SAR/NBR共混型吸水膨胀橡胶的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
吸水膨胀橡胶(WSR)是一种具有优良弹性和吸水膨胀性能的新型功能性止水密封橡胶材料。由于其施工方便、材料有效利用率高且工程造价低,在防水密封等诸多领域有着广阔的应用前景和巨大的市场需求。一般可以通过物理共混法和化学接枝法制备WSR,由于考虑到制品质量、工艺和成本等因素,工业上一般都是将橡胶等弹性基体和高吸水树脂(SAR)通过比较容易大规模工业化的物理机械共混法制备WSR。SAR的吸水膨胀性能,基体材料的弹性、力学性能以及二者的共混性能等对WSR的综合应用性能有着重要的影响。目前,在实际工程应用中发现共混型WSR仍然存在着一些较突出的问题:SAR与疏水性橡胶基体的相容性差、耐盐性差以及WSR(尤其是是大型制品)的吸水膨胀速率较慢,这些缺点都将在很大程度上制约着WSR的大规模推广和应用。
     本文主要研究了聚丙烯酸类SAR的合成工艺、SAR的疏水改性工艺、NBR基WSR的制备工艺,并对制备的吸水膨胀橡胶材料的力学性能和吸水膨胀性能进行了考察。
     本文以AA、AMPS、DMDAAC为功能单体,以过硫酸钾(KPS)为引发剂,聚乙二醇双丙烯酸酯(PEGDA(M_w = 258))为交联剂,利用反相悬浮法合成了两性离子型高吸水树脂,研究了油水比、引发剂用量、交联剂量、AA中和度和单体配比高吸水树脂吸水性能的影响。实验表明,合成高吸水树脂的的适宜工艺条件:油水比为:4:1,交联剂用量为0.55%,引发剂用量为0.8%,AA中和度为80%,单体配比为:AA/AMPS/DMDAAC = 67.4:29:3.6,反应温度为70℃。合成得到的高吸水树脂吸收蒸馏水和自来水的倍率高达分别达到1170 g/g和405 g/g。采用FT-IR对合成的高吸水树脂的结构进行了分析,证实了不同亲水功能单体的共聚;利用SEM分析了SAR的形貌为微米级的球形结构,且粒子间易团聚;TG分析表明SAR具有较好的热稳定性。实验还研究了SAR的吸水速率和在不同盐溶液中的吸水性能。
     为了改善基体材料NBR与亲水组分SAR间的相容性,本实验对SAR进行了疏水性互穿网络结构改性研究。将丙烯酸丁酯(BA)、丙烯酸(AA)、交联剂、引发剂与SAR混合,使SAR充分溶胀后引发BA和AA进行原位聚合,得到疏水改性高吸水树脂(m-SAR)。实验分别采用FT-IR和TG进行了结构分析和热稳定性分析。
     以m-SAR、白炭黑及各种橡胶助剂与丁腈橡胶(NBR)机械共混制备了吸水膨胀橡胶(WSR)。研究了不同改性组分含量、SAR含量等对WSR的吸水前后的机械力学性能和吸水膨胀性能分别进行了讨论,还利用SEM和TG对WSR进行了微观结构和热稳定性分析。结果表明:SAR改性后,WSR的流失率得到了降低,相容性在一定程度上得到了改善;WSR的吸水速率较快,能在较短时间内达到吸水平衡。通过吸水性能测试研究了环境温度和电解质环境对WSR的吸水膨胀性能的影响。结果表明,随温度升高,WSR平衡吸水倍率有所下降,质量流失率有所增大。随阳离子和浓度电荷数增加,WSR的吸水膨胀倍率均明显降低。
Water-swellable rubber(WSR)is a novel functional material with excellent properties of elastic and swelling. Due to the efficiency, convenience, stuff saving and low-price, WSR hold good applicable prospect and huge market demand. Preparation methods of WSR are mainly blending and grafting. Generally, regards for quality, process and cost, blending, which can be industrialized widely, is the most popular. The elastic, mechanical property of matrix material and compatibility between SAR and matrix material have vital influence on comprehensive performance. Currently, blending bring serious problems, such as bad compatibility, poor salt-resistant, low swelling rate and so on, which will restrict the application area of WSR.
     In the paper, the synthesis process of SAR, hydrophobic modification of SAR, preparation of WSR and its mechanical and swelling properties were investigated.
     In the thesis, acrylic acid(AA), 2-acrylamide-2-methylpropanesulfonic acid(AMPS)and diallyldimethylammonium chloride(DMDAAC)as functional monomers, potassium persulfate as initiator, Poly(ethylene glycol) diacrylate(PEGDA(Mw = 258))as cross-linking agent, a new amphoteric ionic super absorbent resin(SAR)based on inverse suspension copolymerization was synthesised successful. The effects of oil/water ratio, cross-linking agent, initiator, neutralization, comonomer ratio on the swelling property of SAR were studied. It showed that the preferable conditions were oil/water ratio was 4, WPEGDA = 0.55%, WKPS = 0.8%, neutralization of AA was 80%, WAA/WAMPS/WDMDAAC = 67.4: 29: 3.6, and the temperature of copolymerization was 70℃. The absorbent capability of SAR reaches up to 1170 g/g in distilled water and 405 g/g in tap water. The FT-IR, SEM and TG analysis respectively showed that the SAR was a sphere copolymer at micron scale and have excellent thermal stability.
     For the purpose of improvement of compatibility between SAR and NBR, hydrophobic interpenetrating polymer network(IPN)modification of SAR was researched in the experiments. BA, AA, initiator and cross-linking agent were mixed with SAR, and polymerized in situ after swelling adequately, modified SAR(m-SAR)was prepared. The impacts of modified content on swelling compatibility were studied. The structure and thermal stability were investigated by FT-IR and DSC respectively.
     WSR was prepared by NBR, m-SAR, white carbon black(WCB)and all other addition agents blended. The effects of content of modified constituents and SAR on the mechanical and swelling capabilities were studied separately. Furthermore, the microcosmic structure was studied by SEM, thermal stability were investigated by DSC too. The results showed that after modification, the mass loss of WSR was lower, compatibility was improved to some degree. Besides, the WSR swelled quickly and could achieve equilibrium in much short time. The swelling capability of WSR at various environmental temperatures and in different salt solutions was investigated. The test result indicated that the swelling capabilities of WSR at the equilibrium lowered and the mass loss decreased with the rising of the environmental temperatures. similarly, the equilibrium swelling capabilities of WSR decreased with the concentration and valency of cation rised.
引文
[1] Z. H. Zhang, G. Zhang, D. F. Li, et al. Chlorohydin water-swellable Rubber compatibilized by an amphiphilic graft copolymer.Ⅱ. Effects of PVA-g-PBA and CPA on water-swelling behaviors [J]. J. Appl. Polym. Sci., 1999, 74(13): 3145-3152.
    [2] N. Hata, T. Hatano. Caulking composition [P]. JPN: JP 76 096 848. 1976-08-25.
    [3] Z. Y. Xie, M. Li, X. F. Chen, et al. Studies on water-swellable elastomer.Ⅰ. Synthesis and characterization of amphiphilic polymer [J]. J. Appl. Polym. Sci., 1996, 61(3): 495-499.
    [4]冯东东,何培新.共混型吸水膨胀橡胶的研究及应用[J].特种橡胶制品, 2001, 22(2): 46-50.
    [5] I. S. Yamaji. The development of water swelling rubbers and their component [J]. Polymer Digest, 1984, 36 (10): 17-25
    [6]许临,李芳,付红旗.遇水膨胀橡胶的研制及应用进展[J].中国建筑防水, 2000, 9(2): 27-29.
    [7]邹新禧编著.超强吸水剂[M].化学工业出版社, 1991.
    [8]潘美,郝明芝,张玉玲,等.特种防水材料-遇水膨胀橡胶[J].橡胶工业, 1997, 44(6): 369-372.
    [9] W. T. Ren, Z. L. Peng, Y. Zhang. Investigation on the water-swelling properties of chlorinated polyethylene modified by in situ formed sodium acrylate [J]. Polymer Test, 2004, 23(7): 809-816.
    [10]周文英,齐暑华,安群力,等.吸水膨胀橡胶研究进展[J].合成橡胶工业, 2007, 30 (1): 68-72.
    [11] A. Du, Z. L. Peng, Y. X. Zhang. EVM vulcanization reinforced by in situ prepared sodium acrylate polymer [J]. Mater. Sci. Eng., 2005, 21(5): 270-273.
    [12] Y. S. Soebianto, F. Yoshii, K, Makuuchi, et al. Synthesis ofhydrophilic elastomers by radiation grafting [J]. Macromolecular Materials and Engineering, 2003, 152(1): 149-158.
    [13]张玉红,邹其超,何培新.水膨胀橡胶的研究概况[J].湖北化工, 1998, 15 (6): 7-10.
    [14]山路功.吸水橡胶及橡胶组成物的开发动向[J].橡胶译丛, 1985(6): 82-87.
    [15]钱明晏.吸水弹性材料制备研究[J].特种橡胶制品, 1998, 9(6): 23-26.
    [16]于善普,李旭东.吸水凝胶的物理化学[J].弹性体, 1997, 7(3): 49-57.
    [17]孙学军,毛知琛,薛笑莉.浅谈吸水膨胀橡胶的性能与应用[J].山东化工, 2002, 31(4): 18-20.
    [18] Y. J. Yamamoto. Corrosion resistant, water expandable composition [P]. USA: USP 5 011 875, 1991-04-30.
    [19] E. I. Shout, T. Donald, M. William. Graft copolymers of starch-polyacryonitrile prepared by ferrous ion-hydrogen peroxide initiation [J]. J. Appl. Polym. Sci., 1977, 21(9): 2565-2573.
    [20]朱祖熹,陆明.遇水膨胀类止水材料的性能及其应用技术(下) [J].中国建筑防水, 1999, 6: 5-8.
    [21] L. A. Gugliemelli, C. L. Swansox, F. L. Baker, et al. Cationic starch-polyacrylonitrile graft copolymer latexes [J]. Journal of polymer science: Polymer Chemistry Edition, 1974, 12(12): 2683-2692.
    [22] Weaver M O. USA: USP 399748, 1976.
    [23]张玉红,邹其超,何本桥,等. CPE/P(AA-AM)吸水膨胀弹性体的研究[J].高分子材料科学与工程, 2002, 18(2): 123-126.
    [24]张书香,陈勇,焦书科.吸水膨胀弹性体在不同介质中的溶胀行为[J].高分子学报, 1998, 4: 438-443
    [25] S. Yamashita, K. Kodama, Y. Ikeda, et al. Chemical modification of butyl rubber (I): Synthesis and properties of poly(ethyleneoxide)grafted butyl rubber [J]. J. Polym. Sci., Polym Chem, 1993, 31(10): 2437-2444.
    [26] G. J. Wang, M. Li, X. F. Chen. Effect of fillers on mechanical properties of a water-swellable rubber [J]. J. Appl. Polym. Sci., l999, 72(4): 577-584.
    [27] G. J. Wang, M. Li, X. F. Chen. Preparation and water-absorbent properties of a water-swellable rubber [J]. J. Appl. Polym. Sci., 1998, 9: 1219-1224.
    [28]林莲贞,杨治中.天然橡胶/部分水解聚丙烯酰胺乳液共混水膨胀性橡胶的研究[J].橡胶工业, 1991, 38 (3): 132-137.
    [29] S. X. Zhang, X. Y. Li, Y. Chen, et al. Water states in SBR based water swelling rubber [J], Chinese J. Polym. Sci, 1998, 16: 345-350.
    [30] G. J. Wang, M. Li, X. F. Chen. Inverse suspension polymerization of sodium acrylate [J]. J. Appl. Polym. Sci., 1997, 65(4): 789-794.
    [31] G. Zhang, Z. H. Zhang, X. Q. Hu, et al. Chlorohydin water swellable rubber compatibilized by an amphiphilic graft copolymer.Ⅰ.Synthesis and charterization of compatibilizer PVA-g-PBA [J], J. Appl. Polym. Sci., 2000, 75(8): 977-986
    [32]杨秀利,张书香,樊庆春,等.氯化聚乙烯共混丙烯酸钠制备吸水膨胀橡塑材料[J].应用化学, 2002, 19(8): 764-767.
    [33]王彩旗,张国,董宇平,等. PEO-b-PBA对天然橡胶/高吸水树脂共混体系增容作用的研究[J].材料科学与工程, 2002, 2: 180-182.
    [34]张玉红,邹其超,何本桥,等. CPE/P(AA-AM)吸水膨胀弹性体吸水性能的研究[J],高分子材料科学与工程, 2002, 18(6): 171-173.
    [35]张书香,李效玉,夏宇正,等.烯类单体与丁腈橡胶直接共混制备吸水膨胀橡胶[J].山东建材学院学报, 1998, 12(3): 208-210
    [36]冯东东,李玉林,何培新. CPE/PHPAM共混型吸水膨胀弹性体力学性能[J].胶体与聚合物, 2001, 19(2): 15-18.
    [37]周爱军,刘长生.遇水膨胀橡胶的吸水膨胀和力学性能研究[J],弹性体, 2002, 12(6): 28-31.
    [38]林莲贞,杨治中,林果,等.天然橡胶/部分水解聚丙烯酰胺乳液共混水膨胀性橡胶的研究[J].橡胶工业, 1991, 38(3): 132-137.
    [39]任文坛,蒋逸,彭宗林,等.原位生成PNaAA/EPDM吸水膨胀橡胶的吸水膨胀性能研究[J].橡胶工业, 2005, 3: 137-141.
    [40]昭和电线电缆(株). Acrylic Polymer-based Sealants for Stoppage of Water Leakage [P].日本公开特许公报.平02-206657, 1990
    [41] Nippon Shokubai Kagaku Kogyo Co. Ltd. Water-swelling material [P]. JPN: JP 3 157 455, 1991-07-05.
    [42] C. I. Kasei Co. Ltd.Process for the preparation of self-swelling leakage-preventing materials [P]. USP: US 4211851, 1980-07-08.
    [43] T. Kimura, H. Shinjo. Waterproofing sealants [P]. JPN: JP78 109 557. 1978-09-25.
    [44]三菱化成株式会社. Water-swellable CPE-Cotaining Compositions and molding thereform [P].日本公开特许公报,平09-137015, 1997.
    [45]电气化学工业株式会社. Water-swelling Blends of Water-Swellable Rubber Composition with PVC and their Manufacture [P].日本公开特许公报,平03-227362, 1991
    [46]张志豪,张国,刘志成,等. PVC-g-PBA在氯醇型遇水膨胀橡胶中的增容作用[J].弹性体, 1998, 8(4): 1-6.
    [47]キヌガワゴム株式会社. Hydrophilic Polymer Composition with High Elongation Mechanical Strength [P].日本公开特许公报,平10-310702, 1998
    [48] G. G. Cameron, M. Y. Qureshi. Chemical modification of polydiene.Ⅲ. Copolymers with polytetrahydrofuran by grafting from butadiene polymers [J]. Makromo1. Chem., 1986, 187(12): 2763-2774.
    [49]胡为民,宋伟强,刘克波,等.辐射硫化法制备CR/PAAS遇水膨胀橡胶的膨胀性能研究[J].特种橡胶制品, 2002, 23(1): 42-44.
    [50]日本公开特许公报(日文),昭51-96848.
    [51]日本公开特许公报(日文),昭54-135846.
    [52]日本公开特许公报(日文),昭58-7651.
    [53] R. J. Borggreve, et al, Brittle-though transition in nylon-rubber blends: Effect of rubber concentration and particle size [J]. Polymer, 1987, 28(8): 1489-1496.
    [54] G. G. Cameron, A. W. Dunean. Chemical modification of polydiene. I. Grafting of chlorohydrinated polybutadiene and nitrile rubbers with poly(tetrahydr0furan) [J]. Makromo1. Chem., 1983, 184(6): 1153-1161.
    [55] G. G. Cameron, A. W. Dunean. Chemical modification of polydiene.Ⅱ. Properties of polybutadiene and nitrile rubbers grafted with poly(tetrahydrofuran) [J]. Makromo1. Chem., 1983, 184(8): 1645-1651.
    [56] G. G. Cameron, Sarmouk. K. Grafting copolymers of polytetrahydrofuran and butyl rubber. I. cationiccopolymerization of tetrahydrofuran with bromobutyl rubber [J]. Makromo1. Chem., 1990, 191(1): 17-23.
    [57] Y. Ikeda, K. Kodmaa, K. Kajiwara, et al. J. Appl. Polym. Sci. Polym. Phys, 1995, 33: 387-392.
    [58] P. Dreyfuss. J. Appl. Polym. Sci. Appl. Polym. Symp, 1977, 30: 153-159.
    [59] Y. S. Soebianto, F. Yoshii, K, Makuuchi, et al. Radiation grafting of hydrophilic monomers onto poly(4-methylpentene-1), II.Grafting of long chain monomers and physical properties of the grafted films [J]. Macromolecular Materials and Engineering, 1987, 152(1): 159-168.
    [60]张书香,夏宇正,陈勇,等. EPDM基吸水膨胀橡胶的力学性能[J].合成橡胶工业. 1999, 22(5): 294~296.
    [61] [61]E. M. El-Nesr. Gamma radiation induced graft copolymerization of acrylamide onto EPDM blend with PE [J]. Polym. Adv. Techn., 2002,13 (9): 626-635.
    [62]张书香,陈勇,李效玉,等.部分水解聚丙烯酰胺与丁苯橡胶共混物的制备与性能[J].北京化工大学学报, 1997, 24(4): 32-37.
    [63]陈雪萍,翁志学,黄志明.高吸水性树脂合成方法与性能[J].化工生产与技术, 2002, 9(3): 25-28.
    [64]龙明策,王鹏,郑彤,等.高吸水性树脂溶胀热力学及吸水机理[J].化学通报, 2002, 10: 705-709.
    [65] namic swelling behavior of poly(2-hydroxyethyl methacrylate) in water [J]. J. Appl. Polym. Sci., 1991, 42(9): 2409-2416.
    [66] V. V. Klepko, Yu. B. Melnichenko. Kinetics and equilibrium swelling of gelatine gels [J]. Polymer, 1995, 36(26): 5057-5059.
    [67]林润雄,姜斌,黄毓礼.高吸水性树脂吸水机理的探讨[J].北京化工大学学报, 1998, 25(3): 20-25.
    [68] K. Azaar, I. D. Rosca, J. M. Vergnaud. Anisotropic swelling of thin EPDM rubber discs by absorption of toluene [J]. Polymer, 2002, 43:5247-5253.
    [69] H. Menge, S. Hotopf, et al, Investigation on the swelling behaviour in poly(dimethylsiloxane) rubber networks using NMR and compression measurements [J], Polymer, 1999, 40: 5303-5313.
    [70]刘廷栋,刘京.高吸水树脂的吸水机理[J].高分子通报, 1994, 3: 181-185.
    [71] W. M. Kulicke, H. Nottelmann, Y. A. Aggour, et al. Preparation, characterization and rheological behaviour of water-swellable polymers [J]. Polym. Mater. Sci. Eng., 1989, 61: 393-397.
    [72] F. Lenzi, A. Sannino, A. Borriello, et al. Probing the degree of crosslinking of a cellulose based super absorbing hydrogel through traditional and NMR techniques [J]Polymer, 2003, 44: 1577-1588.
    [73] A. Neppel, D. R. Eaton, D. Hunkeler. Effect of crosslinking on the 13C nuclear magnetic resonance spectra of super absorbentPoly(sodiumacrylate) [J]Polylner, 1988, 29: 1338-1342.
    [74]刘德荣,颜杰,刘习奎等,以锆盐为交联剂的耐盐型聚乙烯醇高吸水树脂的合成,高分子学报,1996(4): 490-493.
    [75] M. Iza, S. Woerly, C. Danumah. Determination of pore size distribution for mesoporous materials and Polymeric gels by means of DSC measurements: Thermoporometry [J]. Polymer, 2000, 41: 5885-5893.
    [76]李海燕.遇水膨胀类止水材料的膨胀机理[J].化学建材, 2002, 18(6): 31-35.
    [77] M. G. Weaver, E. B. Bagley, G. F. Fanta. Highly absorbent starch-containing polymeric compositions [P]. US: 398110, 1976-09-21.
    [78] T. Hatakeyema, A. Yamauchi, H. Hatakeyema. Study on bound water in poly(vinyl alcohol) [J]. European Polymer Journal, 1984, 20(l): 61-64.
    [79]姚康德,刘静.聚合物中的水[J].高分子材料科学与工程, 1999, 15(1): 5-9.
    [80] M. N. Khalid, F. Agnely, et al. Water state characterization, swelling behavior, thermal and mechanical properties of chitosan based networks [J]. European Journal of Pharmaceutical Sciences, 2002, 15(5): 425-432.
    [81]张书香,李效玉,夏宇正,等.聚氨酯类吸水膨胀橡胶中结合水的研究[J].高分子材料科学与工程, 2001, 17(3): 95-98.
    [82] Z. H. Ping. States of water in different hydrophilic polymers. Polymer, 2001, 42: 8451-8457.
    [83] C. Mario, C. Gianna et al., The state of water in thermoesponsive poly(acryloyl-L-proline methyl ester)hydrogels observed by DSC and 1H-NMR relaxometry, Radiation Physics and Chemistry, 1999, 55: 209-218.
    [84]郭红梅.新型高吸水树脂的制备与性能研究[D].西安科技大学: 2006.
    [85]张涛.遇水膨胀橡胶的研究[J].橡胶工业, 1999, 46(6): 353-355.
    [86] K. Takashi. Water-swellable resin compositions and water stopping strip with them [P]. JPN: JP 62 284 847, 1987-12-10.
    [87] Bridgestone Tire Co. Ltd. Water-absorbing sealing composition [P]. JPN: JP 57 151 670. 1982-09-18.
    [88]袁昆.高分子凝胶材料及吸水膨胀弹性体的制备与性能研究[D].西北师范大学, 2005.
    [89]张玉红,邹其超,何本桥,等. CPE/P(AA-AM-HMA)吸水膨胀弹性体的研究[J].弹性体, 2003, 13(3): 5-7.
    [90]解竹柏,张书香,周春华,等.吸水膨胀橡塑密封材料的研究[J].山东建材, 2003, 24(4): 31-33.
    [91] S. Kiatkamjornwong, P. Phunchareon. Influence of reaction parameters on water absorption of neutralized poly(acrylic acid-co-acrylamide) synthesized by inverse suspension polymerization [J]. J. Appl. Polym. Sci., 1999, 72(10): 1349-1366.
    [92] M. Z. Liu, T. H. Guo. Preparation and swelling properties of crosslinked sodium polyacrylate [J]. J. Appl. Polym. Sci., 2001, 82(6): 1515-1520.
    [93] W. F. Lee, R. J. Wu. Superabsorbent polymeric materials. II. swelling behavior of crosslinked poly[sodium acrylate-co-3-dimethyl (methacryloyloxyethyl) ammonium propanesulfonate] in aqueous salt solution [J]. J. Appl. Polym. Sci. 1997, 64(9): 1701-1712.
    [94] Z. S. Liu, G. L. Rempel. Preparation of superabsorbent polymers by crosslinking acrylic acid and acrylamide copolymers [J]. J. Appl. Polym. Sci., 1997, 64(7):1345-1353.
    [95] W. F. Lee, C. H. Hsu. Superabsorbent polymeric materials. V. Synthesis and swelling behavior of sodium acrylate and sodium2-acrylamido-2-methylpropanesulfonate copolymeric gels [J]. J. Appl. Polym. Sci., 1998, 69(2): 229-237.
    [96] J. W. Chen, Y. M. Zhao. An efficient preparation method for superabsorbent polymer [J]. J. Appl. Polym. Sci., 1999, 74(1): 119-124.
    [97] M. Watanabe, S. Utsunomya. Water-swellable sealing material [P]. JPN: JP 01 170 682. 1989-07-05.
    [98] K. Okamura, Y. Takahashi, H. Kobayashi, et al. Salt-resistant water-swelling material [P]. JPN: JP 03 157 455.1991-07-05.
    [99] C. I. Kasei Co. Ltd.日本公开特许公报,平01-241979, 1959
    [100] Y. Hasegawa, H. Tanaka, S Ideguchi. Water-swellable rubbers with stable dimension and elasticity for water seals in constructions [P]. JPN: JP 2002 293 999. 2002-10-09.
    [101] X. M. Zhang, Z. H. Yin, T. H. Na, et al. Morphology mechanical properties and interracial behaviour of PA1010/PP/PP-g-GMA ternary blends [J]. Polymer, 1997, 38(24): 5905-5912.
    [102] S. Q. Xu, H. Y. Zhao, T. Tang. et al. Effect and mechanism in compatibilization of poly (styrene-b-2-ethyl-2-oxazoline) diblock copolymer in poly (2, 6-dimethyl-1, 4-phenyleneoxide)/poly (ethylene-ran-acrylic acid) blends [J]. Polymer, 1999, 40(6): 1537-1545.
    [103] G. X. Chen, J. Yang, J. J. Liu. Preparation of the HIPS/MA graft copolymer and its compatibilization in HIPS/PA1010 blend [J]. J. Appl. Polym. Sci., 1999, 71(12): 2017-2025.
    [104]郑邦乾,张洁辉,蒋序林.部分水解聚(丙烯酸甲酯-乙酸乙烯酯-甲基丙烯酸甲酯)高吸水性树脂的合成及结构研究[J].功能高分子学报, 1993, 6(4): 329-338.
    [105]郑邦乾,张洁辉,蒋序林.高吸水性树脂与PVC共混的研究[J].塑料工业, 1992, 20(5): 35-39.
    [106] [106]Y. Chen, S. X. Zhang, X. Y. Li, et al., mechanical properties of BR based water swelling rubber [J]. China Synthetic Rubber Industry, 1998, 21(6): 357-366.
    [107] Z. H. Zhang, G. Zhang, Y. Zhang. Mechanical properties, water swelling behavior and morphology of swellable rubber compatibilized by PVA-g-PBA [J]. Polymer Engineering and Science. 2004, 1: 72-78.
    [108] D. K. Kweon, N. Kawasaki. Preparation and characterazition of starch/polycaprolactone blend [J]. J. Appl. Polym. Sci., 2004, 4: 1716-1723.
    [109]陈福林,危仲祯,余炯杨.遇水膨胀橡胶的研究[J].特种橡胶制品, 1991, 4: 1-2.
    [110] H. Nishio. Polyoxyalkylene rubber compositions, swellable vulcanized products from them and their use as sealants [P]. JPN: JP 2002 194 823. 2002-07-10.
    [111]许临,陈肖蕾,鲁一晖,等.新型遇水膨胀止水条的研制与应用[J].中国建筑防水, 1998, 61(5): 19-21.
    [112]张小红,崔笔江,崔英德.聚丙烯酸钠/高岭土复合高吸水性树脂的制备、结构与性能[J].精细化工, 2003, 20(10): 584-588.
    [113] M. Iza, S. Woerly, C. Danumah. Determination of pore size distribution for mesoporous materials and polymeric gels by means of DSC measurements: thermoporometry [J]. Polymer, 2000, 41: 5885-5893.
    [114] R. A. Gemeinhart, H. Park, K. Park. Porestructure of superporous hydrogels [J]. Polymers for Advanced Technologies, 2000, 11: 617-625.
    [115] D. Y. Gao, R. B. Heimann, Structure and mechanical properties of super absorbent poly(acrylamide)-montmorillonite composite hydrogels [J]. Polymer Gels and Networks, 1993, l: 225-246.
    [116] P. S. Liu, L. Li, N. L. Zhou, et al. Synthesis and properties of apoly(acrylic acid)/montmorillonite super absorbent nanocomposite [J]. Joumal of Applied Polymer Science, 2006, 102: 5725-5730.
    [117] W. F. Lee, R. J. Wu. Super absorbent polymeric materials.Ⅱ. Swelling behavior of crosslinked Poly[sodiumacrylate-co-3-dimethyl (methacryloyloxyethyl) ammonium propane sulfonate] in aqueous salt solution [J]. Journal of Applied Polymer Science, 1997, 64: 1701-1712.
    [118]葛辽海,张伯兰,季鸿渐,等.高吸水性树脂的SEM研究方法[J].应用化学, 1992, 9(5): 87-88.
    [119]张付舜,高程达,张伟,等.高分子材料科学与工程, 2004, 20(1): 179-183.
    [120] L. Masaro, X. X. Zhu. Progress in Polymer Science, 1999, 24: 731-775.
    [121]林雄财,李云开,许廷武,等.不同粒径农用高吸水树脂的吸水特性及溶胀动力学[J].高分子材料科学与工程, 2008, 24(5): 116-120.
    [122] D. G. Peiffer, D. Lundberg Robert, et al. Intarmolecular polymeric complexes-viscosifiers for acid, base and salt (aqueous) solutions [P]. US: 4461884, 1985-07-17.
    [123] F. Rosa, J. Bordado, M. Casquilho. Kinetics of water absorbency in AA/AMPS copolymers: Applications of a diffusion-relaxation model [J]. Polymer, 2002, 43: 63-70.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700