介电氧化物薄膜在GaN半导体上的外延生长与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,电子信息系统为了缩小体积、增强功能,正快速向微型化以及单片集成化方向发展,对电子薄膜与器件提出了尺寸小型化和功能集成化的要求。将以极化为特征、具有丰富功能特性的介电氧化物材料通过外延薄膜的方式,与GaN半导体生长在一起形成介电氧化物/GaN集成薄膜,为高性能电子器件的研制提供了新的思路,将推动电子系统单片集成化的进一步发展。然而,在介电氧化物/GaN集成薄膜的研制中,两类材料物理、化学性质的巨大差异导致了严重的相容性生长问题。由于理论研究和实验条件的限制,与之相关的很多物理现象和机理尚未深入研究,尤其是介电氧化物/GaN异质外延机理以及薄膜微结构控制等方面研究不足,阻碍了介电氧化物/GaN集成薄膜与器件的发展。
     本论文采用激光分子束外延技术(LMBE),以典型的SrTiO_3(STO)介电氧化物薄膜为对象,研究氧化物/GaN异质外延的生长机制和界面控制方法。通过特殊设计的纳米厚度缓冲层材料,对界面加以控制,优化STO薄膜的外延质量。在此基础上,研究了GaN基半导体上生长的STO、BaTiO_3等多种介电氧化物薄膜的性能,为GaN基介电氧化物集成薄膜的实用化提供了一定的基础。
     1.采用反射式高能电子衍射(RHEED)等方法,系统研究了STO在GaN上的生长行为及界面微结构特性。发现在界面化学能的作用下,STO薄膜在GaN衬底上偏离晶格失配度小的方向30°,按STO(111)[110]//GaN(0002)[1120]的外延关系生长,晶格失配度为-13.3%。大的晶格失配度使得STO薄膜以岛状模式生长,产生大量缺陷,取向一致性较差。STO(111)面与GaN(0002)对称性的差异导致STO薄膜面内具有特殊的双畴结构。研究还发现STO中SrO与Ga面GaN之间的不稳定性导致STO/GaN界面发生扩散反应,产生界面层。因此,介电氧化物/GaN界面存在大晶格失配和界面扩散,影响STO薄膜的外延质量,难以实现高质量集成薄膜的可控生长。
     2.研究了TiO_2模板层对STO薄膜外延质量和界面微结构的影响。在GaN上制备了以层状模式外延生长的TiO_2模板层。TiO_2薄膜表面平整(表面均方根粗糙度RMS<0.5nm),具有明显的台阶状结构;与GaN形成清晰、无明显扩散的界面。研究发现,利用TiO_2模板层降低了STO薄膜外延温度,提高了薄膜面内、面外取向的一致性。结果表明,TiO_2模板层可以有效诱导STO(111)薄膜的取向外延生长。通过近重位点阵理论和界面原子构型分析发现,TiO_2与STO的结构类似性以及晶格失配的降低(从直接生长时的-13.3%降低到1.3%)是TiO_2模板层对STO薄膜取向诱导作用的主要原因。通过控制TiO_2模板层厚度可以进一步提高STO薄膜外延质量。当TiO_2厚度为2nm时,STO薄膜以层状模式在TiO_2模板层上外延生长,其面外、面内半高宽分别为0.569°和1.65°。HRTEM和XPS分析表明,STO/TiO_2/GaN集成薄膜具有清晰的界面,界面扩散反应得到了显著抑制。这些结果说明,TiO_2纳米模板层能有效地优化氧化物/GaN的界面特性,提高了STO薄膜的外延质量。
     3.开展了STO/TiO_2缓冲层对GaN基集成铁电薄膜取向诱导和性能影响的研究。直接在GaN上生长的铁电薄膜为多晶结构;而STO/TiO_2缓冲层能够诱导BaTiO_3、Hf掺杂Bi4Ti3O12(BTH)以及BiFeO_3等不同晶体结构的铁电薄膜外延生长。与多晶的铁电薄膜相比,外延的铁电薄膜具有更好的电学性能,如更大的剩余极化、更小的漏电流密度和更好的抗疲劳特性等。STO/TiO_2缓冲层显著提升了GaN基集成铁电薄膜的性能。
     4.研究了MgO薄膜的低温外延生长特性及其对界面扩散的阻挡作用,初步探索了MgO势垒层在AlGaN/GaN高电子迁移率晶体管(HEMT)器件中的作用。发现MgO的强离子性是其能在室温条件下外延生长的主要原因。界面特性分析表明,室温生长的MgO能够阻挡STO与GaN界面的扩散反应。MgO势垒层提高了STO与GaN界面的势垒高度,使得STO/TiO_2/MgO叠层结构漏电流小于STO/TiO_2结构,为STO等介电氧化物薄膜在GaN基场效应器件中实际应用提供了一种可能的方法。
Recently, electronic information systems are quickly developed to further miniaturization and monolithic integration in order to realize smaller volume and enhanced multifunction. In order to satisfy the demand of system develop trend, the electronic films and devices must be miniaturized and integrated. The integration of multifunctional oxide dielectrics possessing spontaneous polarization with GaN semiconductors put forward a new direction of developing electronic devices with higher performances. However, the dielectric oxide and GaN semiconductors are quite different from each other. It will cause many problems when the two kind materials are integrated together. However, little is known about the physical phenomena and mechanism in this heterostructure. Especially, the lack of related research about epitaxial growth and interface control of dielectric oxide film on GaN has hampered the development of the integrated films and devices.
     In this dissertation, SrTiO_3 (STO) dielectric oxide films were fabricated by laser molecular beam epitaxy (LMBE) to investigate the epitaxial mechanism and interface control method. Bufferlayers at nanometer scale were designed and fabricated to optimize the crystalline quality of STO epitaxial film. Based on these results, the electric properties of STO and other dielectric films were studied.
     1. The growth behaviors and interface microstructures were systematically studied. It was found that STO can be epitaxially grown on GaN at 700℃and the epitaxial relationship was STO(111)[110]//GaN(0002)[1120]. The lattice mismatch under this alignment was calculated to be -13.3%, which leads to 3D island growth mode and poor crystalline quality. The analyses of interface energy show that the bonding energy can compensates the strain energy and make this alignment more stable. From the RHEED images, it was found that STO films show a twin variant related by a 180°in-plane rotation. This in-plane structure was caused by the different symmetry index of STO (111) and GaN (0002). On the other hand, an interface layer was observed at STO/GaN interface. The formation of interface layer was due to the instability of STO with Ga-terminated GaN. As indicated by these results, Lattice mismatch and interface diffusions are the two major obstacles hindered the integration growth of dielectric oxide films on GaN.
     2. The effect of TiO_2 template layer on STO epitaxial growth and microstructure was studied. TiO_2 was epitaxially grown on GaN(0002) surface in layer by layer mode. The TiO_2 surface was smooth and uniform with a root-mean-square roughness (RMS) less than 0.5nm. A sharp interface was observed between TiO_2/GaN. It was found that the epitaxial growth temperature was decreased and the orientation uniformity of STO was improved on TiO_2 coated GaN. These results indicated that the epitaxial growth of STO film was enhanced by TiO_2 template layer because of the reduced lattice mismatch and similar Ti-O6 octahedron structure between TiO_2 and STO. By inserting a strained layer of TiO_2 below its critical thickness, the crystalline quality was further improved. The optimal thickness of TiO_2 was about 2nm. The interfaces of STO/TiO_2/GaN integrated films were sharp as confirmed by HRTEM and XPS. These results demonstrated that the interface of oxide/GaN was optimized and the crystalline quality was improved by the design of TiO_2 template layer.
     3. The impacts of STO/TiO_2 bufferlayer on the epitaxial growth and properties of GaN-based ferroelectric films were carried out. It was found that these ferroelectric films deposited on GaN directly show polycrystalline structure. In contrast, three kind ferroelectric films with different crystal structure, BaTiO_3,Hf-doped Bi4Ti3O12 and BiFeO_3, were epitaxially grown on STO/TiO_2 buffered GaN. Simultaneously, these epitaxial films show much better electric properties than that of polycrystalline ones, such as enlarged polarization, reduced leakage and enhanced fatigue endurance.
     4. The low temperature fabrication of MgO and its effect on STO/GaN integrated films were studied. It was found that the strong ionic characteristics of MgO makes its epitaxial temperature can be as low as room temperature. This special feature reduced the interface diffusion between oxide and GaN remarkably. On the other hand, STO/TiO_2/MgO gate stack show reduced leakage than that of STO/TiO_2. It is concluded that the presence of MgO barrier layer increases band offsets and reduces the leakage current density effectively.
引文
[1] Stephen J. Pearton, Fan Ren. GaN electronics. Adv. Mater., 2000, 12(21): 1571-1580.
    [2] S. J. Pearton, F. Ren, A. P. Zhang, et al. GaN electronics for high power, high temperature applications. Materials Science and Engineering B, 2001, 82(1):227-231.
    [3] S. J. Pearton, F. Ren, A. P. Zhang et al. Fabrication and performance of GaN electronic devices. Materials Science and Engineering: R, 2000, 30(3): 55-212.
    [4] A. P. Zhang, S. J. Pearton, F. Ren, et al. High power GaN electronic devices. Critical Reviews in Solid State and Materials Sciences, 2001, (1): 1-71.
    [5] Bernet S. Recent developments of high power converters for industry and traction applications. IEEE Transactions on Power Electronics, 2000, 15(6): 1102-1117.
    [6]赵小玲,李清秀.国外军事和宇航应用宽带隙半导体技术的发展.半导体技术, 2009, 34(7): 621-625.
    [7] G H. Haertling. Ferroelectric ceramics: History and Technology. Journal of American Ceramic Society, 1999, 82: 797-818.
    [8] N Setter, D Damjanovic, L Eng, et al. Ferroelectric thin films: Review of materials, properties, and applications. J. of Appl. Phys., 2006, 100(5): 051606-051646.
    [9] M Daeber, K. M Rabe, J. F. Scott. Physics of thin-film ferroelectric oxides. Reviews of Modern Physics, 2005, 77(4):1083-1048.
    [10] Damjanovic D. Ferroelectric, dielectric and piezoelectric prperties of ferroelectric thin films and ceramics. Rep. Prog. Phys, 1999, 61: 1267-1324.
    [11] B. Acikel, T. R. Taylor, P. J. Hansen, et.al. A new high performance phase shifter using BaxSr1-xTiO3 thin films. IEEE Microwave and Wireless Components Lett., 2002, 12(7): 237-239.
    [12] D. Kim, Y. Choi, M. G. Allen, et al. A wide bandwidth monolithic BST reflection-type phase shifter using a coplanar waveguide Lange coupler. IEEE MTT-S International Microwave Symposium Digest, 2002, 3:1471 -1474.
    [13] C. H. Ahn, K. M. Rabe, J.-M. Triscone. Ferroelectricity at the nanoscale: local polarization in oxide thin films and heterostructures. Science, 2004, 303: 488-491.
    [14] Atsushi Masuda, Shinya Morit, Hideki Shigeno, et al. Fabrication of Pb(Zr,Ti)O3/MgO/ GaN/GaAs structure for optoelectronic device applications. Journal of Crystal Growth, 1998, 189: 227-230.
    [15] P. Kung, D. Walker, M. Hamilton, et.al. Lateral epitaxial overgrowth of GaN films on sapphire and silicon substrates. Appl. Phys. Lett., 1999, 74(4): 123148.
    [16] Feng Wu, Michael D. Craven, Sung-Hwan Lim, et.al. Polarity determination of a-plane GaN on r-plane sappire and its effectson lateral overgrowth and heteroepitaxy. J. Appl. Phys., 2003, 94(2): 942-947.
    [17] J. Zhu, D. Zhao, W. B. Luo, et al. Epitaxial growth of cubic AlN films on SrTiO3(100) substrates by pulsed laser deposition. Journal of Crystal Growth, 2008, 310: 731-737.
    [18]虞丽生.半导体异质结物理.北京:科学出版社, 2006, 271-279.
    [19]王占国.半导体光电信息功能材料研究进展.新材料产业, 2009, 1: 65-73.
    [20] K.Domen, A. Kuramata, T. Tanahashi. Lasing mechanism of InGaN/GaN/AlGaN multiquantum well laser diode. Appl. Phys. Lett., 1998, 72(11): 1359-1361.
    [21] J.C. Zolper. A review of junction field effect transistors for high-temperature and high-power electronics. Solid-State Electronics, 1998, 42(12): 2153-2156
    [22]刘恩科,朱秉升,罗晋生等.半导体物理学.北京:国防工业出版社, 1999, 58-61.
    [23] G. Koley, M. G. Spencer. On the origin of the two-dimensional electron gas at the AlGaN/GaN heterostructure interface. Appl. Phys. Lett., 2005, (86): 042107.
    [24] C. Skierbiszewski, K. Dybko, W. Knap, et al. High mobility two-dimensional electron gas in AlGaN/GaN heterostructures grown on bulk GaN by plasma assisted molecular beam epitaxy. Appl. Phys. Lett., 2005, 86(10): 102106.
    [25] M. A. Khan, X. Hu, G. Sumin, et.al. AlGaN/GaN metal oxide semiconductor heterostructure field effect transistor. IEEE Electron Device Lett., 2000, 21(2): 63-65.
    [26] M. A. Khan, X. Hu, A. Tarakji, et al. AlGaN/GaN metal-oxide-semiconductor hetero- structure field-effect transistors on SiC substrates, Appl. Phys. Lett., 2000, 77: 1339-1341
    [27] P. D. Ye, B. Yang, K. K Ng, et al. GaN metal-oxide-semiconductor high-electron- mobility-transistor with atomic layer deposited Al2O3 as gate dielectric. Appl. Phys. Lett., 2005, 86: 063501.
    [28] Chang Liu, Eng Fong Chor, Leng Seow Tan. Enhanced device performance of AlGaN/GaN HEMTs using HfO2 high-kdielectric for surface passivation and gate oxide. Semicond. Sci. Technol., 2007, (22): 522–527.
    [29] Lee Ching-Ting, Chen Hong-Wei, Lee Hsin-Ying. Metal-oxide-semiconductor devices using Ga2O3 dielectrics on n-type GaN. Appl. Phys. Lett., 2003, 82(24): 4304-4306.
    [30] Y. Irokawa, Y. Nakano, M. Ishiko, et al. MgO/p-GaN enhancement mode metal-oxide semiconductor field-effect transistors. Appl. Phys. Lett., 2004, 84(15): 2919-2921.
    [31] A. M. Stoneham, J. L. Gavartin, A. L. Shluger. The oxide gate dielectric: do we know all we should. J. Phys.: Condens. Matter, 2005, (17): S2027–S2049.
    [32] John Robertson. Maximizing performance for higher K gate dielectrics. J. Appl. Phys., 2008, 104: 124111.
    [33] R. A. McKee, F. J. Walker, and M. F. Chisholm. Crystalline oxides on silicon: the first five monolayers. Phys. Rev. Lett., 1998, 81 (14): 3014-3017.
    [34] K. Eisenbeiser, J. M. Finder, Z. Yu, et. al. Field effect transistors with SrTiO3 gate dielectric on Si. Appl. Phys. Lett., 2000, 76(10): 1324-1326.
    [35] P. J. Hansen, V Vaithyanathan, Y. Wu, et al. Rutile films grown by molecular beam epitaxy on GaN and AlGaN/GaN. J. Vac. Sci. Technol. B, 2005, 23 (2): 499-506.
    [36] P. J. Hansen, L. Shen, Y. Wu, et al. AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors using barium strontium titanate. J. Vac. Sci. Technol. B, 2004, 22(5): 2479-2485.
    [37] Yuechan Kong, Fangshi Xue, Yanrong Li, et.al. Substitution of paraelectric for conventional dielectric in AlGaN/GaN MISFETs. IEEE Electro. Dev. Lett., 2010, 31(2): 93-95.
    [38] Yuh-Renn Wu, Jasprit Singh. Polar heterostructure for multifunction devices: theoretical studies. IEEE transactions on electron devices, 2005, 52(2): 284-293.
    [39] Y.C. Kong, F.S. Xue, Y.R. Li, et.al. Ferroelectric polarization-controlled two-dimensional electron gas in ferroelectric/AlGaN/GaN heterostructure. Appl Phys A, 2009, 95(3): 703-706.
    [40] Jihua Zhang, Chuanren Yang, Yanrong Li, et.al. Theoretical design of GaN/ferroelectric heterostructure: Toward a strained semiconductor on ferroelectrics. Appl. Phys. Lett., 2009 95: 122101.
    [41] Tanaka H, Misono M. Advances in designing perovskite catalysts. Current opinion in solid state and materials science, 2001, 5(5): 381-387.
    [42] Raymond E. Schaak, Thomas E. Mallouk. Prying apart Ruddlesden?Popper phases: exfoliation into sheets and nanotubes for assembly of perovskite thin films. Chem. Mater., 2000, 12 (11): 3427–3434.
    [43] J. H. Haeni, C. D. Theis, and D. G. Schlom, et al. Epitaxial growth of the first five members of the Srn+1TinO3n+1 Ruddlesden–Popper homologous series. Appl. Phys. Lett., 2001, 78(21): 3292-3294.
    [44] J. Brous, I. Fankuchen, E. Banks. Rare earth titanates with a perovskite structure. Acta Cryst., 1953, (6): 67-70.
    [45] Voothoeve R J H. Advanced materials in catalysis: Academic Press, 1977.
    [46]钟维烈.铁电体物理学.北京:科学出版社, 2000, 26-27.
    [47] G. D. Hu, J. B. Xu, I. H. Wilson. Domain imaging and local piezoelectric properties of the (200)-predominant SrBi2Ta2O9 thin film. Appl. Phys.Lett., 1999, 75(11): 1610-1612.
    [48] G. Yuan, J. Liu, S. Zhang, et al. Low-tempearatur switching fatigue behavior of ferroelectric SrBi2Ta2O9 thin films. Appl. Phys. Lett., 2004, 84(6): 954-956.
    [49] K. Ishikawa, H. Funakubo, K.Saito, et al. Cyrstal structure and electrical properties of epitaxial SrBi2Ta2O9 films. J. Appl. Phys., 2000, 87(11): 8018-8023.
    [50] J. Wang, B. Neaton, H. Zheng, et al. Epitaxial BiFeO3 multiferroic thin film heterostructures. Science, 2003, 299: 1719-1722.
    [51] W. Eerenstein, F. D. Morrison, J. Dho, et al. Comment on“Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures”. Science, 2005, 307: 1203a.
    [52] Yi-Hsien Lee, Jenn-Ming Wu, Yi-Chan Chen, et al. Surface chemistry and nanoscale characterizations of multiferroic BiFeO3 thin films. Electrochemical and Solid-State Letters, 2005, 8: 10.
    [53] H. Béa, M. Bibes, A. Barthélémy, et al. Influence of parasitic phases on the properties of BiFeO3 epitaxial thin films. Appl. Phys. Lett., 2005, 87: 072508.
    [54] Dongeun Lee, Min G. Kim, Sangwoo Ryu, et al. Epitaxially grown La-modified BiFeO3 magnetoferroelectric thin films. Appl. Phys. Lett. 2005, 86: 222903.
    [55] G. L. Yuan, Siu Wing, J. M. Liu, et al. Structural transformation and ferroelectromagnetic behavior in single-phase Bi1?xNdxFeO3 multiferroic ceramics. Appl. Phys. Lett. 2006, 89: 052905.
    [56] J. B. Neaton, C. Ederer, U. V. Waghmare, et al. First-principles study of spontaneous polarization in multiferroic BiFeO3. Phys. Rev. B, 2005, 71: 014113.
    [57] Jiefang Li, Junling Wang, M. Wuttig, et al. Dramatically enhanced polarization in (001), (101), and (111) BiFeO3 thin films due to epitiaxial-induced transitions. Appl. Phys. Lett., 2004, 84: 5261-5263.
    [58] D. Kobayashi, H. Kumigashira, M. Oshima, et al. High-resolution synchrotron-radiation photoemission characterization for atomically-controlled SrTiO3(001) substrate surfaces subjected to various surface treatments. J. Appl. Phys., 2004, 96 (12): 7183-7188.
    [59] M. Kawasaki, K. Takahashi, T. Maeda, et al. Atomic control of the SrTiO3 crystal surface. Science, 1994, 226: 1540-1542.
    [60] G. Koster, B. L. Kropman, G. J. H. M. Rijnders et al. Quasi-ideal strontium titanate crystal surfaces through formation of strontium hydroxide. Appl. Phys. Lett., 1998, 73: 2920-2922.
    [61] Fompeyrine, R. Berger, H. P. Lang, et al. Local determination of the stacking sequence of layered materials. Appl. Phys. Lett., 1998, 72(14): 1697-1699.
    [62] H. Mori, H. Ishiwara. Epitaxial growth of SrTiO3 films on Si(100) substrates using a focused electron beam evaporation method. Jpn. J. Appl. phys., 1991, 30: L1415-1417.
    [63] P. Ahmet, T Koida, M. Takakura, et al. Diffusion induced amorphization in the crystalline SrTiO3 thin films on Si(100) investgated by combinatorial method. Appl. Surf. Sci., 2002, 189: 307-312.
    [64] H. Li, X. Hu, Y. Wei, Z. Yu, et al. Two-Dimensional growth of high-quality strontium titanate thin films on Si. J. Appl. Phys. 2003, 93(8): 4521- 4525.
    [65] R. A. McKee, F. J. Walker, M. F. Chisholm. Physical structure and inversion charge at a semiconductor interface with a crystalline oxide. Science, 2001, 293: 468-471.
    [66] D. P. Norton, J. D. Budai, M. F. Chisholm. Hydrogen-assisted pulsed-laser deposition of (001)CeO2 on (001)Ge. Appl. Phys. Lett., 2000, 76(13): 1677-1679.
    [67] K. Nashimoto, D. K. Fork, T. H. Geballe. Epitaxial growth of MgO on GaAs(001) for growing epitaxial BaTiO3 thin films by pulsed laser deposition. Appl. Phys. Lett., 1992, 60(10): 1199–1201.
    [68] Y. Liang, J. Kulik, T. C. Eschrich, et al. Hetero-epitaxy of perovskite oxides on GaAs(001) by molecular beam epitaxy. Appl. Phys. Lett., 2004, 85(7): 1217–1219.
    [69] Y. Wei, X. Hu, Y. Liang, et al. Mechanism of cleaning Si(100) surface using Sr or SrO for the growth of crystalline SrTiO3 films. J Vac.Sci.Technol. B., 2002, 20: 1402-1405.
    [70] B. K. Moon, H.Ishiwara. Roles of buffer layers in epitaxial gorwth of SrTiO3 films on silicon substrates. Jpn. J. Appl. phys., 1994, 33(3): 1472-1477.
    [71] Hongtao Xu. MMICs using GaN HEMTs and thin-film BST capacitors: [博士学位论文], Santa Barbara: University of California, 2005.
    [72] H. Xu, N. K. Pervez, P. J. Hansen, et al. Integration of BaxSr1-xTiO3 thin films with AlGaN/GaN HEMT circuits. IEEE electron device letter, 2004, 25(2): 49-51.
    [73] Wei Cao. Processing and properties of lead zirconate titanate thin films on gallium nitride and ruthenium by sol-gel and chemical vapor deposition: [博士学位论文], Arizona: Arizona State University, 2005.
    [74] Igor Stolichnov, Lisa Malin, Paul Muralt, et al. Ferroelectric gate for control of transport properties of two-dimensional electron gas at AlGaN/GaN heterostructures. Appl. Phys. Lett. 2006, 88: 043512.
    [75] L. Malin, I. Stolichnov, N. Setter. Ferroelectric polymer gate on AlGaN/GaN heterostructures, J. Appl. Phys., 2007, 102: 114101.
    [76] Youn-Seon Kang, Qian Fan, Bo Xiao, et al. Fabrication and current-voltage characterization of a ferroelectric lead zirconate titanate/AlGaN/GaN field effect transistor. Appl. Phys. Lett., 2006, 88: 123508.
    [77] B. Shen, W. Li, T. Someya, et al. Influence of ferroelectric polarization on the properties of two-dimensional electron gas in Pb(Zr0.53Ti0.47)O3/AlxGa1-xN/GaN Structures. Jpn. J. Appl. Phys., 2002, 41(4B): 2528–30.
    [78] Chae-Ryong Cho, Jae-Yeol Hwang, Jong-Pil Kim, et al. Growth and characterization of (Ba0.5Sr0.5)TiO3 films epitaxially grown on (002) GaN/(0006) Al2O3 Electrode. Jpn. J. Appl. Phys., 2004, 43: L1425-L1428.
    [79] Chae-Ryong Cho, Jae-Yeol Hwang, Jong-Pil Kim, et al. Heteroepitaxial growth and ferroelectricity of Bi3.25La0.75Ti3O12 films on n-GaN/Al2O3(0001) substrates prepared by pulsed-laser deposition. Jpn. J. Appl. Phys., 2004, 43: L7625-L7626.
    [80] K.R. Balasubramanian, Kai-Chieh Chang, Feroz A, et al. Growth and structural investigations of epitaxial hexagonal YMnO3 thin films deposited on wurtzite GaN(001) substrates. Thin Solid Films, 2006, 515: 1807-1813.
    [81] A. Posadas, J.-B. Yau, C. H. Ahn et al. Epitaxial growth of multiferroic YMnO3 on GaN. Appl. Phys. Lett., 2005, 87: 171915.
    [82] H. S. Craft, J. F. Inlefeld, M. D. Losego, et al. MgO epitaxy on GaN (0002) surfaces by molecular beam epitaxy. Appl. Phys. Lett., 2006, 88: 212906.
    [83] T. L. Goodrich, J. Parisi, Z. Cai, et al. Low temperature growth of crystalline magnesium oxide on hexagonal silicon carbide (0001) by molecular beam epitaxy. Appl. Phys. Lett., 2007, 90: 042910.
    [84] Zhaohui Chen, Aria Yang, Antone Gieler, et al. Epitaxial growth of M-type Ba-hexaferrite films on MgO (111)//SiC (0001) with low ferromagnetic resonance linewidths. Appl. Phys. Lett., 2007, 91: 182505.
    [85] T. L. Goodrich, Z. Cai, M, D. Losego, et al. Thin crystalline MgO on hexagonal 6H-SiC (0001) by molecular beam epitaxy for functional oxide integration. J. Vac. Sci. Technol. B, 2008, 26(3): 1110-1114.
    [86] Bo Xiao, Xing Gu, Natalia Izyumskaya, et al. Structural and electrical properties of Pb(Zr,Ti)O3 grown on (0001) GaN using a double PbTiO3/PbO bridge layer. Appl. Phys. Lett., 2007, 91: 182908.
    [87] J. Cheung. Nucleation kinetics of CdTe/CdTe (111) homoepitaxy by Laser MBE. Materials Research Society Symposia Proceedings, 1986, 56: 85-90.
    [88] M. Kanai, T. Kawai, S. Kawai. Atomic layer and unit cell layer growth of (Ca,.Sr)CuO2 thin films by laser molecular beam epitaxiay. Appl. Phys. Lett., 1991, 58(7): 771-773.
    [89] D. M. Kolb, G. Lehmpfuhl. The advantages of RHEED over LEED for surface studies of emersed electrodes. J. Electrochem. Soc. 1980, 127(1): 243-244.
    [90]秦福文. RHEED原位监测的PECVD方法及GaN基薄膜低温生长:[工学博士论文],大连:大连理工大学, 2004.
    [91] A R. Smith, V. Ramachandran, R. M. Feenstra, et al. Wurtzite GaN surface structures studied by scanning tunneling microscopy and reflection high energy electron diffraction. J. Vac. Sci. Technol. A, 1998, 16(3): 1641-1645.
    [92] H. Fujioka, J. Ohta, H. Katada, et al. Epitaxial growth of semiconductors on SrTiO3 substrates. Journal of Crystal Growth, 2007, 229: 137-141.
    [93]王恩哥.薄膜生长中的表面动力学Ⅰ.物理学进展, 2003, 23(1): 1-61.
    [94]祁景玉.X射线结构分析.上海:同济大学出版社, 2003: 79-83.
    [95]许振嘉.半导体的检测与分析.北京:科学出版社, 2007: 28-89.
    [96] G. Binning, C.F. Quate, C. Gerber. Atomic force microscope. Phys. Rev. Lett., 1986, 56(9): 930-933.
    [97] A.J. Hartmann, R.N. Lamb. X-ray photoemission spectroscopy of thin films. Current Opinion in Solid State & Materials Science. 1997, 2(5): 511-516.
    [98] Ming-Wen Chu, Marcel Ganne, Maria Teresa Caldes, et al. X-ray photoelectron spectroscopy and high resolution electron microscopy studies of Aurivillius compounds: Bi4-xLaxTi3O12.(x=0, 0.5, 0.75, 1.0, 1.5, and 2.0.). J. Appl. Phys., 2002, 91(5): 3178-3187.
    [99] Robert L. Opila, Joseph Eng Jr. Thin films and interfaces in microelectronics: composition and chemistry as function of depth. Progress in Surface Science, 2002, 69(4): 125-163.
    [100] Steven P. Kowalczyk, J. T. Cheung. CdTe-HgTe (111) heterojunction valence-band discontinuity: a common-anion-rule contradiction. Phys. Rev. Lett., 1986, 56: 1605–1608.
    [101] E. A. Kraut, R. W. Grant, J. R. Waldrop. Precise determination of the valence-band edge in X-Ray photoemission spectra: application to measurement of semiconductor interface potentials. Phys. Rev. Lett., 1980, 44: 1620–1623.
    [102] A. J. Dekker, Solid State Physics, New Jersey: Prentice-Hall Inc. 1957: 220-226.
    [103] J. G. Simmons. Richardonson-Schottky effct in solids. Phys. Rev. Lett., 1965, 15: 967-968.
    [104]甘学温,黄如,刘晓彦等.纳米CMOS器件.北京:科学出版社. 2004.
    [105] C. Y. Chang, S. M. Sze. Carrier transport across metal-semiconductor barriers. Solid State Electron, 1970, 13: 727-740.
    [106] Riad A. S. Infuence of dioxygen and annealing process on the transport properties of nickel phthalocyanine Schottky-barrier devices. Physica B, 1999, 270: 148-156.
    [107] Saha S., Krupanidhi S. B. Study of the electrical properties of pulsed laser ablated (Ba0.5S0.5)TiO3 thin films. Mater. Sci. Eng., 1999, 57: 135-146.
    [108] M. A. Lampert. Simplified theory of space-charge-limited currents in an insulator with traps, Phys. Rev., 1956, 103: 1648-1656.
    [109] Vaithyanathan. Venu, Shlichta. Paul J, D G Schlom. Integration of functional perovskites with (0001) GaN. http://meetings.aps.org/link/BAPS, 2005, MAR.N18.3.
    [110] A. Munkholm, G. B. Stephenson, J. A. Eastman. Surface Structure of GaN(0001) in the Chemical Vapor Deposition Environment. Phys. Rev. Lett., 1999, 83(4): 741-744.
    [111] M. Diale, F.D. Auret, N.G. Vander Berg, et al. Analysis of GaN cleaning procedures. Applied Surface Science, 2005, 246: 279–289.
    [112] S. W. King, J. P. Barnak, M. D. Bremser, et al. Cleaning of AlN and GaN surfaces. J. Appl. Phys., 1998, 84: 5248-5260.
    [113]吴自勤,王兵.薄膜生长.北京:科学出版社, 2001: 190-198.
    [114] Cladis P. E. Effect of temperature and magnetic fields on the thin-film dc superconducting transformer. Phys. Rev. Lett., 1968, Vol.21:1238-1241.
    [115] A. R. Smith, R. M. Feenstra, D. W. Greve, et al. Reconstructions of GaN(0001) and (0001) surfaces: Ga-rich metallic structures., J. Vac. Sci. Technol. B, 1998, 16.4.2242-2249.
    [116]黄孝瑛.电子衍射分析方法.北京:金属材料研究编辑部, 1978: 51-61.
    [117]郭可信,叶恒强,吴玉琨.电子衍射图在晶体学中的应用.北京:科学出版社, 1983, 251-276.
    [118] Siu-Wai Han. Degenerate epitaxy coincidence epitaxy and origin of“special boundaries in thin films”. Phys. Chem. Solids, 1994, 55(10): 1137-1145.
    [119] Sven A. E. Johansson, Mikael Christensen, and G?ran Wahnstr?m. Interface Energy of Semicoherent Metal-Ceramic Interfaces. Phys. Rev. Lett., 2005, 95: 226108.
    [120] Claudine Noguera. Polar oxide surfaces. J. Phys.: Condens. Matter., 2000, 12: R367-R410.
    [121] Tosja K. Zywietz, J?rg Neugebauer, Matthias Scheffler. The adsorption of oxygen at GaN surfaces. Appl. Phys. Lett., 1999, 74(12): 1695-1697.
    [122] L. Nai-Xia, X. Yi-Jun, C. Wen-Kai, et al. Theoretical study of O2 adsorption on GaN surfaces. J. Mol. Struct.: Theochem, 2004, 668: 51-55.
    [123] G. H. Lee, B. C. Shin, I. S. Kim. Critical thickness of BaTiO3 films on SrTiO3(001) evaluated by RHEED. Materials letters, 2001, 50: 134-137.
    [124] A. J. Francis, A. Bagal, P. A. Salvador, et al. Innovative processing and synthesis of ceramics, glasses, and composites VI. Ceramic Transactions, 2002, 135: 565-569.
    [125] G. Saint-Girons, J. Cheng, P. Regreny, et al. Accommodation at the interface of highly dissimilar semiconductor/oxide epitaxial systems. Phys. Rev.B., 2009, 80: 155308.
    [126] X. H. Wei, Y R Li, W J Jie. Heteroepitaxial growth of ZnO on perovskite surfaces. J. Phys. D: Appl. Phys., 2007, 40: 7502–7507.
    [127] N. J. Watkins, G. W. Wicks, Yongli Gao. Oxidation study of GaN using x-ray photoemission spectroscopy. Appl. Phys. Lett., 1999, 75(17): 2602-2604.
    [128]梁英教,车荫昌.无机物热力学数据手册.沈阳:东北大学出版社, 1993: 347-356.
    [129] Taro Hitosugi, Yasushi Hirose, Junpei Kasai, et al. Heteroepitaxial growth of rutile TiO2 on GaN(0001) by pulsed laser deposition. Jpn. J. Appl. Phys., 2005, 44(50): L1503-L1505.
    [130] A. Lotnyk , S. Senz, D. Hesse. Epitaxial growth of TiO2 thin films on SrTiO3, LaAlO3 and yttria-stabilized zirconia substrates by electron beam evaporation. Thin Solid Films, 2007, 515: 3439-3447.
    [131] M. Zhu, T. Chikyow, P. Ahmet, et al. A high resoltution transmission electron microscopy investigation of the microstructure of TiO2 films deposited on LaAlO3 and SrTiO3 substrate by laser ablation. Thin Solid Films, 2003, 441(1-2): 140-144.
    [132] Andreas Graff, Stephan Senz, Dieter V?ltzke, et al. Microstructure evolution during BaTiO3 formation by solid-state reactions on rutile single crystal surfaces. Journal of the European Ceramic Society, 2005, 25: 2201–2206.
    [133] Xiaohua Liu, Z G Liu, J Yin, et al. Microstructure and electrical properties of ferroelectric Pb(Zr0.53Ti0.47)O3 films on Si with TiO2 buffer layers. J. Phys.: Condens. Matter, 2000, 12: 9189–9194.
    [134] Ji-Woong Kim, Kwang-Yong Lee, Jae-Hoon Choi, et al. Electrical properties of the Pt/ Sr0.85Bi2.4Ta2O9/TiO2/Si structure with variation of the Sr0.85Bi2.4Ta2O9 film thickness. J. Mat. Sci. Lett., 2003, 22(7): 535-537.
    [135] J. H. Park, J. H. Choi, K. Y. Lee, et al. Ferroelectric characteristics of the Mod-derived SrxBi2.4(Ta0.75Nb0.25)2O9 thin films and electrical properties of the Pt/SrxBi2.4(Ta0.75Nb0.25)2O9/TiO2/Si structure. Integrated Ferroelectrics, 2004, 65(1): 81-88.
    [136] X.H. Liu, Z G Liu, Y. P.Wang, et al. Characteristics of SrBi2Ta2O9 ferroelectric films on GaAs with a TiO2 buffer layer. Appl. Phys. A, 2003, 76: 197–199.
    [137] W. Tian, V. Vaithyanathan, D. G. Schlom, et al. Epitaxial integration of (0001) BiFeO3 with (0001) GaN. Appl. Phys. Lett. 2007, 90: 172908.
    [138] S. Chen, M. G. Mason, H. J. Gysling, et al. Ultrahigh vacuum metalorganlc chemical vapor deposition growth and in situ characterization of epitaxial TiO2 films. J. Vac. Sci. Technol. A, 1993, 11: 2419-2429.
    [139]李金隆. BST类铁电薄膜生长机理与应力调制研究: [博士论文].成都:电子科技大学,2005.
    [140] Zhu J., Wei X H, Zhang Y, et al. Study on interfacial strain behaviour of functional oxide hetreostructures. J. Appl. Phys., 2006, 17(8): 104106.
    [141] X. H. Wei, Y. R. Li, J. Zhu, et al. Epitaxial properties of ZnO thin films on SrTiO3 substrates grown by laser molecular beam epitaxy. Appl. Phys. Lett. 2007, 90: 151918.
    [142] W. Huang, Z. P. Wu, J. H. Hao. Electrical properties of ferroelectric BaTiO3 thin film on SrTiO3 buffered GaAs by laser molecular beam epitaxy. Appl. Phys. Lett. 2009, 94: 032905.
    [143] S. Y. Yang, Q. Zhan, P. L. Yang, et al. Capacitance-voltage characteristics of BiFeO3 /SrTiO3 /GaN heteroepitaxial structures. Appl. Phys. Lett., 2007, 91: 022909.
    [144]黄文.典型的铁磁、铁电氧化物薄膜界面分析与界面控制方法的研究: [博士论文].成都:电子科技大学,2008.
    [145] Ehrlich G, Hudda F G. Atomic view of surface self-diffudion: tugsten on tugsten. 1966, 44: 1039-1943.
    [146] V. V. Manutin. Growth mechanism of DyBa2Cu3Ox superconducting thin films grown by coevaporation molecular beam epitaxy at low temperatures and growth rates. J. Crystal Growth, 1995, 153: 140-145.
    [147]魏贤华.氧化物铁电薄膜生长与界面控制方法研究: [博士论文].成都:电子科技大学,2005.
    [148] M. Naito, H. Yamamoto, H. Sato. Reflection high-energy electron diffraction and atomic force microscopy studies on homoepitaxial growth of SrTiO3(001). Physica. C, 1998, 305:233-250.
    [149] Jin Long Li, J. H. Hao, Ying Zhang, et al. Growth mode mapping and structural properties of controlled perovskite BaTiO3 /SrTiO3 heterostructure. Appl. Phys. Lett., 2007, 91: 201919.
    [150] J. Y. Lee, J. Y. Juang, K. H. Wu, et al. Annealing characteristics of pulsed laser deposited homoepitaxial SrTiO3 thin films. Surface Science, 2001, 488:277-285.
    [151] D. H. Blank, G. Koster, M. Rijnders, et al. Epitaxial growth of oxides with pulsed interval deposition. J. Crystal Growth, 2000, 211: 98-105.
    [152] J Zhu, L Zheng, W B Luo, Y R Li,et al. Microstructural and electrical properties of BaTiO3 epitaxial films on SrTiO3 substructures with a LaNiO3 conductive layer as a template. J. Phys. D: Appl. Phys., 2006, 39: 2438–2443.
    [153] I. K. Yoo, S. B. Desu. Mechanism of fatigue in ferroelectric thin films. Phys. Stat. Sol., 1992, 133(a): 565.
    [154] A. Garg, Z. H. Barber, M. Dawber, et al. Orientation dependence of ferroelectric properties of pulsed-laser-ablated Bi4-xNdxTi3O12 films. Appl. Phys. Lett., 2003, 83(12): 2414-2416.
    [155] S. T. Zhang, Y. F. Chen, J. Wang, et al. Ferroelectric properties of La and Zr substituted Bi4Ti3O12 thin films. Appl. Phys. Lett., 2004, 84: 3660-3663
    [156] Wei Li, Jun Gu, Chunhua Song, Dong Su, et al. B-site doping effect on ferroelectric property of bismuth titanate ceramic. J. Appl. Phys., 2005, 98: 114104.
    [157] Y. Y. Yao, C. H. Song, P. Bao. et al. Doping effect on the dielectric property in bismuth titanate. J. Appl. Phys., 2004, 95: 3126-3128.
    [158] X. P. Wang, J. Zhu, W. B. Luo, et al. Enhanced ferroelectric properties of Hf-doped bismuth titanate thin films on STO (111) substrates. J. Appl. Phys., 2008, 104:05112.
    [159] Cohen R E. Origin of the ferroelectricity in perovskite oxides. Nature, 1992, 358 : 136-138.
    [160] Y. Shimakawa, Y. Kubo. Crystal and electronic structures of Bi4–xLaxTi3O12 ferroelectric materials. Appl. Phys. Lett., 2001, 79: 2791 -2794.
    [161] Matthew Dawber, J. F. Scott. A model for fatigue in ferroelectric perovskite thin films. Appl. Phys. Lett., 2000, 76: 125938.
    [162] Yang F, TangM, Zhou Y, et al. Fatigue mechanism of the ferroelectric perovskite thin films. Appl. Phys. Lett., 2008, 92(2): 2908-2910.
    [163] Mihara T, Wantanabe H, Araujo C P. Polarization Fatigue Characteristics of Sol-gel Ferroelectric Pb(Zr0.4Ti0.6)O3 Thin-film Capacitors. Jpn. J. Appl. Phys., 1994, 33 (7A): 3996-4002.
    [164] Lou X, Zhang M, Redfern S A T, et al. Fatigue as local phase decomposition: A switching-induced charge-injection model. Phys. Rev. B, 2007, 75 (22): 224104.
    [165] F. Kubel, H. Schmid. Structure of a ferroelectric and ferroelastic monodomain crystal of the perovskite BiFeO3. Acta Cryst. B., 1990, 46: 698-702.
    [166] J Chastain. Handbook of X-Ray Photoelectron Spectroscopy. Minmesota: Perkin-Elmer Corporation, 1992.
    [167] Somenath Bose, S. B. Krupanidhi. Improved ferroelectric and leakage properties in symmetric BiFeO3 /SrTiO3 superlattice. Appl. Phys. Lett., 2007, 90: 212902.
    [168] R. Ranjith, W. Prellier, Jun Wei Cheah. Dc leakage behavior and conduction mechanism in (BiFeO3)m(SrTiO3)m superlattices. Appl. Phys. Lett., 2008, 92: 232905.
    [169] Hughes Spalding Craft. Spectroscopy of Oxide-GaN Interfaces: [博士学位论文]. Raleigh, North Carolina: North Carolina State University, 2009.
    [170] J. Robertson B. Falabretti. Band offsets of high K gate oxides on III-V semiconductors. J. Appl. Phys., 2006, 100: 014111.
    [171] Yu-Di Su, Wen-Chieh Shih, Joseph Ya-min Lee. The effect of band offset on the retention properties of metal-ferroelectric (PbZr0.53Ti0.47O3)-insulator(Dy2O3,Y2O3)-semiconductor capacitors and field effect transistors. Appl. Phys. Lett., 2007, 91: 122902.
    [172] L. G. Gao, B. Xu, H. X. Guo, et al. Band alignments and improved leakage properties of (La2O3)0.5(SiO2)0.5/SiO2/GaN stacks for high-temperature metal-oxide-semiconductor field-effect transistor applications. Appl. Phys. Lett., 2009, 94: 252901.
    [173] J. J. Chen, B. P. Gila, M. Hlad, et al. Determination of MgO/GaN heterojunction band offsets by x-ray photoelectron spectroscopy. Appl. Phys. Lett., 2006, 88: 042113.
    [174] B. Luo, J. W. Johnson, J. Kim, et al. Influence of MgO and Sc2O3 passivation on AlGaN/GaN high-electron-mobility transistors. Appl. Phys. Lett., 2002, 80(9): 1661-1663.
    [175] M. H. Yang, C. P. Flynn. Growth of alkali halides by molecular-beam epitaxy. Phys. Rev. B., 1990, 41(12): 8500-8508.
    [176] S. Yadavalli, M. H. Yang, C. P. Flynn. Low-temperature growth of MgO by molecular-beam epitaxy. Phys. Rev. B., 1990, 41(11): 7961-7963.
    [177] T. Ohnishi, M. Yoshimoto, G. H. Lee, et al. Unit cell layer-by-layer heteroepitaxy of BaO thin films at temperatures as low as 20°C. J. Vac. Sci. Technol. A, 1997, 15(5): 2469-2472.
    [178] R. A. McKee, F. J. Walker, E. D. Specht, et al. Interface stability and the growth of optical perovskite on MgO. Phys. Rev. Lett., 1994, 72(17): 2741-2744.
    [179] X. N. Wang, Y. Wang, Z. X. Mei, et al. Low-temperature interface engineering for high-quality ZnO epitaxy on Si (111) substrate. Appl. Phys. Lett., 2007, 90:151912.
    [180] Jang J.S, Seong T.Y. Mechanisms for the reduction of the Schottky barrier heights of high-quality nonallyed Pt contacts on surface-treated p-GaN.J. Appl. Phys., 2000, 88(5): 3064-3066. .

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700