基于新型受体单元的D-A共聚物的合成和光伏性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高效给体聚合物光伏材料应具备吸收宽、电子能级与受体匹配、溶解性好、易形成纳米聚集结构等特点。基于以上考虑,本论文从更多高效、易合成受体单元的开发出发,设计合成了一系列基于新型受体单元的D-A型给体聚合物光伏材料,主要包括:
     (1)开发了一系列基于双F取代的二苯并吩嗪受体单元、BDT给体单元的D-A共聚物,对其光、电性能、光伏特性进行了表征。发现噻吩π桥上烷基链的取向会影响聚合物间的相互作用,进而影响到光伏性能。其中,P3与PC70BM以1:1共混时光电转换效率最高,为1.21%,比同样条件下的P1高46%。同时也证明了二维共轭能有效拓宽吸收光谱,提高器件的光伏性能。
     (2)合成了一种以双F取代的苯并三氮唑为受体单元,以IDT为给体单元的中带隙共轭聚合物PIDT-FBTA,强吸电子原子F的引入降低了PIDT-FBTA的HOMO能级,从而将器件的开路电压提高到0.90V,PCE达到3.62%。经极性甲醇处理后,器件整体性能提高了35%,PCE达到4.90%,Voc由0.90V提高到了0.92V,Jsc由7.68mAcm2提高到了9.60mAcm2,FF由0.52提高到了0.55。
     (3)开发了一种以噻吩/烷基噻吩为侧链的喹喔啉受体单元,并成功将其用于有机薄膜太阳能电池中。wk-6:PC70BM以质量比1:2.5共混时,120度退火后PCE达到3.15%,Voc为0.82V,Jsc为10.09mAcm2,FF为0.38。甲醇处理后,器件整体性能提高了23.8%,PCE达到3.90%,Voc由0.82V提高到了0.83V,Jsc由10.09mAcm2提高到了11.7mAcm2,FF由0.38提高到了0.40。然而,较低的FF表明wk-6有更多的潜力值得去挖掘,有望被开发成为一种高效的光伏材料。
     (4)开发了两类给、受体单元间噻吩π桥上带吸电子侧链的共轭聚合物,并初步探讨了吸电子基对聚合物的吸收光谱、热稳定性、电化学性能的影响。发现,在不影响聚合物骨架共平面性的前提下,π桥侧链吸电子基的引入能够降低聚合物的HOMO、LUMO能级,降低聚合物的带隙。这或许能为我们合成窄带隙聚合物提供一种方法。
Wide absorption, electron energy level matching with acceptor, good solubility, easy toform nanomorphology are the prerequisite for efficient conjugated polymer donor materials.Based upon the consideration, this dissertation is focusing on the development and synthesisof new D-A copolymers based on new acceptor unit with the characteristics of facile synthesis.The main results are as follows:
     (1) A series of conjugated D-π-A copolymers, based on11,12-difluorodibenzo[a,c]phenazine (DFDBPz) as acceptor unit, benzodithiophene (BDT) asdonor unit, were development and synthesized. It was found that the orientation alkyl sidechain on the thiophene-bridge affected the intermolecular π-π interaction of the conjugatedpolymers. The optimum performance of the devices is obtained at1:1weight ratio ofP3:PC70BM with PCE of1.21%, which is46%higher than that of P1-based PSCs.
     (2) A medium band gap copolymer PIDT-FBTA based on FBTA and IDT wassynthesized and applied as donor material in PSCs. A higher Vocwas achieved, which isbenefitted from the deeper HOMO of PIDT-FBTA. The device based onPIDT-FBTA:PC70BM with1:3weight ratio displayed enhanced PCE of3.62%. Aftermethanol treatment, a significant35%enhancement in PCE (up to4.9%) with a simultaneousimprovement in Voc(0.90V to0.92V), Jsc(7.68mA cm2to9.60mA cm2) and FF (0.52to0.55) was achieved.
     (3) A new D-A copolymer based on thiophene substituent on quinoxaline acceptor unitwere developed and synthesized. The device based on wk-6:PC70BM with1:2.5weight ratiodisplayed a PCE of3.15%after thermal annealing at120oC. After methanol treatment, asignificant23.8%enhancement in PCE (up to3.90%) with a simultaneous improvement inVoc(0.82V to0.83V), Jsc(10.09mA cm2to11.7mA cm2) and FF (0.38to0.40) wasachieved.
     (4) Two kinds of new D-A copolymers based on DTBT with an electron-withdrawinggroup on thiophene bridge were developed and synthesized. The influence of electron-withdrawing group on thermal stability, optical absorption and the electrochemicalperformance were preliminary discussed. It was found that the HOMO/LUMO energy levelsand the band gap of the copolymers could be reduced by introducing electron-withdrawinggroup on thiophene bridge of without affecting copolymer skeleton coplanar. This mayprovide a method for synthesis of narrow band gap copolymers.
引文
[1] Zhang F L, Johansson M, Andersson M R, et al. Polymer Photovoltaic Cells with Conducting PolymerAnodes[J]. Adv Mater,2002,14(9):662-665.
    [2] Brabec C J, Shaheen S E, Winder C, et al. Effect of LiF/metal electrodes on the performance of plasticsolar cells[J]. Appl Phys Lett,2002,80(7):1288-1290.
    [3] Tang C W. Two-layer organic photovoltaic cell[J]. Appl Phys Lett,1986,48(2):183-185.
    [4] Sariciftci N S, Smilowitz L, Heeger A J, et al. Photoinduced Electron Transfer from a ConductingPolymer to Buckminsterfullerene[J]. Science,1992,258(5087):1474-1476.
    [5] Yu G, Gao J, Hummelen J C, et al. Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network ofInternal Donor-Acceptor Heterojunctions[J]. Science,1995,270(5243):1789-1791.
    [6] Schweitzer B, B ssler H. Excitons in conjugated polymers[J]. Synthetic Metals,2000,109,1-6.
    [7] Forrest S R. The Limits to Organic Photovoltaic Cell Efficiency[J]. MRS Bulletin,2005,30,28-32.
    [8] Brabec C J, Cravino A, Meissner D, et al. Origin of the Open Circuit Voltage of Plastic Solar Cells[J].Adv Funct Mater,2001,11(5):374-380.
    [9] Scharber M C, Mühlbacher D, Koppe M, et al. Design Rules for Donors in Bulk-Heterojunction SolarCells-Towards10%Energy-Conversion Efficiency[J]. Adv Mater,2006,18(6):789-794.
    [10] Dennler G, Scharber M C, Ameri T, et al. Design Rules for Donors in Bulk-Heterojunction TandemSolar Cells-Towards15%Energy-Conversion Efficiency[J]. Adv Mater,2008,20(3):579-583.
    [11] Dennler G, Scharber M C, Brabec C J. Polymer-Fullerene Bulk-Heterojunction Solar Cells[J]. AdvMater,2009,21(13):1323-1338.
    [12] Coropceanu V, Cornil J, Filho D A, et al. Charge Transport in Organic Semiconductors[J]. Chem Rev,2007,107(4):926-952.
    [13] Yang X N, Loos J. Toward High-Performance Polymer Solar Cells: The Importance of MorphologyControl[J]. Macromol,2007,40(5):1353-1362.
    [14] Günes S, Neugebauer H, Sariciftci N S. Conjugated Polymer-Based Organic Solar Cells[J]. Chem Rev,2007,107(4):1324-1338.
    [15] Clarke T M, Ballantyne A M, Nelson J, et al. Free energy control of charge photogeneration inpolythiophene/fullerene solar cells: The influence of thermal annealing on P3HT/PCBM blends[J]. AdvFunct Mater,2008,18(24):4029-4035.
    [16] Reyes-Reyes M, Kim K, Carroll D L. High-efficiency photovoltaic devices based on annealedpoly(3-hexylthiophene) and (1-3-methoxycarbonyl)-propyl-1-phenyl-(6,6)C61blends[J]. Appl Phys Lett,2005,87(8):083506.
    [17] Ma W W, Yang C, Gong X, et al. Efficient Polymer Solar Cells with Nanoscale Control of theInterpenetrating Network Morphology[J]. Adv Funct Mater,2005,15(10):1617-1622.
    [18] Li G, Shrotriya V, Huagn J, et al. High-efficiency solution processable polymer photovoltaic cells byself-organization of polymer blends[J]. Nat Mater,2005,4:864-868.
    [19] He Y, Zhao G, Pong B, et al. High-Yield Synthesis and Electrochemical and Photovoltaic Properties ofIndene-C70Bisadduct[J]. Adv Funct Mater,2010,20(19):3383-3389.
    [20] Sun Y, Cui C, Wang H, et al. Efficiency Enhancement of Polymer Solar Cells Based onPoly(3-hexylthiophene)/Indene-C70Bisadduct via Methylthiophene Additive[J]. Adv Energy Mater,2011,1(6):1058-1061.
    [21] Svensson M, Zhang F, Veenstra S C, et al. High-Performance Polymer Solar Cells of an AlternatingPolyfluorene Copolymer and a Fullerene Derivative[J]. Adv Mater,2003,15(12):988-991.
    [22] Peet J, Kim J Y, Coates N E, et al. Efficiency enhancement in low-bandgap polymer solar cells byprocessing with alkane dithiols[J]. Nat Mater,2007,6:497-500.
    [23] Wang E, Wang L, Lan L, et al. High-performance polymer heterojunction solar cells of apolysilafluorene derivative[J]. Appl Phys Lett,2008,92:033307.
    [24] Coffin R C, Peet J, Rogers J, et al. Streamlined microwave-assisted preparation of narrow-bandgapconjugated polymers for high-performance bulk heterojunction solar cells[J]. Nat Chem,2009,1:657-661.
    [25] Mühlbacher D, Scharber M, Morana M, et al. High Photovoltaic Performance of a Low-BandgapPolymer[J]. Adv. Mater,2006,18(21):2884-2889.
    [26] Hou J H, Chen H-Y, Zhang S, et al. Synthesis, Characterization, and Photovoltaic Properties of a LowBand Gap Polymer Based on Silole-Containing Polythiophenes and2,1,3-Benzothiadiazole[J]. J Am ChemSoc,2008,130(48):16144-16145.
    [27] Qin R, Li W, Li C, et al. A Planar Copolymer for High Efficiency Polymer Solar Cells[J]. J Am ChemSoc,2009,131(41):14612-14613.
    [28] Price S C, Stuart A C, Yang L, et al. Fluorine Substituted Conjugated Polymer of Medium Band GapYields7%Efficiency in Polymer Fullerene Solar Cells[J]. J Am Chem Soc,2011,133(12):4625-4631.
    [29] Zhou H, Yang L, Stuart A C, et al. Development of Fluorinated Benzothiadiazole as a Structural Unitfor a Polymer Solar Cell of7%Efficiency[J]. Angew Chem Int Ed,2011,50(13):2995-2998.
    [30] Park S H, Roy A, Beaupré S, et al. Bulk Heterojunction Solar Cells with Internal Quantum EfficiencyApproaching100%[J]. Nat Photonics,2009,3:297-302.
    [31] Zhou H, Yang L, Price S C, et al. Enhanced Photovoltaic Performance of Low-Bandgap Polymers withDeep LUMO Levels[J]. Angew Chem Int Ed,2010,49(43):7992-7995.
    [32] Wang M, Hu X, Liu P, et al. Donor–Acceptor Conjugated Polymer Based on Naphtho[1,2-c:5,6-c]-bis[1,2,5]thiadiazole for High-Performance Polymer Solar Cells[J]. J Am Chem Soc,2011,133(25):9638-9641.
    [33] He Z, Zhang C, Xu X, et al. Largely Enhanced Efficiency with a PFN/Al Bilayer Cathode in HighEfficiency Bulk Heterojunction Photovoltaic Cells with a Low Bandgap Polycarbazole Donor[J]. AdvMater,2011,23(27):3086-3089.
    [34] Park H J, Kang M-G, Ahn S H, et al. A Facile Route to Polymer Solar Cells with OptimumMorphology Readily Applicable to a Roll-to-Roll Process without Sacrificing High Device Performances[J].Adv Mater,2010,22(25): E247-E253.
    [35] Hübler A, Trnovec B, Zillger T, et al. Printed Paper Photovoltaic Cells[J]. Adv Energy Mater,2011,1(6):1018-1022.
    [36] Zhang Q T, Tour J M. Low Optical Bandgap Polythiophenes by an Alternating Donor/Acceptor RepeatUnit Strategy[J]. J Am Chem Soc,1997,119(21):5065-5066.
    [37] Zou Y, Najari A, Berrouard P, et al. Thieno[3,4-c]pyrrole-4,6-dione-Based Copolymer for EfficientSolar Cells[J]. J Am Chem Soc,2010,132(15):5330-5331.
    [38] Najari A, Beaupré S, Berrouard P, et al. Synthesis and Characterization of NewThieno[3,4-c]pyrrole-4,6-dione Derivatives for Photovoltaic Applications[J]. Adv Funct Mater,2011,21(4):718-728.
    [39] Chu T-Y, Lu J, Beaupré S, et al. Bulk Heterojunction Solar Cells Using Thieno[3,4-c]pyrrole-4,6-dioneand Dithieno[3,2-b:2’,3’-d]silole Copolymer with a Power Conversion Efficiency of7.3%[J]. J Am ChemSoc,2011,133(12):4250-4253.
    [40] Gendron D, Morin P-O, Berrouard P, et al. Synthesis and Photovoltaic Properties ofPoly(dithieno[3,2-b:2’,3’-d]-germole) Derivatives[J]. Macromol,2011,44(18):7188-7193.
    [41] Amb C M, Chen S, Graham K R, et al. Dithienogermole As a Fused Electron Donor in BulkHeterojunction Solar Cells[J]. J Am Chem Soc,2011,133(26):10062-10065.
    [42] Small C E, Chen S, Subbiah J, et al. High-efficiency inverteddithienogermole-thienopyrrolodione-based polymer solar cells[J]. Nat Photon,2012,6:115-120.
    [43] Piliego C, Holcombe T W, Douglas J D, et al. Synthetic Control of Structural Order inN-Alkylthieno[3,4-c]pyrrole-4,6-dione-Based Polymers for Efficient Solar Cells[J]. J Am Chem Soc,2010,132(22):7595-7597.
    [44] Yuan M-C, Chiu M-Y, Liu S-P, et al. A Thieno [3,4-c] pyrrole-4,6-dione-Based Donor-AcceptorPolymer Exhibiting High Crystallinity for Photovoltaic Applications[J]. Macromol,2010,43(17):6936-6938.
    [45] Su M-S, Kuo C-Y, Yuan M-C, et al. Improving Device Efficiency of Polymer/Fullerene BulkHeterojunction Solar Cells Through Enhanced Crystallinity and Reduced Grain Boundaries Induced bySolvent Additives[J]. Adv Mater,2011,23(29):3315-3319.
    [46] Chen G-Y, Cheng Y-H, Chou Y-J, et al. Crystalline conjugated polymer containing fused2,5-di(thiophen-2-yl)thieno[2,3-b]thiophene and thieno[3,4-c]pyrrole-4,6-dione units for bulkheterojunction solar cells[J]. Chem Commun,2011,47(17):5064-5066.
    [47] Guo X, Ortiz R P, Zheng Y, et al. Thieno[3,4-c]pyrrole-4,6-dione-Based Polymer Semiconductors:Toward High-Performance, Air-Stable Organic Thin-Film Transistors[J]. J Am Chem Soc,2011,133(34):13685-13697.
    [48] Chu T-Y, Lu J, Beaupré S, et al. Effects of the Molecular Weight and the Side-Chain Length on thePhotovoltaic Performance of Dithienosilole/Thienopyrrolodione Copolymers[J]. Adv Funct Mater,2012,22(11):2345-2351.
    [49] Chen Y-L, Chang C-Y, Cheng Y-J, et al. Synthesis of a New Ladder-TypeBenzodi(cyclopentadithiophene) Arene with Forced Planarization Leading to an Enhanced Efficiency ofOrganic Photovoltaics[J]. Chem Mater,2012,24(20):3964-3971.
    [50] Guo X G, Zhou N, Lou S J, et al. Bithiopheneimide-Dithienosilole/Dithienogermole Copolymers forEfficient Solar Cells: Information from Structure-Property-Device Performance Correlations andComparison to Thieno[3,4-c]pyrrole-4,6-dione Analogues[J]. J Am Chem Soc,2012,134(44):18427-18439.
    [51] Jo J, Pron A, Berrouard P, et al. A New Terthiophene-Thienopyrrolodione Copolymer-Based BulkHeterojunction Solar Cell with High Open-Circuit Voltage[J]. Adv Energy Mater,2012,2(11):1397-1403.
    [52] Zhong H, Li Z, Deledalle F, et al. Fused Dithienogermolodithiophene Low Band Gap Polymers forHigh-Performance Organic Solar Cells without Processing Additives[J]. J Am Chem Soc,2013,135(6):2040-2043.
    [53] Hoke E T, Vandewal K, Bartelt J A, et al. Recombination in Polymer:Fullerene Solar Cells withOpen-Circuit Voltages Approaching and Exceeding1.0V[J]. Adv Energy Mater,2013,3(2):220-230.
    [54] Bartelt J A, Beiley Z M, Hoke E T, et al. The Importance of Fullerene Percolation in the MixedRegions of Polymer-Fullerene Bulk Heterojunction Solar Cells[J]. Adv Energy Mater,2013,3(3):364-374.
    [55] Yuan J, Zhai Z, Dong H, et al. Efficient Polymer Solar Cells with a High Open Circuit Voltage of1Volt[J]. Adv Funct Mater,2013,23(7):885-892.
    [56] Cabanetos C, Labban A E, Bartelt J A, et al. Linear Side Chains inBenzo[1,2-b:4,5-b’]dithiophene-Thieno[3,4-c] pyrrole-4,6-dione Polymers Direct Self-Assembly and SolarCell Performance[J]. J Am Chem Soc,2013,135(12):4656-4659.
    [57] Wienk M M, Turbiez M, Gilot J, et al. Narrow-Bandgap Diketo-Pyrrolo-Pyrrole Polymer Solar Cells:The Effect of Processing on the Performance[J]. Adv Mater,2008,20(13):2556-2560.
    [58] Bijleveld J C, Zoombelt A P, Mathijssen S G J, et al. Poly(diketopyrrolopyrrole-terthiophene) forAmbipolar Logic and Photovoltaics[J]. J Am Chem Soc,2009,131(46):16616-16617.
    [59] Bijleveld J C, Gevaerts V S, Nuzzo D D, et al. Efficient Solar Cells Based on an Easily AccessibleDiketopyrrolopyrrole Polymer[J]. Adv Mater,2010,22(35): E242-E246.
    [60] Gevaerts V S., Furlan A, Wienk M M, et al. Solution Processed Polymer Tandem Solar Cell UsingEfficient Small and Wide bandgap Polymer:Fullerene Blends[J]. Adv Mater,2012,24(16):2130-2134.
    [61] Li W, Roelofs W S C, Wienk M M., et al. Enhancing the Photocurrent in Diketopyrrolopyrrole-BasedPolymer Solar Cells via Energy Level Control[J]. J Am Chem Soc,2012,134(33):13787-13795.
    [62] Hendriks K H, Heintges G H L, Gevaerts V S, et al. High-Molecular-Weight Regular AlternatingDiketopyrrolopyrrole-based Terpolymers for Efficient Organic Solar Cells[J]. Angew Chem Int Ed,2013,52(32):8341-8344.
    [63] Li W, Furlan A, Hendriks K H, et al. Efficient Tandem and Triple-Junction Polymer Solar Cells[J]. JAm Chem Soc,2013,135(15):5529-5532.
    [64] Bronstein H, Chen Z, Ashraf R S, et al. Thieno[3,2-b]thiophene-Diketopyrrolopyrrole-ContainingPolymers for High-Performance Organic Field-Effect Transistors and Organic Photovoltaic Devices[J]. JAm Chem Soc,2011,133(10):3272-3275.
    [65] Ye L, Zhang S, Ma W, et al. From Binary to Ternary Solvent: Morphology Fine-tuning of D/A Blendsin PDPP3T-based Polymer Solar Cells[J]. Adv Mater,2012,24(47):6335-6341.
    [66] Dou L, You J, Yang J, et al. Tandem polymer solar cells featuring a spectrally matched low-bandgappolymer[J]. Nat Photon,2012,6:180-185.
    [67] Dou L, Chang W-H, Gao J, et al. A Selenium-Substituted Low-Bandgap Polymer with VersatilePhotovoltaic Applications[J]. Adv Mater,2013,25(6):825-831.
    [68] Chen H, Guo Y, Yu G, et al. Highly π-Extended Copolymers with Diketopyrrolopyrrole Moieties forHigh-Performance Field-Effect Transistors[J]. Adv Mater,2012,24(34):4618-4622.
    [69] Kang I, An T K, Hong J, et al. Effect of Selenophene in a DPP Copolymer Incorporating a VinylGroup for High-Performance Organic Field-Effect Transistors[J]. Adv Mater,2012,25(4):524-528.
    [70] Wang Y, Yang F, Liu Y, etal. New Alkylfuranyl-Substituted Benzo[1,2-b:4,5-b’]dithiophene-BasedDonor-Acceptor Polymers for Highly Efficient Solar Cells[J]. Macrmol,46(4):1368-1375.
    [71] Lee J, Han A-R, Yu H, et al. Boosting the Ambipolar Performance of Solution-Processable PolymerSemiconductors via Hybrid Side-Chain Engineering[J]. J Am Chem Soc,2013,135(25):9540-9547.
    [72] Meager I, Ashraf R S, Mollinger S, et al. Photocurrent Enhancement from DiketopyrrolopyrrolePolymer Solar Cells through Alkyl-Chain Branching Point Manipulation[J]. J Am Chem Soc,2013,135(31):11537-11540.
    [73] Zou Y, Gendron D, A ch R B, et al. A High-Mobility Low-Bandgap Poly(2,7-carbazole) Derivative forPhotovoltaic Applications[J]. Macromol,2009,42(8):2891-2894.
    [74] A ch R B, Zou Y, Leclerc M, et al. Solvent effect and device optimization of diketopyrrolopyrrole andcarbazole copolymer based solar cells[J]. Org Electron,2010,11(6):1053-1058.
    [75] Jo J, Gendron D, Najari A, et al. Bulk heterojunction solar cells based on a low-bandgapcarbazole-diketopyrrolopyrrole copolymer[J]. Appl Phys Lett,2010,97:203303.
    [76] Zhou E, Wei Q, Yamakawa S, et al. Diketopyrrolopyrrole-Based Semiconducting Polymer forPhotovoltaic Device with Photocurrent Response Wavelengths up to1.1μm[J]. Macromol,2010,43(2):821-826.
    [77] Yu C-Y, Chen C-P, Chan S-H, et al. Thiophene/Phenylene/Thiophene-Based Low-BandgapCon1jugated Polymers for Efficient Near-Infrared Photovoltaic Applications[J]. Chem Mater,2009,21(14):3262-3269.
    [78] Tsai J-H, Lee W-Y, Chen W-C, et al. New Two-Dimensional Thiophene Acceptor ConjugatedCopolymers for Field Effect Transistor and Photovoltaic Cell Applications[J]. Chem Mater,2010,22(10):3290-3299.
    [79] Huo L, Hou J, Chen H-Y, et al. Bandgap and Molecular Level Control of the Low-Bandgap PolymersBased on3,6-Dithiophen-2-yl-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione toward Highly Efficient PolymerSolar Cells[J]. Macromol,2009,42(17):6564-6571.
    [80] Yao Y, Liang Y, Shrotriya V, et al. Plastic Near-Infrared Photodetectors Utilizing Low Band GapPolymer[J]. Adv Mater,2007,19(22):3979-3983.
    [81] Liang Y, Wu Y, Feng D, et al. Development of New Semiconducting Polymers for High PerformanceSolar Cells[J]. J Am Chem Soc,2009,131(1):56-57.
    [82] Liang Y, Feng D, Wu Y, et al. Highly Efficient Solar Cell Polymers Developed via Fine-Tuning ofStructural and Electronic Properties[J]. J Am Chem Soc,2009,131(22):7792-7799.
    [83] Hou J, Chen H-Y, Zhang S, et al. Synthesis of a Low Band Gap Polymer and Its Application in HighlyEfficient Polymer Solar Cells[J]. J Am Chem Soc,2009,131(43):15586-15587.
    [84] Chen H-Y, Hou J, Zhang S, et al. Polymer solar cells with enhanced open-circuit voltage andefficiency[J]. Nat Photon,2009,3:649-653.
    [85] http://www.solarmer.com.2010-07-27.
    [86] Huang Y, Huo L, Zhang S, et al. Sulfonyl: a new application of electron-withdrawing substituent inhighly efficient photovoltaic polymer[J]. Chem Commun,2011,47:8904-8906.
    [87] Huang Y, Guo X, Liu F, et al. Improving the Ordering and Photovoltaic Properties by Extendingπ-ConjugatedArea of Electron-Donating Units in Polymers with D-AStructure[J].Adv Mater,24(25):3383-3389.
    [88] Liang Y, Xu Z, Xia J, et al. For the Bright Future-Bulk Heterojunction Polymer Solar Cells with PowerConversion Efficiency of7.4%[J]. Adv Mater,2010,22(20): E135-E138.
    [89] He F, Wang W, Chen W, et al. Tetrathienoanthracene-Based Copolymers for Efficient Solar Cells[J]. JAm Chem Soc,2011,133(10):3284-3287.
    [90] Carsten B, Szarko J M, Son H J, et al. Examining the effect of the Dipole Moment on ChargeSeparation in Donor-Acceptor Polymers for Organic Phototvoltaic Applications[J]. J Am Chem Soc,2011,133(50):20468-20475.
    [91] Son H J, Lu L, Chen W, et al. Synthesis and Photovoltaic Effect in Dithieno[2,3-d:2’,3’-d’]Benzo[1,2-b:4,5-b’]dithiophene-Based Conjugated Polymers[J]. Adv Mater,2013,25(6):838-843.
    [92] You J, Chen C-C, Dou L, et al. Metal Oxide Nanoparticles as an Electron-Transport Layer inHigh-Performance and Stable Inverted Polymer Solar Cells[J]. Adv Mater,2012,24(38):5267-5272.
    [93] He Z, Zhong C, Huang X, et al. Simultaneous Enhancement of Open-Circuit Voltage, Short-CircuitCurrent Density, and Fill Factor in Polymer Solar Cells[J]. Adv Mater,2011,23(40):4636-4643.
    [94] He Z, Zhong C, Su S, et al. Enhanced power-conversion efficiency in polymer solar cells using aninverted device structure[J]. Nat Photon,2012,190(6):591-595.
    [95] Shi C, Yao Y, Yang Y, et al. Regioregular Copolymers of3-Alkoxythiophene and Their PhotovoltaicApplication[J]. J Am Chem Soc,2006,128(27):8980-8986.
    [96] Wang E, Wang M, Wang L, et al. Donor Polymers Containing Benzothiadiazole and Four ThiopheneRings in Their Repeating Units with Improved Photovoltaic Performance[J]. Macromol,2009,42(13):4410-4415.
    [97] Wang E, Wang L, Lan L, et al. High-performance polymer heterojunction solar cells of apolysilafluorene derivative[J]. Appl Phys Lett2008,92,033307.
    [98] Blouin N, Michaud A, Leclerc M. A Low-Bandgap Poly(2,7-Carbazole) Derivative for Use inHigh-Performance Solar Cells[J]. Adv Mater,2007,19(17):2295-2300.
    [99] Lee J K, Ma W L, Brabec C J, et al. Processing Additives for Improved Efficiency from BulkHeterojunction Solar Cells[J]. J Am Chem Soc,2008,130(11):3619-3623.
    [100] Lu J, Liang F, Drolet N, et al. Crystalline low band-gap alternating indolocarbazole andbenzothiadiazole-cored oligothiophene copolymer for organic solar cell applications[J]. Chem Commun,2008,5315-5317.
    [101] Huo L, Hou J, Zhang S, et al. A Polybenzo[1,2-b:4,5-b’]dithiophene Derivative with Deep HOMOLevel and Its Application in High-Performance Polymer Solar Cells[J]. Angew Chem Int Ed,2010,49(8):1500-1503.
    [102] Chen C-P, Chan S-H, Chao T-C, et al. Low-Bandgap Poly(Thiophene-Phenylene-Thiophene)Derivatives with Broaden Absorption Spectra for Use in High-Performance Bulk-Heterojunction PolymerSolar Cells[J]. J Am Chem Soc,2008,130(38):12828-12833.
    [103] Wong W-Y, Wang X-Z, He Z, et al. Metallated conjugated polymers as a new avenue towardshigh-efficiency polymer solar cells[J]. Nat Mater,2007,6,521-527.
    [104] Zhang Y, Chien S-C, Chen K-S, et al. Increased open circuit voltage in fluorinatedbenzothiadiazole-based alternating conjugated polymers[J]. Chem Commun,2011,47:11026-11028.
    [105] Xu Y-X, Chueh C-C, Yip H-L, et al. Improved Charge Transport and Absorption Coefficient inIndacenodithieno[3,2-b]thiophene-based Ladder-Type Polymer Leading to Highly Efficient Polymer SolarCells[J]. Adv Mater,2012,24(47):6356-6361.
    [106] You J, Dou L, Yoshimura K, et al. A polymer tandem solar cell with10.6%power conversionefficiency[J]. Nat Commun,2013,4:1446.
    [107] Dou L, Chen C-C, Yoshimura K, et al. Synthesis of5H-Dithieno[3,2-b:2’,3’-d]pyran as anElectron-Rich Building Block for Donor-Acceptor Type Low-Bandgap Polymers[J]. Macromol,46(9):3384-3390.
    [108] Gadisa A, Mammo W, Andersson L M, et al. A New Donor-Acceptor-Donor Polyfluorene Copolymerwith Balanced Electron and Hole Mobility[J]. Adv Funct Mater,2007,17(18):3836-3842.
    [109] Zhang F, Bijleveld J, Perzon E, et al. High photovoltage achieved in low band gap polymer solar cellsby adjusting energy levels of a polymer with the LUMOs of fullerene derivatives[J]. J Mater Chem,2008,18:5468-5474.
    [110] Lindgren L J, Zhang F, Andersson M, et al. Synthesis, Characterization, and Devices of a Series ofAlternating Copolymers for Solar Cells[J]. Chem Mater,2009,21(15):3491-3502.
    [111] Zhou E, Cong J, Tajima K, et al. Synthesis and Photovoltaic Properties of Donor-AcceptorCopolymers Based on5,8-Dithien-2-yl-2,3-diphenylquinoxaline[J]. Chem Mater,2010,22(17):4890-4895.
    [112] Kitazawa D, Watanabe N, Yamamoto S, et al. Quinoxaline-based π-conjugated donor polymer forhighly efficient organic thin-film solar cells[J]. Appl Phys Lett,2009,95:053701.
    [113] Wang E, Hou L, Wang Z, et al. An Easily Synthesized Blue Polymer for High-Performance PolymerSolar Cells[J]. Adv Mater,2010,22(46):5240-5244.
    [114] Wang E, Hou L, Wang Z, et al. Side-Chain Architectures of2,7-Carbazole and Quinoxaline-BasedPolymers for Efficient Polymer Solar Cells[J]. Macromol,2011,44(7):2067-2073.
    [115] Zhang Y, Zou J, Yip H-L, et al. Indacenodithiophene and Quinoxaline-Based Conjugated Polymersfor Highly Efficient Polymer Solar Cells[J]. Chem Mater,2011,23(9):2289-2291.
    [116] Huang Y, Zhang M, Ye L, et al. Molecular energy level modulation by changing the position ofelectron-donating side groups[J]. J Mater Chem,2012,22:5700-5705.
    [117] Duan R, Ye L, Guo X, et al. Application of Two-Dimensional ConjugatedBenzo[1,2-b:4,5-b’]dithiophene in Quinoxaline-Based Photovoltaic Polymers[J]. Macromol,2012,45(7):3032-3038.
    [118] Guo X, Zhang M, Tan J, et al. Influence of D/A Ratio on Photovoltaic Performance of a HighlyEfficient Polymer Solar Cell System[J]. Adv Mater,2012,24(48):6536-6541.
    [119] Roncali J. Synthetic Principles for Bandgap Control in Linear π-Conjugated Systems[J]. Chem Rev,1997,97(1):173-205.
    [120] Rasmussen S C, Schwiderski R L, Mulholland M E. Thieno[3,4-b]pyrazines and their applications tolow band gap organic materials[J]. Chem Commun,2011,47:11394-11410.
    [121] Katritzky A R, Lan X. Benzotriazole-mediated Arylalkylation and Heteroarylalkylation[J]. Chem SocRev,1994,23(6):363-373.
    [122] Ahn S-H, Czae M, Kim E-R, et al. Synthesis and Characterization of Soluble PolythiopheneDerivatives Containing Electron-Transporting Moiety[J]. Macromol,2001,34(8):2522-2527.
    [123] Tanimoto A, Yamamoto T. Synthesis of n-Type Poly(benzotriazole)s Having p-Conducting andPolymerizable Carbazole Pendants[J]. Macromol,2006,39(10):3546-3552.
    [124] Balan A, Gunbas G, Durmus A, et al. Donor-Acceptor Polymer with Benzotriazole Moiety:Enhancing the Electrochromic Properties of the “Donor Unit”[J]. Chem Mater,2008,20(24):7510-7513.
    [125] Zhang Z, Peng B, Liu B, et al. Copolymers from benzodithiophene and benzotriazole: synthesis andphotovoltaic applications[J]. Polym Chem,2010,1(9):1441-1447.
    [126] Liu B, Chen X, He Y, et al. New alkylthienyl substituted benzo[1,2-b:4,5-b’] dithiophene-basedpolymers for high performance solar cells[J]. J Mater Chem A,2013,1:570-577.
    [127] Min J, Zhang Z-G, Zhang S, et al. Synthesis and Photovoltaic Properties of D-A Copolymers Basedon Dithienosilole and Benzotriazole[J]. Macromol,2011,44(19):7632-7638.
    [128] Min J, Zhang Z-G, Zhang S, et al. Conjugated Side-Chain-Isolated D-A Copolymers Based onBenzo[1,2-b:4,5-b’]dithiophene-alt-dithienylbenzotriazole: Synthesis and Photovoltaic Properties[J]. ChemMater,2012,24(16):3247-3254.
    [129] Tumbleston J R, Stuart A C, Gann E, et al. Fluorinated Polymer Yields High Organic Solar CellPerformance for a Wide Range of Morphologies[J]. Adv Funct Mater,2013,23(27):3463-3470.
    [130] Li K, Li Z, Feng K, et al. Development of Large Band-gap Conjugated Copolymers for EfficientRegular Single and Tandem Organic Solar Cells[J]. J Am Chem Soc,2013,135(46):13549-13557.
    [131] Li Y F. Molecular Design of Photovoltaic Materials for Polymer Solar Cells: Toward SuitableElectronic Energy Levels and Broad Absorption[J]. Acc Chem Res,2012,45(5):723-733.
    [1] Svensson M, Zhang F, Veenstra S C, et al. High-Performance Polymer Solar Cells of an AlternatingPolyfluorene Copolymer and a Fullerene Derivative[J]. Adv Mater,2003,15(12):988-991.
    [2] a) Yu G, Gao J, Hummelen J C, et al. Polymer Photovoltaic Cells: Enhanced Efficiencies via a Networkof Internal Donor-Acceptor Heterojunction[J]. Science,1995,270(524):1789-1791; b) Li Y F. MolecularDesign of Photovoltaic Materials for Polymer Solar Cells: Toward Suitable Electronic Energy Levels andBroad Absorption[J]. Acc Chem Res,2012,45(5):723-733; c) Ingan s O, Zhang F, Andersson M R.Alternating Polyfluorenes Collect Solar Light in Polymer Photovoltaics[J]. Acc Chem Res,2009,42(11):1731-1739; d) Cheng Y-J, Yang S-H, Hsu C-S. Synthesis of Conjugated Polymers for Organic Solar CellApplications[J]. Chem Rev,2009,109(11):5868-5923; e) Peet J, Heeger A J, Bazan G C.“Plastic” SolarCells: Self-Assembly of Bulk Heterojunction Nanomaterials by Spontaneous Phase Separation[J]. AccChem Res,2009,42(11):1700-1708.
    [3] He Z, Zhong C, Su S, et al. Enhanced power-conversion efficiency in polymer solar cells using aninverted device structure[J]. Nat Photonics,2012,6:591-595.
    [4] Blouin N, Michaud A, Leclerc M. A Low-Bandgap Poly(2,7-Carbazole) Derivative for Use inHigh-Performance Solar Cells[J]. Adv Mater,2007,19(17):2295-2300.
    [5] a) Gadisa A, Mammo W, Andersson L M, et al. A New Donor-Acceptor-Donor Polyfluorene Copolymerwith Balanced Electron and Hole Mobility[J]. Adv Funct Mater,2007,17(18):3836-3842; b) Zhang F,Bijleveld J, Perzon E, et al. High photovoltage achieved in low band gap polymer solar cells by adjustingenergy levels of a polymer with the LUMOs of fullerene derivatives[J]. J Mater Chem,2008,18:5468-5474; c) Zhou E, Cong J, Tajima K, et al. Synthesis and Photovoltaic Properties of Donor-AcceptorCopolymers Based on5,8-Dithien-2-yl-2,3-diphenylquinoxaline[J]. Chem Mater,2010,22(17):4890-4895;d) Wen L, Nietfeld J P, Amb C M, et al. Synthesis and Characterization of New2,3-DisubstitutedThieno[3,4-b]pyrazines: Tunable Building Blocks for Low Band Gap Conjugated Materials[J]. J Org Chem,2008,73(21):8529-8536.
    [6] a) Chen C-H, Hsieh C-H, Dubosc M, et al. Synthesis and Characterization of BridgedBithiophene-Based Conjugated Polymers for Photovoltaic Applications: Acceptor Strength and TernaryBlends[J]. Macromol,2010,43(2):697-708; b) Huang Y, Zhang M, Ye L, et al. Molecular energy levelmodulation by changing the position of electron-donating side groups[J]. J Mater Chem,2012,22:5700-5705; c) Duan R, Ye L, Guo X, et al. Application of Two-Dimensional ConjugatedBenzo[1,2-b:4,5-b’]dithiophene in Quinoxaline-Based Photovoltaic Polymers[J]. Macromol,2012,45(7):3032-3038; d) Wang E, Hou L, Wang Z, et al. An Easily Synthesized Blue Polymer for High-PerformancePolymer Solar Cells[J]. Adv Mater,2010,22(46):5240-5244.
    [7] a) Zhang Y, Zou J, Yip H-L, et al. Indacenodithiophene and Quinoxaline-Based Conjugated Polymersfor Highly Efficient Polymer Solar Cells[J]. Chem Mater,2011,23(9):2289-2291; b) Patil A V, Lee W-H,Lee E, et al. Synthesis and Photovol taic Properties of a Low-Band-Gap Copolymer ofDithieno[3,2-b:2’,3’-d]thiophene and Dithienylquinoxaline[J]. Macromol,2011,44(6):1238-1241; c)Wang E, Hou L, Wang Z, et al. Side-Chain Architectures of2,7-Carbazole and Quinoxaline-BasedPolymers for Efficient Polymer Solar Cells[J]. Macromol,2011,44(7):2067-2073.
    [8] Price S C, Stuart A C, Yang L, et al. Fluorine Substituted Conjugated Polymer of Medium Band GapYields7%Efficiency in Polymer-Fullerene Solar Cells[J]. J Am Chem Soc,2011,133(12):4625-4631.
    [9] Hou J, Huo L, He C, et al. Synthesis and Absorption Spectra of Poly(3-(phenylenevinyl) thiophene)swith Conjugated Side Chains[J]. Macromol,2006,39(2):594-603.
    [10] Unver E K, Tarkuc S, Udum Y A, et al. Effect of Conjugated Core Building BlockDibenzo[a,c]phenazine Unit on p-Conjugated Electrochromic Polymers: Red-Shifted Absorption[J]. J PolySci A Poly Chem,2010,48(8):1714-1720.
    [11] Hou J, Park M-H, Zhang S, et al. Bandgap and Molecular Energy Level Control of ConjugatedPolymer Photovoltaic Materials Based on Benzo[1,2-b:4,5-b’]dithiophene[J]. Macromol,2008,41(16):6012-6018.
    [12] Huo L, Hou J, Zhang S, et al. A Polybenzo[1,2-b:4,5-b’]dithiophene Derivative with Deep HOMOLevel and Its Application in High-Performance Polymer Solar Cells[J]. Angew Chem Int Ed,2010,49(8):1500-1503.
    [13] a) He Y, Zhao G, Peng B, Yet al. High-Yield Synthesis and Electrochemical and PhotovoltaicProperties of Indene-C70Bisadduct[J]. Adv Funct Mater,2010,20(19):3383-3389; b) He Y, Li Y. Fullerenederivative acceptors for high performance polymer solar cells[J]. Phys Chem Chem Phys,2011,13:1970-1983.
    [1] Scharber M C, Mühlbacher D, Koppe M, et al. Design Rules for Donors in Bulk-Heterojunction SolarCells-Towards10%Energy-Conversion Efficiency[J]. Adv Mater,2006,18(6):789-794.
    [2] Zhang F, Jespersen K G, Bj rstr m C, et al. Influence of Solvent Mixing on the Morphology andPerformance of Solar Cells Based on Polyfluorene Copolymer/Fullerene Blends[J]. Adv Funct Mater,2006,16(5):667-674.
    [3] Li Y F. Molecular Design of Photovoltaic Materials for Polymer Solar Cells: Toward SuitableElectronic Energy Levels and Broad Absorption[J]. Acc Chem Res,2012,45(5):723-733.
    [4] Zhang Y, Chien S-C, Chen K-S, et al. Increased open circuit voltage in fluorinatedbenzothiadiazole-based alternating conjugated polymers[J]. Chem Commun,2011,47:11026-11028.
    [5] Xu Y-X, Chueh C-C, Yip H-L, et al. Improved Charge Transport and Absorption Coefficient inIndacenodithieno[3,2-b]thiophene-based Ladder-Type Polymer Leading to Highly Efficient Polymer SolarCells[J]. Adv Mater,2012,24(47):6356-6361.
    [6] He Y, Chen H-Y, Hou J, et al. Indene-C60Bisadduct: A New Acceptor for High-Performance PolymerSolar Cells[J]. J Am Chem Soc,2010,132(4):1377-1382.
    [7] He Y, Zhao G, Peng B, et al. High-Yield Synthesis and Electrochemical and Photovoltaic Properties ofIndene-C70Bisadduct[J]. Adv Funct Mater,2010,20(19):3383-3389.
    [8] He Y, Li Y F, Fullerene derivative acceptors for high performance polymer solar cells[J]. Phys ChemChem Phys,2011,13:1970-1983.
    [9] Li Y F. Fullerene-Bisadduct Acceptors for Polymer Solar Cells[J]. Chem Asian J2013, DOI:10.1002/asia.201300600.
    [10] Zhou H, Yang L, Price S C, et al. Enhanced Photovoltaic Performance of Low-Bandgap Polymers withDeep LUMO Levels[J]. Angew Chem Int Ed,2010,49(43):7992-7995.
    [11] Price S C, Stuart A C, Yang L, et al. Fluorine Substituted Conjugated Polymer of Medium Band GapYields7%Efficiency in Polymer-Fullerene Solar Cells[J]. J Am Chem Soc,2011,133(12):4625-4631.
    [12] Zhou H, Yang L, Stuart A C, et al. Development of Fluorinated Benzothiadiazole as a Structural Unitfor a Polymer Solar Cell of7%Efficiency[J]. Angew Chem Int Ed,2011,50(13):2995-2998.
    [13] Zhou H, Yang L, You W. Rational Design of High Performance Conjugated Polymers for OrganicSolar Cells[J]. Macromol,2012,45(2):607-632.
    [14] Kim J Y, Lee K, Coates N E, et al. Efficient Tandem Polymer Solar Cells Fabricated by All-SolutionProcessing[J]. Science,2007,317(5835):222-225.
    [15] Dennler G, Scharber M C, Ameri T, et al. Design Rules for Donors in Bulk-Heterojunction TandemSolar Cells-Towards15%Energy-Conversion Efficiency[J]. Adv. Mater.2008,20(3):579-583.
    [16] Dou L, Gao J, Richard E, et al. Systematic Investigation of Benzodithiophene-andDiketopyrrolopyrrole-Based Low-Bandgap Polymers Designed for Single Junction and Tandem PolymerSolar Cells[J]. J Am Chem Soc,2012,134(24):10071-10079.
    [17] Dou L, You J, Yang J, et al. Tandem polymer solar cells featuring a spectrally matched low-bandgappolymer[J]. Nat Photonics,2012,6:180-185.
    [18] Dou L, Chang W-H, Gao J, et al. A Selenium-Substituted Low-Bandgap Polymer with VersatilePhotovoltaic Applications[J]. Adv Mater,2013,25(6):825-831.
    [19] Li W, Furlan A, Hendriks K H, et al. Efficient Tandem and Triple-Junction Polymer Solar Cells[J]. JAm Chem Soc,2013,135(15):5529-5532.
    [20] You J, Dou L, Yoshimura K, et al. A polymer tandem solar cell with10.6%power conversionefficiency[J]. Nat Commun,2013,4:1446-1455.
    [21] Chen H-Y, Hou J, Zhang S, et al. Polymer solar cells with enhanced open-circuit voltage andefficiency[J]. Nat Photonics,2009,3:649-653.
    [22] Son H J, Wang W, Xu T, et al. Synthesis of Fluorinated Polythienoth iophene-co-benzodithiophenesand Effect of Fluorination on the Photovoltaic Properties[J]. J Am Chem Soc,2011,133(6):1885-1894.
    [23] Albrecht S, Janietz S, Schindler W, et al. Fluorinated Copolymer PCPDTBT with EnhancedOpen-Circuit Voltage and Reduced Recombination for Highly Efficient Polymer Solar Cells[J]. J Am ChemSoc,2012,134(36):14932-14944.
    [24] Stuart A C, Tumbleston J R, Zhou H, et al. Fluorine Substituents Reduce Charge Recombination andDrive Structure and Morphology Development in Polymer Solar Cells[J]. J Am Chem Soc,2013,135(5):1806-1815.
    [25] Tumbleston J R, Stuart A C, Gann E, et al. Fluorinated Polymer Yields High Organic Solar CellPerformance for a Wide Range of Morphologies[J]. Adv Funct Mater,2013,23(27):3463-3470.
    [26] a) Min J, Zhang Z-G, Zhang S, et al. Conjugated Side-Chain-Isolated D-A Copolymers Based onBenzo[1,2-b:4,5-b’]dithiophene-alt-dithienylbenzotriazole: Synthesis and Photovoltaic Properties[J]. ChemMater,2012,24(16):3247-3254; b) Min J, Zhang Z-G, Zhang S, et al. Synthesis and Photovol taicProperties of D-A Copolymers Based on Dithienosilole and Benzotriazole[J]. Macromol,2011,44(19):7632–7638.
    [27] Zuo Z, Li Y. Functional polymers for photovoltaic devices[J]. Polym Bull,2012,68:1425-1467.
    [28] Son H J, Lu L, Chen W, et al. Synthesis and Photovoltaic Effect in Dithieno[2,3-d:2’,3’-d’]Benzo[1,2-b:4,5-b’]dithiophene-Based Conjugated Polymers[J]. Adv Mater,2013,25(6):838-843.
    [29] Zhou H, Zhang Y, Seifter J, et al. High-Efficiency Polymer Solar Cells Enhanced by SolventTreatment[J]. Adv Mater,2013,25(11):1646-1652.
    [30] Ye L, Jing Y, Guo X, et al. Remove the Residual Additives toward Enhanced Efficiency with HigherReproducibility in Polymer Solar Cells[J]. J Phys Chem C,2013,117(29):14920-14928.
    [31] Liu X, Wen W, Bazan G C. Post-Deposition Treatment of an Arylated-Carbazole Conjugated Polymerfor Solar Cell Fabrication[J]. Adv Mater,2012,24(33):4505-4510.
    [32] Chang Y-M, Zhu R, Richard E, et al. Electrostatic Self-Assembly ConjugatedPolyelectrolyte-Surfactant Complex as an Interlayer for High Performance Polymer Solar Cells[J]. AdvFunct Mater,2012,22(15):3284-3289.
    [33] He Z, Zhong C, Huang X, et al. Simultaneous Enhancement of Open-Circuit Voltage, Short-CircuitCurrent Density, and Fill Factor in Polymer Solar Cells[J]. Adv Mater,2011,23(40):4636-4643.
    [34] Chan S-H, Chen C-P, Chao T-C, et al. Synthesis, Characterization, and Photovoltaic Properties ofNovel Semiconducting Polymers with Thiophene-Phenylene-Thiophene (TPT) as Coplanar Units[J].Macromol,2008,41(15):5519-5526.
    [35] Min J, Zhang Z-G, Zhang M, et al. Synthesis and photovoltaic properties of a D-A copolymer ofdithienosilole and fluorinated-benzotriazole[J]. Polym Chem,2013,4:1467-1473.
    [36] Chang L, Lademann H W, Bonekamp J-B, et al. Effect of Trace Solvent on the Morphology ofP3HT:PCBM Bulk Heterojunction Solar Cells[J]. Adv Funct Mater,2011,21(10):1779-1787.
    [37] Campoy-Quiles M, Ferenczi T, Agostinelli T, et al. Morphology evolution via self-organization andlateral and vertical diffusion in polymer:fullerene solar cell blends[J]. Nat Mater,2008,7:158-164.
    [38] Savenije T J, Kroeze J E, Yang X, et al. The Effect of Thermal Treatment on the Morphology andCharge Carrier Dynamics in a Polythiophene-Fullerene Bulk Heterojunction[J]. Adv Funct Mater,2005,15(8):1260-1266.
    [39] Chen F-C, Tseng H-C, Ko C-J. Solvent mixtures for improving device efficiency of polymerphotovoltaic devices[J]. Appl Phys Lett,2008,92:103316.
    [40] Li G, Shrotriya V, Huang J, et al. High-efficiency solution processable polymer photovoltaic cells byself-organization of polymer blends[J]. Nat Mater,2005,4:864-868.
    [1] Lindgren L J, Zhang F, Andersson M, et al. Synthesis, Characterization, and Devices of a Series ofAlternating Copolymers for Solar Cells[J]. Chem Mater,2009,21(15):3491-3502.
    [2] Chen C-H, Hsieh C-H, Dubosc M, et al. Synthesis and Characterization of Bridged Bithiophene-BasedConjugated Polymers for Photovoltaic Applications: Acceptor Strength and Ternary Blends[J]. Macromol,2010,43(2):697-708.
    [3] Zhou E, Cong J, Tajima K, et al. Synthesis and Photovoltaic Properties of Donor-Acceptor CopolymersBased on5,8-Dithien-2-yl-2,3-diphenylquinoxaline[J]. Chem. Mater,2010,22(17):4890-4895.
    [4] Patil A V, Lee W-H, Lee E, et al. Synthesis and Photovol taic Properties of a Low-Band-GapCopolymer of Dithieno[3,2-b:2,3-d]thiophene and Dithienylquinoxaline[J]. Macromol,2011,44(6):1238-1241.
    [5] Lee S K, L ee W-H, Cho J M, et al. Synthesis and Photovoltaic Properties of Quinoxaline-BasedAlternating Copolymers for High-Efficiency Bulk-Heterojunction Polymer Solar Cells[J]. Macromol,2011,44(15):5994-6001.
    [6] Wang E, Hou L, Wang Z, et al. Side-Chain Architectures of2,7-Carbazole and Quinoxaline-BasedPolymers for Efficient Polymer Solar Cells[J]. Macromol,2011,44(7):2067-2073.
    [7] Kitazawa D, Watanabe N, Yamamoto S, et al. Quinoxaline-based π-conjugated donor polymer forhighly efficient organic thin-film solar cells[J]. Appl Phys Lett,2009,95:053701.
    [8] Wang E, Hou L, Wang Z, et al. An Easily Synthesized Blue Polymer for High-Performance PolymerSolar Cells[J]. Adv Mater,2010,22(46):5240-5244.
    [9] Zhang Y, Zou J, Yip H-L, et al. Indacenodithiophene and Quinoxaline-Based Conjugated Polymers forHighly Efficient Polymer Solar Cells[J]. Chem Mater,2011,23(9):2289-2291.
    [10] Huang Y, Zhang M, Ye L, et al. Jianhui Hou. Molecular energy level modulation by changing theposition of electron-donating side groups[J]. J Mater Chem,2012,22:5700-5705.
    [11] Duan R, Ye L, Guo X, et al. Application of Two-Dimensional ConjugatedBenzo[1,2-b:4,5-b’]dithiophene in Quinoxaline-Based Photovoltaic Polymers[J]. Macromol,2012,45(7):3032-3038.
    [12] Guo X, Zhang M, Tan J, et al. Influence of D/A Ratio on Photovoltaic Performance of a HighlyEfficient Polymer Solar Cell System[J]. Adv Mater,2012,24(48):6536-6541.
    [13] Chen H-C, Chen Y-H, Liu C-C, et al. Prominent Short-Circuit Currents of FluorinatedQuinoxaline-Based Copolymer Solar Cells with a Power Conversion Efficiency of8.0%[J]. Chem Mater,2012,24(25):4766-4772.
    [14] Edelmann M J, Raimundo J-M, Utesch N F, et al. Dramatically Enhanced Fluorescence ofHeteroaromatic Chromophores upon Insertion as Spacers into Oligo(triacetylene)s[J]. Helvetica ChimicaActa,2002,85:2195-2213.
    [15] Gadisa A, Mammo W, Andersson L M, et al. A New Donor-Acceptor-Donor Polyfluorene Copolymerwith Balanced Electron and Hole Mobility[J]. Adv Funct Mater,2007,17(18):3836-3842.
    [16] Babudri F, Fiandanese V, Marchese G, et al. A Direct Access to ɑ-Diones from Oxalyl Chloride[J].Tetrahedron Letters,1995,36(40):7305-7308.
    [17] Zhou H, Zhang Y, Seifter J, et al. High-Efficiency Polymer Solar Cells Enhanced by SolventTreatment[J]. Adv Mater,2013,25(11):1646-1652.
    [18] Liu X, Wen W, Bazan G C. Post-Deposition Treatment of an Arylated-Carbazole Conjugated Polymerfor Solar Cell Fabrication[J]. Adv Mater,2012,24(33):4505-4510.
    [1] Zhou H, Yang L, Price S C, et al. Enhanced Photovoltaic Performance of Low-Bandgap Polymers withDeep LUMO Levels[J]. Angew Chem Int Ed,2010,49(43):7992-7995.
    [2] Price S C, Stuart A C, Yang L, et al. Fluorine Substituted Conjugated Polymer of Medium Band GapYields7%Efficiency in Polymer-Fullerene Solar Cells[J]. J Am Chem Soc,2011,133(12):4625-4631.
    [3] Zhou H, Yang L, Stuart A C, et al. Development of Fluorinated Benzothiadiazole as a Structural Unit fora Polymer Solar Cell of7%Efficiency[J]. Angew Chem Int Ed,2011,50(13):2995-2998.
    [4] Chen H-Y, Hou J, Zhang S, et al. Polymer solar cells with enhanced open-circuit voltage andefficiency[J]. Nat Photonics,2009,3:649-653.
    [5] Peng Q, Liu X, Su D, et al. Novel Benzo[1,2-b:4,5-b’]dithiophene–Benzothiadiazole Derivatives withVariable Side Chains for High-Performance Solar Cells[J]. Adv Mater,2011,23(39):4554-4558.
    [6] Son H J, Wang W, Xu T, et al. Synthesis of Fluorinated Polythienoth iophene-co-benzodithiophenes andEffect of Fluorination on the Photovoltaic Properties[J]. J Am Chem Soc,2011,133(6):1885-1894.
    [7] Albrecht S, Janietz S, Schindler W, et al. Fluorinated Copolymer PCPDTBT with EnhancedOpen-Circuit Voltage and Reduced Recombination for Highly Efficient Polymer Solar Cells[J]. J Am ChemSoc,2012,134(36):14932-14944.
    [8] Stuart A C, Tumbleston J R, Zhou H, et al. Fluorine Substituents Reduce Charge Recombination andDrive Structure and Morphology Development in Polymer Solar Cells[J]. J Am Chem Soc,2013,135(5):1806-1815.
    [9] Tumbleston J R, Stuart A C, Gann E, et al. Fluorinated Polymer Yields High Organic Solar CellPerformance for a Wide Range of Morphologies[J]. Adv Funct Mater,2013,23(27):3463-3470.
    [10] Min J, Zhang Z-G, Zhang S, et al. Conjugated Side-Chain-Isolated D-A Copolymers Based onBenzo[1,2-b:4,5-b’]dithiophene-alt-dithienylbenzotriazole: Synthesis and Photovoltaic Properties[J]. ChemMater,2012,24(16):3247-3254.
    [11] Son H J, Lu L, Chen W, et al. Synthesis and Photovoltaic Effect in Dithieno[2,3-d:2’,3’-d’]Benzo[1,2-b:4,5-b’]dithiophene-Based Conjugated Polymers[J]. Adv Mater,2013,25(6):838-843.
    [12] Poll T S, Love J A, Nguyen T-Q, et al. Non-Basic High-Performance Molecules forSolution-Processed Organic Solar Cells[J]. Adv Mater,2012,24(27):3646-3649.
    [13] Chen H-C, Chen Y-H, Liu C-C, et al. Prominent Short-Circuit Currents of FluorinatedQuinoxaline-Based Copolymer Solar Cells with a Power Conversion Efficiency of8.0%[J]. Chem Mater,2012,24(25):4766-4772.
    [14] Anant P, Lucas N T, Jacob J. A Simple Route toward the Synthesis of BisbenzothiadiazoleDerivatives[J]. Org Lett,2008,10(24):5533-5536.
    [15] Wang M, Hu X, Liu P, et al. Donor Acceptor Conjugated Polymer Based onNaphtho[1,2-c:5,6-c]bis[1,2,5]thiadiazole for High-Perform ance Polymer Solar Cells[J]. J Am Chem Soc,2011,133(25):9638-9641.
    [16] Osaka I, Kakara T, Takemura N, et al. Naphthodithiophene-Naphthobisthiadiazole Copolymers forSolar Cells: Alkylation Drives the Polymer Backbone Flat and Promotes Efficiency[J]. J Am Chem Soc,2013,135(24):8834-8837.
    [17] Wang M, Hu X, Liu L, et al. Design and Synthesis of Copolymers of Indacenodithiophene andNaphtho[1,2-c:5,6-c]bis(1,2,5-thiadiazole) for Polymer Solar Cells[J]. Macromol,2013,46(10):3950-3958.
    [18] Donaghey J E, Ashraf R S, Kim Y, et al. Pyrroloindacenodithiophene containing polymers for organicfield effect transistors and organic photovoltaics[J]. J Mater Chem,21(46):18744-18752.
    [19] Ottone C, Berrouard P, Louarn G, et al. Donor-acceptor alternating copolymers containingthienopyrroledione electron accepting units: preparation, redox behaviour, and application to photovoltaiccells[J]. Polym Chem,2012,3,2355-2365.
    [20] Hendriks K H, Heintges G H L, Gevaerts V S, et al. High-Molecular-Weight Regular AlternatingDiketopyrrolopyrrole-based Terpolymers for Efficient Organic Solar Cells[J]. Angew Chem Int Ed,2013,52(2):8341-8344.
    [21] Yuen J D, Fan J, Seifter J, et al. High Performance Weak Donor Acceptor Polymers in Thin FilmTransistors: Effect of the Acceptor on Electronic Properties, Ambipolar Conductivity, Mobility, andThermal Stability[J]. J Am Chem Soc,2011,133(51):20799-20807.
    [22] a) Meager I, Ashraf R S, Rossbauer S, et al. Alkyl Chain Extension as a Route to NovelThieno[3,2-b]thiophene Flanked Diketopyrrolopyrrole Polymers for Use in Organic Solar Cells and FieldEffect Transistors[J]. Macromol,2013,46(15):5961-5967; b) Dang D, Chen W, Yang R, et al. Fluorinesubstitution enhanced photovoltaic performance of a D–A1–D–A2copolymer[J]. Chem Commun,2013,DOI:10.1039/c3cc44931a
    [23] Pasker F M, Blanc S M, Schnakenburg G, et al. Thiophene-2-aryl-2H-benzotriazole-thiopheneOligomers with Adjustable Electronic Properties[J]. Org Lett,2011,13(9):2338-2341.
    [24] Azoulay J D, Koretz Z A, Wong B M, et al. Bridgehead Imine Substituted CyclopentadithiopheneDerivatives: An Effective Strategy for Band Gap Control in Donor-Acceptor Polymers[J]. Macromol,2013,46(4):1337-1342.
    [25] Hu X, Shi M, Chen J, et al. Synthesis and Photovoltaic Properties of Ester Group FunctionalizedPolythiophene Derivatives[J]. Macromol Rapid Commun,2011,32(6):506-511.
    [26] Huo L, Chen T L, Zhou Y, et al. Improvement of Photoluminescent and Photovoltaic Properties ofPoly(thienylene vinylene) by Carboxylate Substitution[J]. Macromol,2009,42(13):4377-4380.
    [27] Tromholt T, Gevorgyan S A, J rgensen M, et al. Thermocleavable Materials for Polymer Solar Cellswith High Open Circuit VoltagesA Comparative Study[J]. ACS Appl Mater Interfaces,2009,1(12):2768-2777.
    [28] Gevorgyan S A, Krebs F C. Bulk Heterojunctions Based on Native Polythiophene[J]. Chem Mater,2008,20(13):4386-4390.
    [29] Murphy A R, Liu J, Luscombe C,et al. Synthesis, Characterization, and Field-Effect TransistorPerformance of Carboxylate-Functionalized Polythiophenes with Increased Air Stability[J]. Chem Mater,2005,17(20):4892-4899.
    [30] Pomerantz M, Cheng Y, Kasim R K, et al. Poly(alkyl thiophene-3-carboxylates). Synthesis, propertiesand electroluminescence studies of polythiophenes containing a carbonyl group directly attached to thering[J]. J Mater Chem,1999,9:2155-2163.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700