液压机系列装备机械耦合刚度标准化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液压机是制造业的基础,随着我国大轮船、大飞机、核电、化工等大型项目的实施,如何使液压机系列化、高刚度、轻量化变的尤为重要。本文以大型六轴数控回转压头框式液压机THP34Y-1000G、THP34Y-1500D为样机,对液压机系列装备机械耦合刚度进行了标准化研究。
     1.船首船尾典型板材成型件工艺分析。提出了通过控制移动液压机压头及工作台位置,对板材进行不同位置的精确压制;通过控制液压机压头及工作台的回转角度,对板材复杂曲面进行精确压制的方法。利用通用模具,通过控制凸模的压下量得到不同曲度板材,并对压下量的控制进行了精确量化,制成了通用表格,为船首船尾典型板材成型件的成型提供了方便。在此基础上,对液压机的成形精度提出了要求。
     2.对大型六轴数控回转压头框式液压机进行了刚度有限元分析及样机检测。本文采用制件,模具,装备耦合刚度分析研究方法,建立制件、模具和机身结构耦合刚度分析模型,通过软件接口,将各实体模型的数据进行传送,完成有限元分析。采用激光跟踪仪对大型六轴数控回转压头框式液压机THP34Y-1000G、THP34Y-1500D样机进行荷刚度检测,获得刚度检测数据。两种方法对液压机刚度分析结果高度一致,误差保持在10%以内,验证了液压机产品设计模型进行计算机模拟分析结果的可靠性,使有限元分析可为以后的研究提供更广泛的准确的数据库。
     3.根据THP34Y-1000G液压机有限元分析及样机检测的结果,在考虑模具结构刚度和机身预紧-加载条件下,分析上、下横梁承载后的变形规律。用方程对液压机在不同载荷下的变形进行了非线性曲线方程回归,并在THP34Y-1500D液压机上得到了验证。该回归方程可用来预测液压机刚度。
     4.提出了根据灵敏度提取大型六轴数控回转压头框式液压机结构部件的优化设计参量的方法。采用制件,模具,装备耦合刚度分析研究方法,建立参数化的主机有限元分析模型,进行主机上横梁和下横梁结构参数的质量灵敏度分析、刚度灵敏度分析。综合质量灵敏度和刚度灵敏度,以整机质量小、刚度大为目标,提取对整机质量及刚度影响显著的关键结构参数,上横梁提取出上横梁肋板厚度、上横梁侧板厚度,下横梁提取出下横梁肋板厚度、下横梁侧板厚度,将这四个结构参数作为该类型液压机的优化设计参量。
     5.基于制件-模具-组合框架式机身刚度分析,建立人工神经网络模型,进行优化设计。针对根据灵敏度对大型六轴数控回转压头框式液压机THP34Y-1000G上下横梁提出的四个关键结构参数:上横梁肋板厚度、上横梁侧板厚度、下横梁肋板厚度、下横梁侧板厚度,并添加压机载荷和该类型液压机特有的工艺参数——液压机压头工作台位置,对该液压机进行了优化设计,之后不仅达到了轻量化,同时大大提高了液压机的机械耦合刚度。以上可为其它类似液压机的标准化设计研究提供经验。
Hydraulic press is the foundation of manufacturing industry, along with the large ships,aircraft, nuclear power, chemical and other large projects in our country, how to make thehydraulic machine series, high stiffness, and light weight is particularly important. Based onthe Large-scale Six Axes Numerical Control Locomotive Gyratory Head Frame TypeHydraulic Press THP34Y-1000G, THP34Y-1500D as the prototype, the hydraulic machineseries equipment mechanical coupling stiffness were researched in this thesis.
     1. Analysis of typical sheet molding process. The method that the different position ofthe ship sheet is accurate pressed through controlling the mobile hydraulic pressure head andposition is put forward. The typical sheet is processed using the general mold, and through thedifferent capacity of press. All of it is a convenient to the process of ship sheet. On the basis,accurate requirements to hydraulic press are advanced.
     2. The stiffness of Frame Type Hydraulic Press with Large-scale Six Axes NumericalControl Locomotive Gyratory Head is tested through element analysis and test. With thecoupled stiffness analysis method, to build parts, mold and the hydraulic press, transfer thedata to the analysis software. Using lacer tracker to test the stiffness of Frame Type HydraulicPress with Large-scale Six Axes Numerical Control Locomotive Gyratory Head. The stiffnesstesting data is obtained. Two kinds of methods for hydraulic machine stiffness analysis resultswere highly consistent, with error less than10%. The reliability of the element analysis tohydraulic press is verified. So more extensive and accurate database could be provided fromfinite element analysis.
     3. According to the finite element analysis and the prototype test results ofTHP34Y-1000G hydraulic machine, the deformation of the upper beam and lower beam isanalyzed, regarding to the structural stiffness and pre-tightening. The deformation ofhydraulic machine under different load is regressed by nonlinear curve equation, and theequation is verified in THP34Y-1500D. The regression equation can be used to predict thestiffness of hydraulic press.
     4. According to the optimization parameters of sensitivity analysis to Hydraulic Presswith Large-scale Six Axes Numerical Control Locomotive Gyratory Head. Using parts, mold,equipment coupled stiffness analysis method, establishing parameter finite element analysismodel of host, the stiffness sensitivity and the quality sensitivity of upper beam and the lowerbeam are analyzed. Comprehensive quality sensitivity and stiffness sensitivity, with the goalof small quality and large rigidity, the significant key structural parameters on the quality andstiffness are extracted.
     5. Based on the parts-mold-frame fuselage stiffness analysis, through establishing themodel of artificial neural network, the structure optimized. Based on the integrated sensitivity on the Hydraulic Press with Large-scale Six Axes Numerical Control Locomotive GyratoryHead THP34Y-1000G, four key parameters of upper and lower beams are presented: the ribof the upper beam, the side plate of the upper beam, the rib of the lower beam, the side plateof the lower beam. And add the load and the press head position to the4elements, five levelsorthogonal experiments. Then the hydraulic press is structural optimized. The hydraulic pressnot only reaches the light heavy, at the same time, greatly improving the stiffness afteroptimized. The hydraulic press reached the stiffness requirement of the product.
引文
[1] ZHANG Lian hong, LI Shuang yi, ZHANG Bao feng, XIONG Xiao ming. Principle andFeasibility of Electric or Magnetic Field Deflection-Projection Based Rapid PrototypingTechnique[J]. Transactions of Tianjin University,2003,01.
    [2]李艳聪.计及压制件成形精度的液压机主机结构设计方法研究[D].天津大学,2010.
    [3]刘立新.我国液压机技术的发展简介及趋势[J].宁夏机械,2009,12,15
    [4]宋继顺.大吨位、大台面、短行程缸群液压机设计要点[J].液压与气动,20072007,(8):63~65.
    [5]李艳聪.张连洪,张淳.计及设备因素的成形制件精度驱动的模具结构分析[J].机械科学与技术,2008,27(5):571~574.
    [6]李贵闪,何晓燕,荣兆杰.我国液压机行业的现状及发展[J].锻压装备与制造技术,2006,08,30
    [7]赵静.大型油压机预应力立柱结构设计及分析[J].兰州理工大学硕士,2011-04-01
    [8]李兵,何正嘉,陈雪峰.ANSYS Workbench设计、仿真与优化[M].北京:清华大学出版社,2008.
    [9]高峰,郭为忠,宋清玉,杜凤山.重型制造装备国内外研究与发展[J].机械工程学报,2010,10,5
    [10]余心宏,李天恩,张盛华,等.快锻液压机机架静动态数值模拟[J].重型机械,2005,(12):25~27.
    [11]金有昌.RZU2400型液压机下横梁结构优化设计[D].合肥工业大学,2007.
    [12]蒋晨.基于有限元技术的板材加工机械优化设计与分析[D].东南大学,2005.
    [13]张盛华.快锻液压机机架的有限元分析[D].西北工业大学,2004.
    [14]余世浩.杨文成多点液压机滑块的刚度分析[J].重型机械,1997,(1):47~50.
    [15]张祖芳.开式压力机机身的有限元分析及其优化设计[D].东南大学,2004.
    [16]刘强.多点成形压力机机架结构的有限元数值模拟及优化设计[D].吉林大学,2002.金有昌.
    [17]史宝军,鹿晓阳,蓝静,等. JL21系列液压机机身强度刚度计算与分析[J].锻压机械,1999,33~34.
    [18]金红.高速压力机闭式组合机身有限元分析与优化[D].广西大学,2004.
    [19]吴生富,金淼,聂绍珉,等.大型锻造液压机全预紧组合机架的整体性及影响因素分析[J].塑性工程学报,2006,13(2):100~113.
    [20]钟伟弘,徐燕申.基于广义模块化的整体框架式液压机机身结构的优化设计[J].重型机械,2004,(12):47~50.
    [21]孙丽彩.20MN快锻液压机设计及整体工作性能分析[D].燕山大学,2007.
    [22]秦东晨,祁建中,张明成,等.液压机横梁结构的优化设计[J].锻压技术,2004,(2):49~52.
    [23]董占发.研究型反应堆厂房结构分析与密封设计[D].天津大学建筑工程学院,2004.
    [24]叶远林,秦四成.ZY-200型旋挖钻机钻杆应力的有限元分析[J].工程机械,2004,(3):15~17.
    [25]吴生富,金淼,聂绍珉,等.液压机全预紧组合机架的整体性分析[J].锻压技术,2006,(3):111~114.
    [26]王建军.20MN快锻液压机关键部件结构分析[D].燕山大学,2007.
    [27]翟富刚,张庆,王建军,等.20MN快锻液压机关键部件有限元分析[J].CMET锻压装备与制造技术,2007,(6):28~29.
    [28]侯晓望,童水光.基于有限元分析的液压机结构优化[J].重型机械,2005,(14):46~48.
    [29]刘克进.薄板冲压回弹试验研究及数值模拟对比分析[D].湖南大学,2004.
    [30]郑辉,徐燕申,侯亮.ANSYS参数化分析功能及其在液压机快速设计中的应用[J].技术应用,25~29.
    [31]赵万军,张大可.ANSYS中基于参数化的液压机结构优化设计[J].机械设计与制造,2007,(12):6~8.
    [32]李凤岚,李森,满佳.车门包边液压机模块与模具耦合刚度分析技术[J].科学观察,2006,(3):82~85.
    [33]刘涛.50000KN整体式汽车大梁液压机液压控制系统的分析研究[D].浙江大学,2002.
    [34]侯晓望.基于有限元分析的液压机结构优化[D].浙江大学,2005.
    [35]杨建民.120MN锻造液压机本体整体性研究[D].燕山大学,2007
    [36]王保领,宗昕,朝军.300kN数控冲模回转头液压机床身有限元分析与优选设计[J].机械制造与研究,2007,36(3):20~23.
    [37]周平.新型压力机机身有限元分析与优化[D].南京理工大学,2007.
    [38]周耀东.制件—模具—装备系统机械耦合刚度研究[D].天津理工大学硕士论文,2009,12,01
    [39] M.Neumann H.Hahn. Computer simulation and dynamic analysis of a mechanical pressbased on different engineer models[J].Methematics and Computer in Simulation,1998,(46)559~574
    [40] Bae,S;Lee,J.M;Kang,Y,J;Kang,J.S;Yun,J.R.Dynamie analysis of an automaticwashing machine with a hydraulic balance[J].Journal of sound and Vibration,2002,p3~18.
    [41]罗琳琳,李森,毕大森.大型六轴数控移动回转压头框式液压机成套装备机身刚度影响关系研究及验证[J],机械设计,2012.1
    [42] PanZiwei,Shao Weixun,Wang Biao,Yu Ming, ShenBin,DingWangjiang.Finite-elemen anslysis of Bottom Box Beam of80MN Hydraulie Press[J].J.of Anhui University of Technology,2005,22(2):145~146.
    [43] J.A.Bland. Optimal Structural Design by Ant-Colony Optimization[J].EngineeringOptimization.2001Vol33:425~443.
    [44] P.Sun,J.J.Grácio and J.A.Ferreira.Control system of a mini hydraulic press forevaluating springback in sheet metal forming[J].Journal of Materials ProcessingTechnology,2006,(6):55~61.
    [45] Li Dejun, Li Peiwu, Guan Yanjin. Finite Element Analysis of Welded Sheet Frame of22MN Hydraulic Press[J].Journal of Plasticity Engineering,1995,2(3):55~56.
    [46] Lin Feng,Yan Yongnian,Wu Rendong.Key Technologies of Modern Heavy Die ForgingPress[J].Chinese Journal of Mechanical Engineering,2006,42(3):9~11.
    [47] Panos Y, Papalambros. The optimization paradigm in engineering design: promises andchallenges[J].Computer-Aided Design,2002,34:939~951.
    [48] Li Peiwu, Guo Donghong. On the stiffness of screw presses[J].Mach.ToolsManufact,1997(1):15~17.
    [49] Yue Yumei, Mao Yali. Analysis and research on frame of forge press. Journal ShenyangInstitute Aeronautical Engineering,2003,20(4):19~21.
    [50] Chenot,Tronel,Soyris.Finite element calculation of thermo-coupled large deformation inhot forging[J].Conduction Radiation and Phase Change,1992:493~511.
    [51] Lam Tim Fai.FEA Contact Element Technique And Its Applications in Metal LeadForming Failure Analysis[C].IEEE,Proceedings of9thIPFA,2002,47-50.
    [52] Qin Dongchen,Qi Jianzhong,Lu Yueli.Structural optimization design for lower beam ofY32-500B four-column hydraulic presserp[J].Journal of Mechanical Strength,2001,23(2):246~248.
    [53]葛哲学,孙志强.神经网络理论与MATLABR2007实现[M].北京:电子工业出版社,2007.
    [54]侯媛彬,杜京义,汪梅.神经网络[M].西安:西安电子科技大学出版社,2007.
    [55]周明,孙树栋.遗传算法原理及应用[M].北京:国防工业出版社,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700