典型膨胀阻燃聚合物材料燃烧过程分析与模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统的阻燃体系中含卤阻燃剂阻燃效果比较好,但由于在火灾中会放出腐蚀性、有毒的气体,对环境危害较大。而膨胀阻燃体系通过膨胀成炭隔热、隔氧起到阻燃作用,且有抑烟效果,对环境友好,已成为最有前途的阻燃技术之一。膨胀阻燃聚合物材料在火灾中的热行为变化以及热解化学反应过程、燃烧过程都非常复杂,至今仍然没有充分理解,因此有必要对其燃烧过程进行研究,以建立相应的理论模型。
     本文选取膨胀阻燃聚丙烯材料(IFR-PP)和纯聚碳酸酯(PC)作为典型材料,研究了两种材料的膨胀阻燃特性。TG/FTIR联用的分析结果表明,当温度高于290℃(在空气中)或440℃(在氮气中),由于添加剂的作用使IFR-PP聚合物材料热稳定性好于PP。通过调节膨胀阻燃剂的含量,可以使IFR-PP材料的阻燃级别达到V-0级,热释放速率大大降低。IFR-PP聚合物材料的炭渣分析结果表明,膨胀剂配方、含量的变化对炭层结构的致密性、整体性都有很大影响。IFR-PP在低辐射功率下比在高辐射功率下更容易形成致密、均匀的炭层。SEM分析表明,膨胀阻燃PP材料开始形成的炭层有利于起到有效隔热隔氧作用。辐射功率、样品厚度和样品的安装方式对纯PC的燃烧行为都有影响。纯PC的膨胀速度在燃烧过程中基本不变或有增加的趋势。
     本文还研究了IFR-PP和PC材料在锥形量热仪条件下的热传递过程。结果表明,辐射功率增加明显加快IFR-PP材料表面温度升高;膨胀阻燃剂的含量也对IFR-PP材料的表面温度有影响。IFR-PP材料和纯PP材料内部温度场分析结果表明,样品内部距离上表面越近的位置温度越高,距离上表面越远的位置温度越低。改变配方APP,PER的含量会影响IFR-PP材料内部的传热。IFR-PP材料外部温度场分析结果表明,当膨胀炭层膨胀到样品上方测温点位置,由于膨胀炭层的覆盖作用导致测温点温度曲线下降之后再上升。此外,对样品上方的测温点,离样品越远(即越靠近锥形加热器),所能达到的最高温度越大。纯PC的表面温度分析结果表明,不同辐射功率下PC样品上表面温度随时间都呈现先升高后保持平稳的趋势。纯PC的内部温度场分析结果表明,温度曲线中会出现转折现象。
     本文对IFR-PP的热物性也进行了分析和研究。建立了火灾环境下材料加热过程(聚合物分解之前)中估算材料热导率的方法。采用DRX—I热导率测试仪测量并分析了IFR-PP材料热导率在20℃~380℃的温度范围内的热导率随温度变化规律。膨胀阻燃聚合物材料比热容的测试结果表明,由于熔融和分解吸热导致膨胀PP材料比热容曲线中出现了两个峰值。膨胀PP材料燃烧后炭层比热容由于氧化分解放热使比热容在温度超过127℃后出现了下降的趋势。膨胀PP材料的热扩散系数随温度增加而不断减小;膨胀PP材料燃烧后炭渣的热扩散系数随温度增加下降趋缓。用理论公式计算和实验测量两种方法得到了材料的表面发射率。用直接测量法测定了IFR-PP的表观密度;炭渣的表观密度和真实密度,并由此计算出炭渣的孔隙率。
     本文通过实验研究和理论分析建立了可以描述膨胀阻燃聚合物材料膨胀燃烧过程的模拟模型。该模型在传统能量模型的基础上强调了膨胀过程所涉及到的热力学问题,并提出了相应的热力学吸热模型。选取典型膨胀聚丙烯材料,并将该材料的实验结果与模拟结果进行了比较。验证结果表明,利用本模型模拟出来的温度曲线、样品厚度、质量损失速率曲线与实验结果吻合很好。研究结果表明,本模型可以合理地描述聚合物材料的膨胀行为,可以比较准确预测材料在燃烧过程中的温度分布、样品厚度随时间变化、样品质量损失速率随时间的变化等。
Traditional halogen-based fire retardant systems will release corrosive and toxic gases in fire and do harm to environment. The Intumescent technology is an alternative means to impart flame retardancy to polymer materials. Intumescent fire retardant materials generate intumescent char on the surface, which protects the underlying material from the insults of heating from fire. However, the mechanisms involved with the intumescence behavior, the thermal behavior and decomposition occurred in the burning process have not been fully understood yet. Therefore, it is important to study their burning process and to develop a prediction and simulation model.
     In this study, intumescent fire-retardant polypropylene (IFR-PP) and polycarbonate (PC) materials were selected to be typical intumescent fire-retardant polymer materials and their intumescent behaviors in fire were investigated firstly. The results from the analysis of TG/FTIR show that the IFR-PP composites are more thermally stable than PP because of the incorporation of intumescent flame additives at temperature higher than 290℃in air and 440℃in nitrogen. The fire retardancy level of IFR-PP materials can reach V-0 grade with UL-94 test at appropriate content levels of intuemscent fire reatardant. Simultaneously the heat release rates and mass loss rates will decrease remarkably. The analysis results of intumescent char formed from IFR-PP materials indicate that different formulation and contents will affect the densification and unity of the char. The formed char for IFR-PP materials tend to be denser and more uniform at lower incident heat flux than higher incident heat flux. The examination of IFR-PP materials by scanning electron microscope (SEM) shows that, compared to intumescent char layer after the complete combustion, the char formed after the material burnt for 10 s is more fine and compact, which can provide a better shield to inhibit the heat and oxygen penerating the char effectively. The burning behavior of PC is affected by many factors such as incident heat flux, sample thickness and sample mounting and so on. The intumescent velocity is nearly constant or tends to increase during burning.
     The heat transfer process for IFR-PP and PC materials were studied using the cone calorimeter. The results show that the surface temperatures for IFR-PP materials will increase faster in high incident heat flux than that in low incident heat flux. The surface temperatures for IFR-PP materials are also influenced by the change of intumescent fire retardant contents. According to the analysis results of temperature distributions inside the sample for IFR-PP materials, the temperature measured near the top surface is much higher than the temperature measured far from the top surface. The heat transfer process inside the IFR-PP materials is affected by difference in the formulations such as the contents change of APP and PER. The temperature distributions above the IFR-PP samples show that the temperature increases gradually with time before the intumescent char forms. The temperature values of the sample decrease sharply due to the formation of char cap and accumulating gases. The surface temperature distributions for PC materials indicate that the temperature will increase with time and then keep almost constant. A bending point in the temperature curves was observed for internal temperature distribution of PC sample.
     The thermal properties for IFR-PP materials were analyzed and studied. A method used to calculate thermal conductivity for polymer materials was proposed, which is used for the heating stage in cone calorimeter fire condition. At the same time, thermal conductivities for IFR-PP materials versus temperature in the range of 20℃~380℃were measured using DRX-I thermal conductivity test instrument. Specific heat capacities for IFR-PP materials were measured by differential scanning calorimetry NETZSCH DSC204. Two peak values appear in the specific heat capacity curve for IFR-PP materials due to melt and pyrolysis heat. The specific heat capacity values for the char formed from IFR-PP will decrease when the temperature beyond 127℃because of the oxidized pyrolysis heat. Thermal diffusivities of IFR-PP materials will decrease with the increase of the temperature. Thermal diffusivities of the char formed from IFR-PP will also decrease with increase of temperature but more gently. Surface emissivities of IFR-PP materials were measured using two different methods. One is to calculate surface emissivities with mathematical model and another is to measure it in experiment. The apparent densities of IFR-PP and its char were measured and the porosity of their char was calculated.
     A prediction model for the intumescence process in fire for intumescent flame retardant PP was developed. The model emphasizes the thermodynamic aspect of the intumescence process and a corresponding submodel is deduced. The intumescent fire-retardant polypropylene materials were selected to obtain experimental data such as MLR. The validation results showed that the temperatures, intumescent thicknesses and mass loss rates predicted by the model were in reasonably good agreement with the experimental results. The study shows that the present model can appropriately describe the intumescent behavior of polymer and numerically predict their intumescent thickness, temperature distribution and mass loss rates in fire.
引文
[1]范维澄,王清安,姜冯辉,周建军,火灾学简明教程,合肥:中国科技大学出版社,1995.
    [2]张军,纪奎江,夏延致,聚合物燃烧与阻燃技术,北京:化学工业出版社,2005.
    [3]霍金斯W. L.,聚合物的稳定化,北京:轻工业出版社,1981.
    [4] Russe G. W., Analytic modeling and experimental validation of intumescent behavior of charring heatshield materials, Technical Report AMR-PS-04-05, 2004.
    [5] Drysdale D., An Introduction to Fire Dynamics, New York, 1999.
    [6]忠世云,许乾慰,王公善,聚合物降解与稳定化,北京:化学工业出版社,2002.
    [7]Kunze R., Schartel B., Bartholmai M., et al. TG-MS and TG-FTIR applied for an unambiguous thermal analysis of intumescent coatings, Journal of Thermal Analysis and Calorimetry, 2002, 70(3):897-909.
    [8]Blasi D. C., Modelling and simulation of combustion processes of charring and non-charring solid fuels, Progress in Energy and Combustion Science, 1993(1),19:71-104.
    [9]Blasi D. C., The state of the art of transport models for charring solid degradation, Polymer International,2000,49(10):1133-1146.
    [10]Carlslaw S. and Jaeger J. C., Conduction of heat in solids, Oxford University Press, Oxford, 1984.
    [11]Delichatsios A. and Chen Y., Asymptotic, approximate and numerical solutions for the heatup and pyrolysis of materials including reradiation losses, Combustion and Flame, 1993, 92(3): 292-307.
    [12]Quintiere J. and Iqbal N., An approximate integral model for the burning rate of a thermoplastic-like material, Fire and Materials, 1994,18(2):89-98.
    [13]Staggs J. E. J., A discussion of modeling idealized ablative materials with particular reference to fire testing, Fire Safety Journal, 1997,28(1):47-66.
    [14]Leung C. H., Staggs J. E. J., McIntosh A. C., et al., Modeling of a one-dimensional ablation process with char formation, Combustion Science and Technology, 1996,119:301-329.
    [15]Leung C. H., Staggs J. E. J., McIntosh A. C., et al., Heat transfer to an infinite solid through a moving boundary, International Communications in Heat and Mass Transfer, 1997, 24(2):181-189.
    [16]Leung C. H., Staggs J. E. J., McIntosh A. C., et al., Modeling of polymer ablation including a substrate base, Combustion Science and Technology, 1997,126:53-70.
    [17]Tewarson A., Generation of heat and chemical compounds in fires, The SFPE handbook of fire protection engineering, eds. P. J. DiNenno et al., Quincy, Mass.: National Fire ProtectionAssociation, 1988, 179-199.
    [18]Staggs J. E. J. and Whiteley R. H., Modeling the combustion of solid-phase fuels in cone calorimeter experiments, Fire and Materials,1999, 23(2):63-69.
    [19]Steckler K. D., Kashwagi T., Brum H.R.,et al., Analytical model for transient gasification of noncharring thermoplastic materials: Cox G. and Landford B., Fire Safety Science Proceedings of Third International Symposium, ElsevierApplied Science,London , 1991,895-904.
    [20]Richard L. E., Heat release kinetics, Fire and Materials, 2000,24(4):179-186.
    [21]Richard L. E., Material properties and heat release rate of polymers, Fire Calorimetry, FAA Technical Center, 1995,195-204.
    [22]Staggs J. E. J., A theory for quasi-steady single-step thermal degradation of polymers, Fire and Materials,1998,22(3):109-118.
    [23]Staggs J. E. J., Modeling thermal degradation of polymers using single-step first-order kinetics, Fire Safety Journal,1999, 32(1):17-34.
    [24]Leung C. H., Staggs J. E. J., Brindley J., et al., The effect of an inert central core on the thermal pyrolysis of an electrical cable, Fire Safety Journal, 2000, 34(2):143-168.
    [25]Moghtaderi B., Novozhilov V., Fletcher D., et al., An integral model for the transient pyrolysis of solid materials, Fire and Materials, 1997,21(1): 7-16.
    [26]Quintiere J. G., A semi-quantitative model for the burning rate of solid materials, NISTIR 4840, 1992.
    [27]Jia F., Galea E. R. , Patel M. K., Numerical simulation of the mass loss process in pyrolizing char materials, Fire and Materials, 1999,23(2):71-78.
    [28]Staggs J. E. J., Modeling pyrolysis of char forming polymers, Proceedings of the eight international conference INTERFLAM’99, Interscience Communications, 1999,167-179.
    [29]Staggs J. E. J., Simple mathematical models of char-forming polymers,7th European Conference on“Fire Retardant Polymers”, University of Greenwich, 1999.
    [30]Staggs J. E. J., A simple model of polymer pyrolysis including transport of volatiles, Fire Safety Journal, 2000,34(1):69-80.
    [31]Florio J., Henderson J. B., Test F. L. et al., A study of the effects of the assumption of local-thermal equilibrium on the overall thermally-induced response of a decomposing glass-filled polymer composite, International Journal of Heat and Mass Transfer, 1991,34(1): 135-147.
    [32]Nikolay A. K., Igor S. R., Marina Y. Y, et al., Microkinetics of high-temperature pyrolysis, Fire and Materials,1998, 22(2):47-54.
    [33]Staggs J. E. J., A simplified mathematical model for the pyrolysis of polymers with inertadditives, Fire Safety Journal, 1999, 32(3):221-240.
    [34]Nelson M. I., Brindley J. and McIntosh A. C., The effect of heat sink additives on the ignition and heat release properties of thermally thin thermoplastics, Fire Safety Journal,1997, 28(1):67-94.
    [35]郭宽良,计算传热学,合肥:中国科学技术大学出版社,1988.
    [36]范维澄,火灾科学导论,湖北:湖北科学技术出版社,1993.
    [37]陶文铨,计算传热学的近代进展,北京:科学出版社,2000.
    [38]周力行,湍流气固两相流动和燃烧的理论与数值模拟,北京:科学出版社,1994.
    [39]范维澄,万扶鹏,流动及燃烧的模型与计算,合肥:中国科学技术大学出版社,1992.
    [40]王应时,范维澄,周力行,等,燃烧过程数值计算,北京:科学出版社,1986.
    [41]帕坦卡S.V.著,张政译,传热与流体流动的数值计算,北京:科学出版社,1984.
    [42]Wong D. H., An introduction to a user-friendly numerical fire endurance algorithm, Journal of Fire Protection Engineering,1998, 9(1):41-57.
    [43]Chen Y., Delichatsios M. A., Motevalli V., Material pyrolysis properties, partⅠ: an integral model for one-dimensional transient pyrolysis of charring and non-charring materials, Combustion Science and Technology,1993, 88:309-328.
    [44]陆昌伟,奚同庚,热分析质谱法,上海:上海科学技术文献出版社,2002.
    [45]Mark H. F., Bikales N. M., Overberger L. G., Encyclopedia of Polymer Science and Engineering, New York,1989.
    [46]舒中俊,徐晓楠,李响,聚合物材料火灾燃烧性能评价,北京:化学工业出版社,2007.
    [47]Richard L. E., Walters R. N., Stoliarov S. I., Screening flame retardants for plastics using microscale combustion calorimetry, Polymer Engineering & Science, 2007,47(10):1501-1510.
    [48]Marney D. C. O., Russell L. J., Soegeng T. M., et al., Mechanistic analysis of the fire performance of a fire retardant system, Journal of Fire Sciences,2007, 25(6):471-497.
    [49] Edward W. D. and Sergei L. V., Flame retardants in commercial use or development for polyolefins, Journal of Fire Sciences, 2008,26(1):5-43.
    [50]Chen X. L., Hu Y., Song L. and Xing W. Y., Combustion and thermal behavior of polyurethane acrylate modified with a phosphorus monomer, Journal of Fire Sciences, 2008, 26(2):93-108.
    [51]Park D. H., Anh M.J., Kim S.C., et al., The synergistic effect of MDH and ATH on flame retradancy and smoke suppression, International Wire and Cable Symposium, 2001,50:409-418.
    [52]Antos K., Sedlar J., Influence of brominated flame retardant thermal decomposition products on HALs, Polymer Degradation and Stability, 2005, 90(1):188-194.
    [53]Beyer G., Flame retardant properties of EVA-nanocomposites and improvements bycombination of nanofillers with aluminium trihydrate, Fire and Materials, 2001,25(5):193-197.
    [54]Jiao C. M., Wang Z. Z., Ye Z., Hu Y. et al., Flame retardant of ethylene-vinyl acetate copolymer using nano magnesium hydroxide and nano hydrotalcite, Journal of Fire Sciences,2006,24(1): 47-64.
    [55]Levchik S., Weil E. D., A review of recent progress in phosphorus-based flame retardants, Journal of Fire Sciences, 2006,24(5):345-364.
    [56]He S. Q., Hu Y., Song L., et al., Fire safety assessment of halogen-free flame retardant polypropylene based on cone calorimeter, Journal of Fire Sciences, 2007, 25(2):109-118.
    [57]Camino G. and Luda M. P., Mechanistic study on intumescence, Fire Retardancy of Polymers: The Use of Intumescence. Cambridge: The Royal Society of Chemistry, 1998,48-68.
    [58] Marchal A., Delobel R., Michel L. B., et al., Effect of intumescence on polymer degradation, Polymer Degradation and Stability,1994,44(3):263-272.
    [59]Reshetnikov I. S., Khalturinskij N. A., The role of radiation over intumescent systems burning, Fire Retardancy of Polymers: The Use of Intumescence. Cambridge: The Royal Society of Chemistry, 1998,152-158.
    [60]王永强,阻燃材料及应用技术,北京:化学工业出版社,2003.
    [61]Nishihara H. T., Susumu K., Interactions between phosphorus- and nitrogen- containing flame retardants, Polymer Journal, 1998,30(3): 163-167
    [62]Bras M. L., Bourbigot S., Intumescent fire retardant polypropylene formulations, Polypropylene: An A-Z Reference, Kluwer Academic Publishers, Dordrecht. 1999,357-365.
    [63]Branca C. and Blasi C. D., Analysis of the combustion kinetics and thermal behavior of an intumescent system, Industrial & Engineering Chemistry Research, 2002,41(9):2107-2114.
    [64]Jimenez M., Duquesue S., Bourbigot S. Multiscale experimental approach for developing high-performance intumescent coatings, Industrial & Engineering Chemistry Research, 2006,45(13):4500-4508.
    [65]王明清,张军,聚合物膨胀阻燃体系研究进展,现代塑料加工应用,2002,15(3):36-39.
    [66]Braun U., Schartel B., Effect of red phosphorus and melamine polyphosphate on the fire behavior of HIPS, Journal of Fire Sciences, 2005, 23(1):5-30.
    [67]Green J., Char studies: flame retarded polycarbonate/PET blend, Journal of Fire Sciences,1994, 12(6):551-581.
    [68]Balabanovich A. I. and Prokopovich P., Ammonium polyphosphate fire retardance in HIPS: the effect of 2-methyl-1,2-oxaphospholan-5-one 2-oxide, Journal of Fire Sciences, 2005,23(5): 417-428.
    [69]Wei P., Jiang P. K., Han Z. D., et al., An investigation of the effects of zeolites on the thermaldegradation and charring of APP-PER by TGA-XPS, Journal of Fire Sciences, 2005,23(2): 173-184.
    [70]Kandola B. K. and Horrocks A. R., Complex char formation in flame-retarded fibre-intumescent combinations-partⅣ: mass loss and thermal barrier properties, Fire and Materials,2000,24(6): 265-275.
    [71]Kandola B. K., Horrocks A. R. and Horrocks S., Complex char formation in flame-retarded fibre-intumescent combinations-partⅤ: exploring different fibre/intumescent combinations, Fire and Materials,2001, 25(4):153-160.
    [72]Chuang T. H., Chern C. K. and Guo W. J., The application of expandable graphite as a flame retardant and smoke-suppressing additive for ethylene-propylene-diene terpolymer, Journal of Polymer Research,1997, 4(3):153-158.
    [73]Wei P., Hao J. W., Du J. X., et al., An investigation on synergism of an intumescent flame retardant based on silica and alumina, Journal of Fire Sciences, 2003,21(1):17-28.
    [74]Razak J. A., Akil H. M. and Ong H., Effect of inorganic fillers on the flammability behavior of polypropylene composites, Journal of Thermoplastic Composite Materials, 2007, 20:195-205.
    [75]Estevao L.R., Nascimento R. S., Bras M.L., et al., Spent refinery catalyst as a flame retardancy enhancer in an intumescent polymeric system, Journal of Fire Sciences, 2004, 22(3):211-227.
    [76]欧育湘,实用阻燃技术,北京:化学工业出版社,2002.
    [77]王明清,橡胶的阻燃技术进展,橡胶工业,2004,51(5):309-312.
    [78]Wang J. C. and Chen Y. H., Flame-retardant mechanism resulting from an intumescent system, Journal of Fire Sciences, 2005,23(1):55-74.
    [79]Reshetnikov I. S., Yablokova M. Y., Khalturinskij N. A., Intumescent chars, Fire Retardancy of Polymers:The Use of Intumescence. Cambridge:The Royal Society of Chemistry, 1998,88-104.
    [80]Bras M. L. and Bourbigot S., Fire retarded intumescent thermoplatics formulations,synergy and synergistic agents - a review, Fire Retardancy of Polymers: The Use of Intumescence. Cambridge:The Royal Society of Chemistry,1998,64-75.
    [81]Berlin A. A., Khalturinskij N. A., Reshetnikov I. S. et al., Some aspects of mechanical stability of intumescent chars, Fire Retardancy of Polymers: The Use of Intumescence, Cambridge:The Royal Society of Chemistry,1998,104-112.
    [82]Bugajny M., Bras M. L. and Bourbigot S., A new approach to the dynamic properties of an intumescent material, Fire and Materials, 1999,23(1):49-51.
    [83]Han Z. D., Dong L., Li Y. et al., A comparative study on the synergistic effect of expandanble graphite with APP and IFR in polyethylene, Journal of Fire Sciences, 2007,25(1):79-91.
    [84]Wei P., Li H. X., Jiang P. K. et al., An investigation on the flammability of halogen-free fireretardant PP-APP-EG systems, Journal of Fire Sciences, 2004, 22(5):367-377.
    [85]Isakov G. N. and Kuzin A. Y., Modeling and indentification of heat- and mass-transfer processes in intumescent heat-insulating materials, Journal of Applied Mechanics and Technical Physics, 1996,37(4):565-572.
    [86]Anderson C. E. and Wauters D. K., A thermodynamic heat transfer model for intumescent systems, International Journal of Engineering Science, 1984,22(7): 881-889.
    [87]Buckmaster J., Anderson C. and Nachman A., A model for intumescent paint, International Journal of Engineering Science, 1986,24(3): 263-276.
    [88]Shih Y. C.and Cheung F. B., Theoretical modeling of intumescent fire-retardant materials, Journal of Fire Sciences, 1998, 16(1):46-71.
    [89]Shih Y. C., Thermochemical ablation of high-temperature thermal insulation materials, Ph.D. Dissertation, Pennsylvania State University, PA,1997.
    [90]Bourbigot S., Duquesne., Leroy J. M., Modeling of heat transfer of a polypropylene-based intumescent system during combustion, Journal of Fire Sciences, 1999,17(1):42-56.
    [91]Morice L., Bourbigot S., Leroy J. M., Heat transfer study of polypropylene-based intumescent systems during combustion, Journal of Fire Sciences, 1997,15(5):358-374.
    [92]Lautenberger C. and Fernandez-Pello C., A generalized pyrolysis model for simulating charring, intumescent , smoldering and noncharring gasification, University of California, 2006.
    [93]Bourbigot S., Delobel R., Bras M. L. et al., Comparative study of the integral TG methods used in the invariant kinetic parameters method, Journal De Chimie Physique, 1993,90:1909-1928.
    [94]Bourbigot S. and Leroy J. M., Modeling of thermal diffusivity during combustion– application to intumescent materials, Fire Retardancy of Polymers: The Use of Intumescence. Cambridge: The Royal Society of Chemistry, 1998,129-139.
    [95]Wang J. C., Yang S. L., Li G., et al., A mathematical model of heat transfer of a PU-based intumescent flame-retardant coating during combustion in a cabinet, Polymer International, 2003, 52:1827-1832.
    [96]Reshetnikov I. S. and Khalturinskij N. A., The role of radiation over intumescent systems burning, Fire Retardancy of Polymers: The Use of Intumescence. Cambridge: The Royal Society of Chemistry, 1998,152-158.
    [97]Strakhov V. L., Garashchenko A. N., Kuznetsov G. V., et al., Mathematical simulation of thermophysical and thermochemical processes during combustion of intumescent fire-protective coatings, Combustion, Explosion and Shock Waves. 2001,37(2): 178-186.
    [98]Mamleev V. S. H. and Gibov K. M., Modeling fire retardant intumescent polymeric materials, Fire Retardancy of Polymers: The Use of Intumescence. Cambridge:The Royal Society ofChemistry, 1998, 113-128.
    [99]Pehrson R. and Barnett J. R., Computer modeling of intumescent penetration seals, Journal of Fire Protection Engineering, 1996,8(1): 13-30.
    [100]Strakhov V. L., Garashchenko A. N., Kuznetsov G. V., et al., Mathematical simulation of thermophysical and thermochemical process during combustion of intumescent fire-protective coatings, Combustion Explosion and Shock Waves, 2001,37(2):178-186.
    [101]Anderson C. E., Dziuk J., Mallow W. A., et al., Intumescent reaction mechanisms, Journal of Fire Sciences,1985,3(3):161-194.
    [102]Bhargava A. and Griffin G. J., A two dimensional model of heat transfer across a fire retardant epoxy coating subjected to an impinging flame, Journal of Fire Sciences, 1999,17(3):188-208.
    [103]Bulter K. M., Baum H. R., Kashiwagi T., Heat transfer in an intumescent material using a three-dimensional lagrangian model, International Conference on Fire Research and Engineering, Orlando, Florida USA, 1995, 261–266.
    [104]Butler K. M., Baum H. R., Kashiwagi T., Three-dimensional modeling of intumescent behavior in fires, Fire Safety Science-proceedings of the Fifth International Symposium, Boston, MA, 1997, 523-534.
    [105]Zhang J., Zhang H. P., Study on the flammability of HIPS-montmorillonite nanocomposites prepared by static melt intercalation, Journal of Fire Sciences, 2005,23(3):193-208.
    [106]Koverzanova E. V., Usachev S. V., Shilkina N. G., et al., Specific features of thermal degradation of polypropylene in the presence of magnesium hydroxide, Macromolecular Chemistry and Polymeric Materials,2004,77(3):445-448.
    [107]Wang Z. Z., Hu K. L, Hu Y., Thermal degradation of flame-retarded polyethylene/magnesium hydroxide/poly(ethylene-co-propylene) elastomer composites, Polymer International, 2003,52: 1016-1020.
    [108]Xiao X. Y., Tu W. P., Yang Z. R., et al., Study on fire resistant mechanisms of intumescent coatings, Journal of South China University of Technology, 1998,26(12):77-82.
    [109]Delobel R., Bras M. L., Ouassou N. F., Thermal behaviour of ammonium polyphosphate- pentaerythritol and ammonium pyrophosphate-pentaerythritol intumescent additives in polypropylene formulations, Journal of Fire Sciences , 1990,8(2):85-108.
    [110]Lv P., Wang Z., Hu K., et al., Flammability and thermal degradation of flame retarded polypropylene composites containing melamine phosphate and pentaerythritol derivatives, Polymer Degradation and Stability, 2005,90(3):523-534.
    [111]Bourbigot S., Bras M. L., Dabrowski F., et al., PA-6 clay nanocomposites hybrid as char forming agent in intumescent formulations, Fire and Materials, 2000, 24(4):201-208.
    [112]Blasi D. C., Processes of flames spreading over the surface of charring fuels: effects of the solid thickness, Combustion and Flame,1994, 97:225-239.
    [113]Blasi D. C., Analysis of convection and secondary reaction effects within porous solid fuels undergoing pyrolysis, Combustion Science and Technology, 1993,90:315-340.
    [114]Zhang F., Zhang J., Wang Y., Modeling study on the combustion of intumescent fire-retardant Ppolypropylene, Express Polymer Letters, 2007,1(3): 157–165.
    [115]Bernd W., Michael H., Frank S., Thermal and electrical properties of magnetite filled polymers, Composites Part A, 2002, 33(8):1041-1053.
    [116]David S. J., Evan S., Rakesh K. G., Flame retardancy of polycarbonate upon repeated recycling, Journal of Fire Sciences, 2008,26(4):331-350.
    [117]Jang B. N., Wilkie C. A., A TGA/FTIR and mass spectral study on the thermal degradation of bisphenol A polycarbonate, Polymer Degradation and Stability,2004,86(3):419–430.
    [118]周文君,杨辉,方晨鹏,聚碳酸酯的热降解,化工进展, 2007,26(1):23-28.
    [119]Suuberg E. M., Milosavljevic I., Lilly W. D., Behavior of charring materials in simulated fire environments, NIST-GCR-94-645, 1994.
    [120]奚同庚,无机材料热物性学,上海:上海科学技术出版社,1981.
    [121]李晨,谢雁, MPM复合保温材料导热系数的测定及实验装置的改进,青岛科技大学学报,2003,24(2):149-151.
    [122]杨世铭,陶文铨,传热学,北京:高等教育出版社,1998.
    [123]姚玉英,化工原理,天津:天津科学技术出版社, 1995.
    [124]Brown R., Handbook of Polymer Testing, New York.1999.
    [125]徐桂转,梁新,岳建芝,利用热线法对松散类生物质导热系数的测试,可再生能源, 2004,(5):23-25.
    [126]李庆领,聚合物在挤出加工过程中的传热及流动特性研究(博士论文),华中科技大学,2004.
    [127]陈维芳译,热扩散系数,橡胶技术与装备,1993, (2):19-23.
    [128]何燕,崔琪,马连湘,热扩散系数测量的新方法,青岛科技大学学报, 2005,26(6):516-518.
    [129]Middleman S., Fundamentals of Polymer Processing, McGraw-Hill,1977.
    [130]王勇,张军,陆晓东,熔融行为对聚合物燃烧过程影响的模拟研究,青岛科技大学学报,2005,26(4):312-316.
    [131]孙绍灿,塑料实用手册,杭州:浙江科学技术出版社, 1999.
    [132]Beyler. C., Thermal decomposition of polymers, The SFPE Handbook of Fire Protection Engineering ( 1st ed.), DiNenno, P. J. (ed.), National Fire Protection Association, Quincy, MA 02269, 1988,173-176.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700