油田封隔器用遇水/遇油膨胀橡胶制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着工业的发展,人们对石油的需求量日益增多,油田钻井漏失情况日益严重,在此背景下,新型的油田用堵漏防渗材料——遇水膨胀和遇油自膨胀封隔器,已成为研究应用的热点方向。遇水膨胀和遇油膨胀橡胶是自封隔器的核心材料,它具有优良弹性和吸水或吸油膨胀性能。考虑到成本以及工艺因素,工业上一般将橡胶基体和吸水树脂(SAR)或吸油树脂(OAR)进行物理共混来制备遇水或遇油膨胀橡胶,所合成的吸水或吸油树脂、橡胶基体的选择以及树脂与基体材料的相容性对共混材料的膨胀和封压性能有着重要的影响。本文的主要研究内容如下:
     本文以SAR、炭黑、白炭黑、聚乙二醇、硅烷偶联剂KH-570以及各种橡胶助剂与丁腈橡胶(NBR)机械共混制备遇水膨胀橡胶(WSR),并以此材料制备WSR自膨胀封隔器,研究了SAR用量、炭黑/白炭黑用量比、聚乙二醇用量以及硅烷偶联剂KH-570用量对WSR的力学性能和吸水膨胀性能的影响,利用SEM对WSR进行了微观结构分析,并对封隔器的径向膨胀率和耐压差性能进行了测试。结果表明:白炭黑和聚乙二醇可以明显提高WSR的吸水速率,KH-570可以降低WSR的流失率;封隔器的径向膨胀率5天达到110%,耐压差高达23.6MPa,可以初步满足油田使用要求。
     以甲基丙烯酸十八酯(SMA)、丙烯酸丁酯(BA)、苯乙烯(St)为共聚单体,二乙烯苯( DVB)为交联剂,过氧化苯甲酰( BPO)作引发剂,三氯甲烷(CHCl_3)为致孔剂以及聚乙烯醇(PVA)为分散剂,采用悬浮聚合法制备出致孔性高吸油树脂。研究了水油比、分散剂用量、引发剂用量、交联剂用量、致孔剂用量以及单体配比对高吸油树脂吸油性能的影响。实验表明,合成高吸油树脂的适宜工艺条件:水油比为3:1,w(DVB)=1.2%,w(BPO)=1.0%, w(PVA)=1%,w(CHCl_3)=35%, m(SMA):m(BA):m(St)=33:67:12,合成的高吸油树脂吸四氯化碳、甲苯、柴油的倍率分别为11.2 g/g、18.8 g/g、27.4 g/g。
     以OAR、炭黑、石油树脂以及其他橡胶助剂等与丁苯橡胶(SBR)物理共混制备遇油膨胀橡胶(OSR),并以此材料制备OSR自膨胀封隔器,研究了OAR用量、炭黑用量、石油树脂用量等对OSR力学性能和吸油膨胀倍率的影响,利用SEM对OSR进行了微观结构分析,并对封隔器的径向膨胀率和封压性能进行了测试。结果表明:随着OAR用量的增加,OSR的吸油膨胀倍率显著增加,但力学性能明显降低;石油树脂有助于改善OSR的相容性,提高OSR的力学性能和吸油膨胀倍率;封隔器的径向膨胀率6天可达80%,耐压差高达27.6 MPa,可以初步满足油田使用要求。
With the development of industry, the demand of petroleum is greatly increased, which leads to the oil spills condition becomes more and more serious, as a result, the research of new impervious materials, water or oil swelling rubber self-swollen packer, become a burgeoning field. The main material of the packer is water swelling rubber(WSR)or oil swelling rubber(OSR), which is a new function sealed material with high elasticity and water or oil swollen property. Considering the costs and technological factors in industry, WSR or OSR is always prepared by the way of mixing the supper absorb resin (SAR) or oil absorb resin (OAR) and the rubber together based on physical blending method, and the absorbent capability of the resin, the mechanical of the rubber as well as the compatibility between the resin and the rubber have a great influence on the application of the swelling material. The main design work is as follows:
     In the thesis, WSR was prepared by NBR, SAR, carbon black (CB), white carbon black (WCB), polyethylene glycol (PEG), silane coupling agent KH-570, and all other addition agents blended, moreover, the self-swollen packer was prepared by WSR. The effects of the mass of SAR, CB, WCB, PEG, silane coupling agent on the mechanical and swelling capabilities of WSR were separately studied. In addition, the microcosmic structure was studied by SEM. What's more, the radial expansion rate and pressure resistance property of the packer was investigated. The results showed that the swelling speed of WSR was greatly accelerated with the help of WCB and PEG, the mass lose rate of WSR was reduced under the influence of KH-570. In addition, the radial expansion rate of the WSR packer achieved to 110% in 5 days, and the pressure resistance of the parker reached to 23.6 MPa, which could meet the requirement of used for oilfield.
     A super oil absorb resin(OAR) based on suspension copolymerization was synthesised, with stearoyl methacrylate(SMA), butylacrylate(BA) and styrene(St) as functional monomers, polyvinyl alcohol(PVA) as dispersing agent, benzoyl peroxide as initiator, divinylbenzene(DVB) as cross-linking agent and chloroform as porogenic agent. The effect of water/oil ratio, dispersing agent, initiator, cross-linking agent, porogenic agent, comonomer ratio on the swelling property of OSR were studied. It showed that the preferable condition were water/oil ratio was 3:1, w(DVB)=1.2% ,w(BPO)=1.0%, w(PVA)=1%,w(CHCl_3)=35%, m(SMA):m(BA):m(St)= 33:67:12. The absorbent capability of OAR in phenixin,toluene,diesel oil was 11.2 g/g, 18.8 g/g, 27.4 g/g, respectively. Otherwise, the TG analysis showed that the OAR excellent thermal stability.
     OSR was prepared by SBR, OAR, CB, petroleum resin, and all other addition agents blended, and then, the self-swelling packer was made from OSR. The effects of the contain of OAR, CB, petroleum resin on the mechanical and swelling capabilities of OSR were separately studied. Moreover, the microcosmic structure was studied by SEM. The results showed that with the increasement of OAR, the oil absorbent capability of OSR was ameliorated but the mechanical was reduced, and when mixed with the petroleum resin, the compatibility of OSR was improved, as well as the mechanical and swelling capabilities. In addition, the radial expansion rate of the OSR packer could achieve to 80% in 6 days, and the pressure resistance of the parker could reach up to 27.6 MPa, which could meet the requirement of used for oilfield.
引文
[1]姚晓,周保中.国内油气田漏失性地层固井防漏技术研究[J].天然气工业, 2005, 25(6): 45-48.
    [2]徐鑫.遇油遇水自膨胀隔器的研究与应用[J].石油钻探技术, 2009, 37(6): 67-69.
    [3]徐兴权.封隔器胶简橡胶材料力学性能试验[J].江汉石油职工大学学报, 2010, 23(2): 82-84.
    [4]钟亚兰.吸水膨胀性橡胶的研究开发进展[J].广州化工, 2010, 38(1): 14-16.
    [5] Jeannine E E, Mara M, Nie J, et a1. Structure and swelling of poly(acrylic acid)hydrogels: effect of pH, (i-onic strength and dilution on the crosslinked polymer structure [J]. Polymer, 2004, 45(5):1503-1510.
    [6] Dukjoon K, Kinam P. Swelling and mechanical proporties of superporous of hydrogels of poly(acrylamide-co-acrylic acid)/ polyethylenimine interpenetrating po1ymer networks [J]. Polymer, 2007, 43(5): 189-l96.
    [7] Song H, Zhang S, Ma X, Wang D, Yang J. Synthesis and application of starth-graft-poly(AM-co-AMPS)by using a complex initiation system of CS-APS [J]. Carbohydrate Polymers, 2007, 69(1): 189-195.
    [8] Emieh A, Vasheghani-Farahani E, Imani M. Swelling behavior, mechanica1 properties and network parameters of pH- and temperature-sensitive hydrogels of poly((2-dimethy1 amino)ethy1 methacrylate-co-buty1 methacrylate) [J]. European Polymer 2007, 43(5): l986-1995.
    [9]黄祥斌,于淑娟,等.高吸水树脂最新进展[J].广西轻工业, 2001(3): 8-11.
    [10]陈雪萍,翁志学,黄志明.高吸水性树脂合成方法与性能[J].化工生产与技术, 2002, 9(3): 25-28.
    [11]龙明策,王鹏,郑彤,等.高吸水性树脂溶胀热力学及吸水机理[J].化学通报, 2002, 10: 705-709.
    [12] Klepko V V, Melnichenko Y B. Kinetics and equilibrium swelling of gelatine gels [J]. Polymer, 1995, 36(26): 5057-5059.
    [13]林润雄,姜斌,黄毓礼.高吸水性树脂吸水机理的探讨[J].北京化工大学学报, 1998, 25(3): 20-25.
    [14] Azaar K, Rosca I D, Vergnaud J M. Anisotropic swelling of thin EPDM rubber discs by absorption of toluene [J]. Polymer, 2002, 43(4): 157-162.
    [15] Menge H, Hotopf S, et al. Investigation on the swelling behaviour in poly(dimethylsiloxane) rubber networks using NMR and compression measurements [J]. Polymer, 1999, 40: 5303-5313.
    [16]刘廷栋,刘京.高吸水树脂的吸水机理[J].高分子通报, 1994, 3: 181-185.
    [17] Ce H C, Pan W, Luo D K. Graft copolymerization of chitosan with acrylic acid under microwave irradiation and its water absorbency [J]. Carbohydrate Po1ymers, 2006, 66(3): 372-378.
    [18]杨俊华.高吸油树脂[J].合成树脂及塑料, 1991, 4: 39-43.
    [19]赵育.高吸油性树脂[J].化工新型材料, 1993, 10: 23-27.
    [20]黄歧善,黄志明,方仕江,等.高吸油树脂的结构和特性[J].合成树脂及塑料, 1996, 4: 55-56.
    [21]汪济奎,郭卫红.高吸油性树脂[J].高分子材料, 1994, 2: 24-27
    [22]崔小明,苗敏.高吸油性树脂的制备和应用[J].甘肃化工, 1997, 3: 1-4.
    [23]盂红.油面粘接及吸油性胶粘剂SGA [J].化学与粘合, 1991, 2: 119-121.
    [24]蔺海兰,廖双泉,张桂梅等.高吸油性树脂的研究进展[J].热带农业科学, 2005, 25(2): 78-83.
    [25]吴波,周美华.高吸油性树脂[J].现代塑料加工应用, 2006, 18(2): 62-64.
    [26]朱斌,张兵,生辉.快速高吸油树脂的合成及吸油性能研究[J] .华南理工大学学报(自然科学版), 1999, 27(12): 100-105.
    [27]刘宪红,张禹华.吸油树脂的合成研究[J].炼油与化工, 2000, 13: 21-22.
    [28]倪丽琴,王洁.丙烯酸酯系高吸油树脂的合成[J].合成树脂及塑料, 2009, 26(2): 23-26.
    [29]韩立宏,马涛.高吸油树脂的研究现状[J].农产品加工, 2006, 1: 22-25.
    [30]马希晨,宋辉.改性纤维素合成高吸油树脂的研究[J].精细与专用化学品, 2003, 10: 316-318.
    [31]凌辉,沈上越,范力仁,等.粉煤灰/聚丙烯酸钠高吸水复合材料的研制[J].功能材料, 2006, 37(11): 1812-1815.
    [32]冯东东,何培新.共混型吸水膨胀橡胶的研究及应用[J].特种橡胶制品, 2001, 22(2): 46-50.
    [33] I S Yamaji. The development of water swelling rubbers and their component [J]. Polymer Digest, 1984, 36 (10): 17-25
    [34]许临,李芳,付红旗.遇水膨胀橡胶的研制及应用进展[J].中国建筑防水, 2000, 9(2): 27-29.
    [35]邹新禧编著.超强吸水剂[M].化学工业出版社, 1991.
    [36]潘美,郝明芝,张玉玲,等.特种防水材料-遇水膨胀橡胶[J].橡胶工业, 1997, 44(6): 369-372.
    [37] Ren W T, Peng Z L, Zhang Y. Investigation on the water-swelling properties of chlorinated polyethylene modified by in situ formed sodium acrylate [J]. Polymer Test, 2004, 23(7): 809-816.
    [38]周文英,齐暑华,安群力,等.吸水膨胀橡胶研究进展[J].合成橡胶工业, 2007, 30(1): 68-72.
    [39]李叶柳,丁国荣.吸水膨胀橡胶制备技术及应用研究进展[J].弹性体, 2009, 19(3): 65-69.
    [40]张玉红,邹其超,何本桥,等. CPE/P(AA-AM)吸水膨胀弹性体的研究[J].高分子材料科学与工程, 2002, 18(2): 123-126.
    [41]张书香,陈勇,焦书科.吸水膨胀弹性体在不同介质中的溶胀行为[J].高分子学报, 1998, 4: 438-443.
    [42]周爱军,刘长生.遇水膨胀橡胶的吸水膨胀和力学性能研究[J].弹性体, 2002, 12(6): 28-31.
    [43]王久模,张桂梅,廖双泉,等.共混增容型吸水膨胀橡胶的性能研究[J].特种橡胶制品, 2008, 25(9): 24-27.
    [44] Yamashita S, Kodama K, Ikeda Y, et al. Chemical modification of butyl rubber (I): Synthesis and properties of poly(ethylene oxide)grafted butyl rubber [J]. Polym Chem, 1993, 31(10): 2437-2444.
    [45]廖双泉,林鸿基,余晓东,等.原位聚合法制备吸水膨胀NR及其性能研究[J].橡胶工业, 2009, 56(11): 679-682.
    [46]宋清焕,邓刚,孟闯,等.辐射硫化和增容剂对氯丁/聚丙烯酸钠遇水膨胀橡胶性能的影响[J].辐射研究与辐射工艺学报, 2008, 26(4): 246-248.
    [47]陆晶晶,周美华.吸油材料的发展[J].上海化工, 2001, 21: 23-25.
    [48]王强,曹爱丽.遇油膨胀橡胶的制备及性能研究[J].高分子材料科学与工程, 2003, 19(2): 206-208.
    [49]涂学忠. Ecser公司申请吸油橡胶材料专利[J].广东橡胶, 2006, 9: 26.
    [50]王元荪.专利介绍[J].橡胶科技市场, 2009, 19: 40-41.
    [51]李建颖.高吸水与高吸油性树脂[M].北京化学工业出版社, 2005, 71: 28-31.
    [52]徐祖顺,易昌凤.两亲聚合物溶液性质及其乳液聚合的研究进展[J].高分子材料科学与工程, 1998, 14(4): 1-4.
    [53] M I Khalil, E Rafie, A P Hebeish. Ioninduced grafting of methyl methacrylate onto cotton cellulose [J]. Journal of Applied polymer Scien, 1981, 26: 149-157.
    [54]曹爱丽,王强.吸水吸油双功能高聚物的研制[J].天津理工学院学报, 2002, 18(2): 37-39.
    [55]郭双庆,谢光银.高吸油吸水性织物的开发及应用[J].国际纺织导报, 2009, 4: 55-56.
    [56]李秀辉,吴江渝,杨鹏,郭三维.基于SAR吸水膨胀橡胶的耐温耐盐性能[J].材料工程, 2010, 4: 33-35.
    [57]吴宇雄,周尽花.丙烯酸酯系高吸油树脂的合成及性能[J].精细石油化工, 2009, 26(1): 41-44.
    [58]徐乃库,肖长发,甘秀丽,等.甲基丙烯酸酯精制及树脂性能研究[J].离子交换与吸附, 2008, 24(6): 481-488.
    [59]周颖坚,张锴,孙刚,等.苯乙烯/丁二烯聚合反应挤出多嵌段共聚物结构表征及共聚机理的研究[J].高分子学报, 2006(3): 437-442.
    [60]陈薇,张英.高吸油树脂的合成及性能研究[J].广西工学院学报, 2003, 14(1): 59-63.
    [61]李为富,杨亚江.交联剂对合成高吸油性树脂的影响[J].合成树脂及塑料, 2003, 20(5): l8-20.
    [62]黄军左,郑秋霞.交联剂和致孔剂对丙烯酸酯系吸油树脂性能的影响[J].化学与生物工程, 2007, 24(8): 63-65.
    [63]蔺海兰,廖建和.丙烯酸酯系共聚物高吸油树脂的合成及性能研究[J].弹性体, 2006, 16(5): 34-39.
    [64]孙晓然,张秀玲.丙烯酸酯-苯乙烯共聚物高吸油树脂的合成与性能[J].塑料工业, 2003, 3l(7): 7-l3.
    [65]王勇,赵彦芝,万涛.丙烯酸系二元共聚高吸油性树脂的合成及性能研究[J].功能材料, 2004, 35(5): 638-640.
    [66]杨俊华.高吸油性树脂[J].合成树脂及塑料, 1991, 4: 39-43.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700