126kV 31.5kA自能式六氟化硫断路器的设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
SF_6断路器从双压式、单压式发展到如今的自能式是断路器灭弧原理的一个重大飞跃。自能式SF_6断路器利用电弧阻塞效应即利用电弧本身的能量使灭弧室内SF_6气体的压力升高,在电弧过零时产生有效的气吹而熄灭电弧。这样操动机构仅需提供触头运动所需要的动能,从而大大减少了操作功,简化了机构,减小了灭弧室的结构尺寸,大大提高断路器的可靠性。所以对于自能式SF_6断路器的研制开发具有非常重要的意义。
     本文针对126kV31.5kA自能式SF_6断路器的研制,建立了相应的灭弧室气压特性数学模型,对自能式SF_6断路器开断过程中电弧能量利用有重要影响的灭弧室缸径、喷口直径、动触杆开口位置进行了详细深入的理论分析和计算,并根据断路器开断中的满容量开断和近区故障开断的要求确定了灭弧室参数。采用ANASYS软件计算了灭弧室电场分布,并对冲击电压和工频电压下的最大电场强度进行了分析,确定了绝缘瓷套的尺寸。所设计的126kV31.5kA自能式SF_6断路器达到了小型化的要求。
     针对自能式断路器的产品,本文设计了操作功小、零部件少、结构合理、噪音低、可靠性高的弹簧操动机构。在设计中分别对结构进行了选择和比较并确定了设计方案,并对弹簧的选择、疲劳强度、分闸线圈等进行了研究。
     通过上述的研究和设计,本文制造了126kV31.5kA自能式SF_6断路器样机,根据国家标准要求,进行了型式试验,对断路器的开断试验进行了分析说明。试验结果表明126kV31.5kA自能式断路器具有良好的开断性能,也证实了此灭弧室结构设计的合理性。
It is a very high advancement to the development from two-pressure arc-quenching chamber and single-pressure arc-quenching chamber to the self-energy arc-quenching chamber now for arc-quenching theory of SF6 CB make use of the arc blocking effect, namely arc-self-energy, to increase SF6 gas pressure in the arc-quenching chamber and get the efficient blasting effect to extinguish the arc when the arc current is zero. So the operation machine only provides kinetic energy needed for contactor moving, then operation power is decreased largely and machine is simplified. Consequently the structure and size of arc-quenching chamber are decreased and reliability of CB is improved greatly. So the development of self-energy SF6 CB is very important.
    In the paper, the math model of arc-quenching chamber air-pressure character is built on the base of 126kV/31.5kA self-energy SF6 CB's exploiting, then the theory analysis and calculation is deeply been done for cylinder radius, nozzle spout radius and opening position of moved contact that they have the essential effect for the use of arc energy in the course of opening. Arc-quenching chamber parameter is confirmed according to the request of full opening and fault opening when the CB is opening. In addition, electric field distribution of arc-quenching chamber is calculated in adopting ANASYS software and the largest electric field intention is analyzed under the impulsion voltage and infrequency voltage, then the size of insulation porcelain cover is determined. Designed product reaches miniaturization request.
    The small operation power, few component parts, appropriate structure, low noise and high reliability spring operation machine is designed for self-energy CB. Choice and comparison of structure are done and the choosing spring, fatigue intension, opening coil and so on are studied in design.
    Through the research and design from the above, 126kV/31.5kA self-energy SF6 CB's sample is manufactured in the paper. According to GB, type test is done and the analysis instruction of CB's opening test is done. The test result indicates that 126kV/31.5kA self-energy SF6 CB has excellent opening character and also proves the reasonability of arc-quenching chamber structure design.
引文
[1] Famg MTC, and yan JD, common problems encountered in computer simulation of gas blast arcs. Proc, of the Third INT.Conf on Electrical Contacts, Arcs, Apparatus and their Applications, Xi'an, Chins, Vol. I, 1997, p1-7.
    [2] Claessens, M, von Starck R and Thiel H. Simulation of gas flow phenomenon in high-pressure Arcs and High-Frequency. Thermal Plasmas, Vol, 25, Np.5, P1001-1007.
    [3] J.W.Mu, K.Y.Parjm J.K.Chong, K.D.Song, B.Y.Lee, Computer Simulation of Arc Interruption Using FEM For SF6 Gas Circuit Breaker.
    [4] J.D. Yan and M.T.C Fand the development of PC Based CAD Tolls For Auto-Expansion Circuit Breaker Design, IEEE Transaction on Power Delivery, Vol.14, No.1, January 1999, P176~180.
    [5] Okamoto M.Ishikawa M.Suzuki et al. "Computer simulation of phenomenon associated with hot gas in puff-type gas circuit breaker", IEEE, Trans.on power dulivery, Vol.6, No.2, 1991.
    [6] Mitchell R.R, tuma D.T, "transient two=dimensional calculations of properties of forced convection stabilized electric arc", IEEE trans. On PS, 1982.10.
    [7] Treanier J.Y, Reggio M., Camarero r., "LTE Cmputation of Axisymmetric Arc-Flow Interaction in Circuit Breaker", IEEE, trans. On plasma science, VOL. 19.
    [8] Frost L. And Liebermann R.M., "Composiion and transport properties of SF6 and their use in a simplified enthalpy flow arc model", Pro. IEEE, VOL. 59, 1971.
    [9] I.Y/Trepanier, et al., Application of computational fluid dynamic tools to circuit breaker flow analysi. IEEE Trans. PWRD, Vol. 10, No.2,1995.
    [10] Lowke J.J., Ludwing H.c., "A simple model for HIGH current SRCS stabilixed by forced convection", J.Appl.Phys., 1975, 46.
    [11] Swaanson b.W., "Nozzel arc interruption supersonic flow", IEEE trans. On PAS, 1997,96.
    [12] Zhang J.F., Fang M.T.C., "Theiretucak uvestugatuib if A 2kA DC N2 arc in A
    
    supersonic nozzle", J.Phys. D. Appl. Phys., 1987.
    [13] A.Gleizes,M.Mithiche,Pham Van Doan Study of a circuit-breaker arc with self-generated flow: Part I-Energy transfer in the high-current phase,IEEE Trans,on Plasma Science, 1988,16(6):P616-62
    [14] Slepian J. The Extinction of a Long A-C Arc.Trans.ATEE,1930,49(2):P421.
    [15] Ragaller K,Egli W, Brand K P.Dielectric recovery of an axially blown SF6/N2-arc after current zero: PARTII-theoretical investigations.IEEE Trans.on Plasma Science,1982,10(3):P154-162
    [16] Mitchell R R Tuma D T, Osterle J F.Transient two-dimensional calculations of properties of forced convection stabilized electric arcs.IEEE Trans on Plasma Science, 1985,13(4):P207-220
    [17] Trepanier T Y, Reggio M,Lausey, et al.Analysis of the dielectric strength of SF6 circuit breaker.IEEE Trans. on Power Delivery, 1991,69(2):P809-815
    [18] Hermann W, Kogelschatz U,ragaller K,et al. Investigation of cylindrical axially blown high-pressure arc.J.Phys.D:Appl.Math.Modelling,1986,10:P190-220
    [19] Libermann R.W and Lowke J.J,Radiation Emission Coefficient for Sulfur Hexfluoride Arc Plasma,Juant. Spectors.Radiat. Transfer, 1976,Vol. 16,P253
    [20] Hu Wangping,Xiao Ling,Wang Qiping.Dynamic characteristic of gas flow with arc in nozzle.In:Proc.of 8th Int.Conf.On Gas Discharges and their Applications,Oxford,U.K, 1985P 103-106
    [21] 阎究敦,Fang MTC,Hall W,自能灭弧室灭弧过程的计算机辅助模拟,高压电器1998年,第六期P3-5
    [22] Z.Gajic,利用电弧产生的气体压力进行完全自补偿的压气式灭弧室的应用经验。
    [23] 王其平,胡万平,刘亚芳著,SF6与其混合气体中的电弧动态特性和应用,西安交通大学出版社,P96~P97,1996年。
    [24] S.V.帕坦卡著,郭良宽译,传热和流体流动的数值方法,安徽科学技术出版社,P140~P141,1984年。
    [25] 林莘,连建华,“六氟化硫压气式断路器灭弧室中电弧对气流特性的影响”,中国电工技术学会接触及电弧专业委员会第九届(98)学术年会。
    
    
    [26] 李俊民,林莘,徐建源等,自能式六氟化硫断路器开断小容性电流的数值模拟与介质恢复强度分析,《电工技术学报》第16卷,No.1,P35~38。
    [27] 林莘,连建华,大容量六氟化硫压气式断路器灭弧室中瞬时热气流场数值模拟,《电工技术学报》,1999年,第14卷No.5,P44~47。
    [28] 王其平,电器电弧理论,机械工业出版社,1991年。
    [29] 李冶,林莘,高压六氟化硫断路器的技术进步——自能灭弧室与弹簧操动机构,高压开关行业通讯,2000年3月P30-P32。
    [30] 谭浩强,龙濯庭,FORTRAN77科学子程序汇编,清华大学出版社。1993年。
    [31] 胡之光,“电机电磁场的分析与计算”,机械工业出版社,1989年。
    [32] 盛剑霓,“工程电磁场数值分析”,西安交通大学出版社,1994年。
    [33] 冯磁璋,“电磁场”,高等教育出版社,1979年。
    [34] 钟建英,张英,林莘,“压气式高压断路器灭弧室气流场数值计算”,沈阳高等电力专科学校学报,2001年10月。
    [35] 钟建英,林莘,“高压断路器灭弧室气流场数值分析新探讨”,《高压电器》,2002年2月,第38卷第1期。
    [36] 张节容,钱家俪等,《高压电器原理和应用》,清华大学出版社,1989年。
    [37] 清华大学高压教研组编,《高压断路器》,电力工业出版社,1980年。
    [38] 王其平,电器电弧理论,机械工业出版社,1991年。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700