2003,82(6):607-631.
    [51]Gyanesh P. Process for the production of a sulfur sorbent:US,6184176[P].2001-02-06.
    [52]张晓静,秦如意,刘金龙.FCC汽油吸附脱硫工艺技术-LADS工艺[J].天然气与石油,2003,21(1):39-42.
    [53]康善娇,窦涛,李强,等.FCC汽油吸附脱硫技术研究进展[J].化工进展,2005,24(4):357-361.
    [54]Song C S, Ma X L. New design approaches to ultra-clean diesel fuels by deep desulfurization and deep dearomatization[J]. Applied Catalysis B:Environmental,2003, 41(1-2):207-238.
    [55]陈艳珍.吸附法脱除焦化苯中噻吩的研究[D].太原:太原理工大学,2008.
    [56]曾勇平,冯辉,居沈贵.载锌5A分子筛在汽油模拟体系中吸附脱硫性能的研究[J].现代化工,2005,25(7):207-212.
    [57]冯辉,曾勇平,居沈贵.载铜5A分子筛在汽油模拟体系中脱硫性能的研究[J].燃料化学学报,34(1):117-119.
    [58]张秋云,王云翔,张慧慧.微波辐射下负载型脱硫吸附剂的制备[J].化学与生物工程,2009,26(1):25-27.
    [59]代镇华,宋丽娟,段林海等.噻吩、苯和正辛烷在NaY和CeY分子筛上的热脱附[J].化工科技,2007,15(1):1-4.
    [60]居沈贵,闫武敏,曾勇平.载金属离子的13X分子筛吸附噻吩的动态特性[J].高校化学工程学报,2007,21(1):159-163.
    [61]闫武敏,曾勇平,居沈贵.载金属离子的13X分子筛对噻吩的吸附性能研究[J].2006,34(12):1-4.
    [62]孙海燕.负载稀土元素的Cu+-13X吸附噻吩的性能研究[J].化工时刊,2009,23(4):36-40.
    [63]单佳慧,刘晓勤,崔榕.超声法制备Ce4+/13X分子筛的吸附脱硫性能[J].化工进展,2008,27(7):1065-1069.
    [64]Arturo J, Hernandez-Maldonado, Frances H Y, et al. Desulfurization of transportation fuels by π-complexation sorbents:Cu(Ⅰ)-, Ni(Ⅱ)-and Zn(Ⅱ)-zeolites[J].2005,56(1-2): 111-126.
    [65]肖静,雷筱娱,刘冰,等.苯并噻吩/二苯并噻吩在改性Y型分子筛上的吸附[J].功能材料,2008,39(8):1373-1376.
    [66]Velu S, Ma X, Sun L, et al. Fuel cell grade gasoline production by selective adsorption for removing sulfur[J]. Division of Petroleum Chemistry,2003,48(2):58-59.
    [67]金钦汉,戴树珊,黄卡玛.微波化学[M].北京:科学出版社,1999.
    [68]Ma X, Sprague M, Song C. Deep desulfurization of gasoline by selective adsorption over niekel-based adsorbent for fuel cell applications[J]. Ind Eng Chem Res.2005,44(15): 5768-577.
    [69]王洪国,姜恒,徐静等.苯和1-辛烯对Ce(Ⅳ)分子筛选择性吸附脱硫的影响[J].物理化学学报,2008,24(9):1714-1718.
    [70]李秀奇,唐克,段林海,等.Y型分子筛微波法改性及其选择性吸附脱硫性能[J].工业催化.2007,15(4):1-5.
    [71]唐克,宋丽娟,段林海,等.杂原子Y分子筛的二次合成及其吸附脱硫性能(Ⅱ)[J].燃料化学学报,2007,35(5):624-627.
    [72]罗国华.脱除焦化苯中噻吩的研究[D].大连:大连理工大学,1994.
    [73]King D L, Faz C, Flynn T. Desulfurization of gasoline feed stocks for application in fuel reforming[J]. SAE 2000 World Congress,2000,6:3-9.
    [74]李兰,罗国华,徐新,等.沸石分子筛选择吸附脱除焦化苯中微量噻吩[J].石油化工高等学校学报,2006,19(3):56-59.
    [75]Chen H, Wang Y, Frances H, et al. Desulfurization of high-sulfur jet fuel by mesoporous π-complexation adsorbents [J]. Chemical Engineering Science,2004,126(4):992-993.
    [76]Tian F P, Jiang Z X, Liang C H, et al. Deep desulfurization of gasoline by adsorption on mesoporous MCM-41[J]. Chinese Journal of Catalysis,2005,26(8):628-630.
    [77]唐克,洪新.介孔分子筛Ce-MCM-41的深度吸附脱硫[J].辽宁工业大学学报,2008,28(3):176-178.
    [78]Sun Y, Liu X W, Su W, et al. Studies on ordered mesoporous materials for potential environmental and clean energy applications [J]. Applied Surface Science,2007,253: 5650-5655.
    [79]Chang H K, Parkm J G, Parkm J C, et al. Surface status and size influences of nickel nanoparticles on sulfur compound adsorption[J]. Applied Surface Science,2007,253: 5864-5867.
    [80]单佳慧,刘晓勤.热分散法制备的CuC1/SBA-15的吸附脱硫性能[J].功能材料,2010,41(12):2194-2197.
    [81]单佳慧,刘晓勤,崔榕.超声对Cu(Ⅰ)/SBA-15脱硫吸附剂制备和性能的影响[J].高校化学工程学报,2008,22(5):839-843.
    [82]Larrubia M A, Gutierrez A, Ramirez J, et al. A FT-IR study of the adsorption of indole, carbazole, benzothiophene, dibenzothiophene and 4,6-dibenzothiophene over solid adsorbents and catalysts[J]. Applied Catalysis A:General,2001,224(1):167-178.
    [83]Jeevanadam J, Klabunde K J, Tetaler S H. Adsorption of thiophenes out of hydrocarbons using metal impregnated nanocrystalline aluminum oxide[J]. Microspores and Mesoporous Materials,2005,79(1-3):101-110.
    [84]Arturo J H, Qi G, Yang R T. Desulfurization of Commercial Fuels by π-complexation: Monolayer CuCl/y-Al2O3[J]. Applied Catalysis B:Environmental,2005,61(3):212-218.
    [85]Srivastav A, Srivastava V A. Adsorptive desulfurization by activated alumina[J]. Journal of Hazardous Materials,2009,170(2-3):1133-1140.
    [86]Zhang J C, Song L F, Hu J Y, et al. Investigation on gasoline deep desulfurization for fuel cell applications[J]. Energy Conversion and Management,2005,46(1):1-9.
    [87]Velu S, Watanabe S, Ma X, et al. Development of selective absorbent for removing sulfur from gasonline for fuel application[J]. Petroleum Chemistry,2003,48(2):526-528.
    [88]余谟鑫,李忠,夏启斌,等.表面负载不同金属离子的活性炭吸附二苯并噻吩fJ].功能材料,2006,37(11):1816-1818.
    [89]Hernandez S P, Fino D, Russo N. High performance sorbents for diesel oil desulfurization[J]. Chemical Engineering Science.2010,65(1):603-609.
    [90]Alfarra A, Frackowiak E, Beguin F. The HSAB concept as a means to interpret the adsorption of metal ions onto activated carbons[J]. Applied Surface Science,2004, 228(1):84-92.
    [91]余谟鑫,李忠,夏启斌,等.活性炭表面热氧化对其吸附二苯并噻吩的影响[J].化工学报,2007,58(4):938-943.
    [92]单国彬,刘会洲.多孔聚合物载体的制备及吸附脱除二苯并噻吩的初步探索[J].过程工程学报,2002,2(6):497-500.
    [93]常勇慧,刘波,应汉杰,等.分子印迹技术制备石油有机硫组分固相萃取剂的研究[J].离子交换与吸附,2003,19(5):450-456.
    [94]Yang Y, Liu X, Guo M, et al. Molecularly imprinted polymer on carbon microsphere surfaces for adsorbing dibenzothiophene[J]. Colloids and Surfaces A:Physicochem. Eng. Aspects,2011,377:379-385.
    [95]Hu T, Zhang Y, Zheng L, et al. Molecular recognition and adsorption performance of benzothiophene imprinted polymer on silica gel surface [J]. Journal of Fuel Chemistry and Technology,2010,38(6):722-729.
    [96]Chang H K, Jung G P, Ji C P, et al. Surface status and size influences of nickel nanoparticles on sulfur compound adsorption[J]. Applied Surface Science,2007, 253(13):5864-5867.
    [97]Ania C O, Bandosz T J. Importance of structural and chemical heterogeneity of activated carbon surfaces for adsorption of dibenzothiophene[J]. Langmuir,2005,21(17): 7752-7759.
    [98]Takahashi A, Yang F H, Yang R T. New sorbents for desulfurization by π-complexation: thiophene/benzene adsorption[J]. Ind. Eng. Chem. Res.,2002,41(10):2487-2496.
    [99]韩春玉,刘道胜,宋丽娟,等.噻吩在CeY分子筛上的吸附行为[J].工业催化,2008,16(6):27-30.
    [100]Tian F, Wu W, Jiang Z, et al. The study of thiophene adsorption onto La(Ⅲ)-exchanged zeolite NaY by FT-IR spectroscopy[J]. Colloid and Interface Science,2001,301(2): 395-401.
    [101]Xue M, Chitrkar R, Sakane K. Selective adsorption of thiophene and 1-benzothiophene on metal-ion-exchanged zeolites in organic medium[J]. Colloid and Interface Science, 2005,285(2):487-492.
    [102]Jeevanandam P, Klabunde K J, Tetzler S H. Adsorption of thiophenes out of hydrocarbons using metal impregnated nanocrystalline aluminum oxide[J]. Microporous and Mesoporous Materials,2005,79(1-3):101-110.
    [103]Peatson R G. Hard and Soft Acids and Bases[J]. J. Am. Chem. Soc.,1963,85(22): 3533-3539.
    [104]Li W, Tang H, Liu Q, et al. Deep desulfurization of diesel by integrating adsorption and microbial method[J]. Biochemical Engineering Journal,2009,44(2-3):297-301.
    [105]Simona B, Gervasini A. Preparation of highly dispersed CuO catalysts on oxide supports for de-NOx reactions [J]. Ultrasonics Sonochemistry,2000,10(2):61-64.
    [106]Bianchi C L, Gotti E, Toscano L, et al. Preparation of Pd/C catalysts via ultrasound:a study of the metal distribution[J]. Ultrasonics Sonochemistry,1997,4(4):317-320.
    [107]Bianchi C L, Martini F, Ragaini V. New ultrasonically prepared Co-based catalysts for fischer-tropsch synthesis[J]. Ultrasonics Sonochemistry,2001,8(3):131-135.
    [108]Jeevanandam P, Koltypin Y, Gedanken A. Preparation of nanosized nickel aluminate spinel by a sonochemical method[J]. Materials Science and Engineering B,2002, 90(1-2):125-132.
    [109]杨玉辉,刘民,宋春山,等.改性Y分子筛的吸附脱硫性能[J].石油学报(石油加工),2008,24(4):383-387.
    [110]鞠秀芳,王洪国,徐静,等.噻吩、苯在Ce(Ⅳ)Y分子筛上的吸附行为[J].石油学报(石油加工),2009,25(5):655-660.
    [111]Hernandez-Maldonado A J, Yang R T. Desulfurization of liquid fuels by adsorption via π-complexation with Cu(I)-Y and Ag-Y zeolites[J]. Ind Eng Chem Res,2003,42(1): 123-129.
    [113]Rimer J D, Roth D D, Vlachos D G, el at. Self-assembly and phase behavior of germanium oxide nanoparticles in basic aqueous solutions[J]. Langmuir,2007,23(5): 2784-2791.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700