超燃冲压发动机燃烧室起动过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超燃冲压发动机能够利用大气中的氧气,不需自身携带氧化剂,因而在高超声速飞行领域,其比冲比火箭发动机更高,是高超声速飞行具有广阔前景的推进系统。应用于空天往返,导弹武器和商业运输都将为该领域带来重大革新。
     低马赫数下的超燃发动机燃烧室起动(点火)问题是目前该领域的主要难题之一因低马赫数(Ma4)下,来流的总温低(900K),燃烧室内静温低于燃料的自点火温度,必须使用辅助点火措施,才能够实现超燃发动机在低马赫数下的成功起动。而低马赫数下点火难点主要有:(1)点火技术;(2)液态燃料雾化。本文将针对上述两个问题,分别进行超燃发动机低总温条件下的气态乙烯点火技术研究和液态燃料雾化喷嘴研究。
     针对超燃发动机燃烧室在低马赫数下的点火问题,在脉冲燃烧风洞设备上进行了系列的试验研究。试验来流参数为总温935K,总压0.8Mpa,马赫数2.1,试验时间约220-250ms;试验内容包括冷流流场特性试验、冷流混合试验、5种不同点火方式下的燃烧室点火试验,发动机贫油极限和富油极限试验,发动机内注油位置优化试验等。
     结合数值模拟和光学显示,研究了不同凹槽构型下燃烧室的冷流流场特性。数值模拟和高速纹影测量结果显示,凹槽深度18mm,长深比10.8的燃烧室流道内激波最强,流道内有明显的附面层分离区,冷流阻力最大。长深比10和10.8的凹槽较长深比7的凹槽阻力大接近一倍。燃料以垂直壁面喷射的方式注入燃烧室内,除凹槽内注油位置外,其他位置的燃料穿透深度不到5mm。凹槽上游和凹槽内注入的燃料大部分富集在凹槽内。节流能够显著增加上壁面燃料的穿透深度,对燃料的混合和分布有较大改善(百分比)。对下壁面注入的燃料改善效果不明显。
     针对凹槽深度18mm,长深比10.8的发动机构型,研究了五种不同的辅助点火方式:火炬点火器辅助点火、氢气自燃辅助点火、节流辅助点火、引导氢气+火炬点火器辅助点火和节流+引导氢气辅助点火。其中点火器或节流单独辅助乙烯点火没有成功。氢气自燃辅助点火,点火器+引导氢气辅助点火和节流+引导氢气辅助点火三种点火方式能够在较宽范围内实现乙烯的点火,乙烯单独稳定燃烧的时间超过100ms。0.43g/s-12.68g/s的氢气从凹槽内注入燃烧室能够发生自燃,并作为引导火焰点燃乙烯,流量超过17.27g/s或从其他位置注入燃烧室,氢气不会发生自点火燃烧;利用点火器+引导氢气进行辅助点火时,点火参数范围为:点火器的功能为点燃引导氢气,功率不小于20kW,引导氢气最低当量比为0.05左右,注入时间大于50ms,点火时间不短于20ms即能可靠点火;利用节流+引导氢气辅助点火时,节流气流量不小于发动机入口流量的10%,引导氢气注油压力不低于5.0Mpa,节流位置在离隔离段入口875mm处,点火时间约60ms能够可靠点火,节流位置靠前(745mm),氢气注油压力低于5.0Mpa不能成功点火。
     燃料从凹槽上游和凹槽内注入,测量得到的发动机贫油熄火极限接近,约为当量比0.08;富油工作极限差别较大,分别为当量比0.327和0.471:凹槽构型对点火方式的适应较为敏感,长深比为7的凹槽只能在点火器+引导氢气一种辅助点火方式下实现乙烯的成功点火;研究了低马赫数下(Ma4)下的富油工作极限,凹槽上游和凹槽内燃料当量比不能超过0.2,主要燃料应分布在凹槽下游附近,离凹槽出口过远,注入燃烧室的燃料难以被凹槽出口的高温燃气点燃,对发动机性能没有贡献。试验研究找到了较为理想的5点注油方式,总当量比达到0.85,燃烧室推力为1401N,隔离段压力扰动位置为352mm。利用一维燃烧室释热规律优化方法,得到了当量比1.0下的4点注油位置分布,通过二维数值模拟验证发现,推力增加到1753N,将0.848当量比下的推力增加了25.1%,但隔离段压力扰动位置97.6mm,抗反压裕度下降。
     借助高速摄影手段,研究了不同点火方式下,燃烧室内的点火和火焰传播过程。试验发现,氢气自燃辅助点火方式下,氢气流量过大,大部分氢气会直接突破剪切层,进入主流,不能发生自点火燃烧,因此应该控制氢气流量。节流+引导氢气辅助点火时,节流的时间过长,燃烧室内的压力在乙烯注入后约20ms,扰动至隔离段入口位置超过发动机的工作范围。利用节流方式,在发动机中营造一定的燃烧室背压,当燃烧室燃烧后压力达到该压力水平时,及时关闭节流,燃烧能够维持,过早关闭节流可能导致点火失败,节流时间过长,将导致燃烧室背压过高,超出发动机工作范围。因此在利用节流进行点火时,一方面要严格控制节流流量,另一方面要适时关闭节流。
     自主设计和加工了液态燃料充气雾化喷射试验系统,试验测量和比较了相同喷射压力下,纯液态喷射和雾化喷射的液滴雾化效果,试验结果表明,即使气液比低至1.36%,雾化效果仍较为理想,稳定后液滴的SMD值小于60μm。气液比越高,喷嘴直径越小,越有利于降低雾化液滴的直径。试验中,最好的雾化效果为气液比15.15%,雾化后的SMD小于40μm。气液混合雾化能够提升液滴沿喷射方向的速度,增加了液滴的喷射动量,有利于增加注油穿透深度。
The Scramjet (Supersonic Combustion Ramjet) propulsion, utilizing the oxygen of air instead of carrying oxdizer itself, performes higher performance and lower operation cost than that of rocket engine at high flight Mach number, will show its potential in aero-space transportation system, cruise missile or commercial transportation.
     The start-up (igniton) problem of the scramjet combustor at low Mach number is one of the toughest problems. When flying at low Mach number (Ma4), the static temperature of supersonic flow in combustor is lower than the temperature of fuel self-ignition. Some addition technique should be imported to facilitate the igntion. Ignition technique and fuel atomization (for liquid fuel) are two parts than can't be avoided when facing the igntion probblem at low Mach number and also the subjects this paper focus on.
     Experimental research on ignition technique at low Mach number is performed on directly-connected pulse facility. The experimental inflow parameters are as following:935K of total temperature,0.8Mpa of total pressure, Mach number2.1at the nozzle exit and stable experimental time of200ms-250ms. Experiments covering cold flow experiments, fuel mixing in cold flow, five methods on combustor ignition, lean blowout limit and rich operation limit experiments for scramjet and fuel injection scheme optimization have been performed.
     Characteristic of cold flow in combustor has been studied by employing experimental and numerical techniques, results from numerical simulation and high speed schlieren measurement indicates that the shock waves is stronger in the combutor configuration with the cavity which with D(depth)=18mm and L/D(length/depth)=10.8, obvious boundary layer seperation is located on the bottom wall near the ramp of cavity and induces biggest resistance. The coldflow resistance is related to the L/D ratio of cavity, resicatnce of combustor with L/D=7is only half of that with L/D=10.8and10. Fuel injection penetration at wall injection scheme is lower than5mm. Fuel injected from cavity floor and upstream of cavity most distributes in cavity. Air throttle downstream the cavity improves the penetration and mixing efficiency of the fuel injected from top wall, but has little influence on the fuel injected from bottom wall.
     Combustor configuration with cavity (D=18,L/D=10.8) is employed for test model. Igniton at Mach4achived with the assistant of self-igniton of pilot hydrogen, igniter combined pilot hydrogen and air throttel combined pilot hydrogen. Pilot hydrogen injected from cavity floor at mass flow rate of0.43g/s to12.68g/s will be self-ignited, and then ignite ehtylene, if the mass flow rate exceedes17.27g/s, self igniton won't occur. The ignition method by igniter and pilot hydrogen is the most reliable igniton technique, with igniter power no less than20kW, hydrogen equivalence ratio higher than0.05, hydrogen injection time longer than50ms and igniton time longer than20ms, ethylene ignition could succeed. When air throttle and pilot hydrogen flame were employed, to reliaze ethylene igniton the throttle should be locateed at875mm from isolator entrance, the mass flow rate of throttle should not be less than10%of engine inflow mass flow rate, and the hydrogen injection pressure should be5.0Mpa at lest.
     Lean blow-out limits are similar with fuel injected from cavity floor and uptream the cavity. But rich operation limits showes obvious differences, when fuel injected from cavity floor, the rich operation limit of engine is at eqivalence ratio of0.471, when injected upstream the cavity, the limit is at equivalence0.327. The parameter of cavity have strong effect on igniton performance, experimental results indicate that cavity with L/D=7performes worse igniton characteristic than L/D=10and10.8. fule injection schemes research offered a equivalence ratio distribution rule that fuel injection befor the exit of cavity should be less than equivalence ratio0.2which could avoid unstart of intake, and fuel injected downsteam the cavity should insure that will be ignited, ortherwise there is no comtribution to the engine's performance. A relative optimiazed injection scheme obtained by experimetal method, that ethylene injected from5different locations, achived total equivalence ratio0.85and1401.1N thrust for the combustor.
     Igniton and flame propagation processes have beed record by high speed photograph. Records show that when hydrogen injected from cavity floor at high mass flow rate, the majority will enter the core flow directly and no self-igniton will occure. When employing air throttle for igniton, the throttle time should be shut before the pressure in combustor spread to the isolator entrance.
     Areated-liquied injection is an efficient injection scheme for liquid fuel aomization. Injection at gas-liquid ratio1.36%could achive SMD smaller than60μm which is much smaller than that of pure liquid injection. Higher gas-liquid ratio and smaller injector diameter is beneficial to reduce droplet diameter. The smallest SMD of40μm achived at gas-liquid ratio15.15%with injector diameter lmm. also the mean velocity of the droplets are increased by the aerated-liquid jet which shows the possibility to increase the injection penetration in supersonic flow.
引文
[1]William H. Heiser, David T. Pratt. Hypersonic Airbreathing Propulsion[M]. Washington DC:AIAA 1994
    [2]沈海军,程凯,杨莉.近空间飞行器[M].航空工业出版社,2012:P151-242
    [3]王西耀.超然冲压发动机非定常流动数值研究[D].中国空气动力研究与发展中心博士论文.2012,P5-P25
    [4]彭彪,张志峰,马岑睿等.国外高超声速武器研究概述及展望[J].飞航导弹.2011(5)
    [5]陈少春,陈鄂平.Hyper-X计划发展中的经验与教训[J].飞航导弹.2010(9)
    [6]S. Ferlemann. Hyper-X Mach 7 Scramjet Design, Ground Test and Flight Results. AIAA 2005-3322
    [7]P. Joyce and J. Pomroy. The Hyper-X Launch Vehicle:Challenges and Design Considerations for Hypersonic Flight Testing[R]. AIAA 2005-3333
    [8]M. Vachon, T. Grindle. X-43A Fluid and Environmental Systems:Ground and Flight Operation and Lessons Learned[R]. AIAA 2005-3337
    [9]Jeffrey S. Robinson, John G. Martin. SACD's Support of the Hyper-X Program. AIAA 2006-7031
    [10]R. C. Rogeers, A. T. Shih, N. E. Hass. Scramjet development tests supporting the Mach 10 flight of the X-43[R]. AIAA 2006-3351
    [11]P. Ferlemann. Hyper-X Mach 10 Scramjet Preflight Predictions and Flight Data. AIAA 2005-3352
    [12]D. Haudrich and L. Brase. Flutter and Divergence Assessment of the HyFly Missile[R]. AIAA 2009-2462
    [13]温杰.美国海军的HyFly计划[J].飞航导弹.2008(12)
    [14]朱爱平,马凌.HyFly项目简介[J].飞航导弹.2010(5)
    [15]孙强,王健,马会民.X-51A超燃冲压发动机的研制历程[J].推进技术.2011(1)
    [16]Ethan Baumann, Catherine Bahm, Brian Strovers, Roger Beck, Michael Richard. The X-43A six degree of freddom monte carlo analysis[R]. AIAA 2008-203
    [17]Mark C. Davis, J. Terry White. X-43A flight-test-determined aerodynamic force and moment characteristics at Mach 7.0[J]. Journal of spacecraft and rockets.2008,45(3)
    [18]Charles R. McCliton. X-43-Scramjet power breaks the hypersonic barrier Dryden lectureship in research for 2006[R]. AIAA 2006-1
    [19]Catherine Bahm, Ethan Baumann, John Martin, David Bose, et al. The X-43A Hyper-X Mach 7 flight 2 guidance, navigation and control overview and flight test results[R]. AIAA 2005-3275
    [20]Laurie A. Marshall, Griffin P. Corpening, Robert Sherrill. A Chief Engineer's View of the NASA X-43A Scramjet Flight Test/NASA X-43A Scramjet Flight Test[R]. AIAA 2005-3332
    [21]Laurie A. Marshall, Catherine Bahm, Griffin P. Corpening, Robert Sherrill. Overview With Results and Lessons Learned of the X-43A Mach 10 Flight[R]. AIAA 2005-3336
    [22]下蕾,沈剑,尚绍华.X-43A的分离系统[J].飞航导弹.2007(12)
    [23]宫朝霞,阿雯.X-51A试飞器的研制工作进展顺利[J].飞航导弹.2007(12)
    [24]朱爱平,叶蕾.X-51A将进行飞行试验[J].飞航导弹.2010(6)
    [25]阿雯,叶蕾.X-51A成功进行首次载飞系留试验[J].飞航导弹.2010(2)
    [26]魏毅寅,张冬青,叶蕾.美国X51A飞行器完成首次动力飞行试验[J].飞航导弹.2010(6)
    [27]丛敏,魏国福.俄罗斯继续研制高超声速推进系统[J].飞航导弹.2010(2)
    [28]文苏丽,李文杰.布拉莫斯导弹系列发展综述[J].飞航导弹.2011(4)
    [29]李文杰,古雨田,何叶.从国际合作项目看澳大利亚高超声速技术的发展[J].飞航导弹.2010(9)
    [30]Matthew MacLean, Timothy Wadhams, Michael Holden, Heath Johnson. A Computational Analysis of Ground Test Studies of the HIFiRE-1 Transition Experiment[R]. AIAA 2008-0641
    [31]T.P. Wadhams, E. Mundy, M.G. MacLean, M.S. Holden. Pre-Flight Ground Testing of the Full-Scale HIFiRE-1 Vehicle at Fully Duplicated Flight Conditions:Part II[R]. AIAA 2008-0639
    [32]J. Odam, A. Paull, H. Alesi, D. Hunt, R. Paull, R. Pietsch. HIFiRE 0 Flight Test Data[R]. AIAA 2009-7293
    [33]Roger L. Kimmel. Aerothermal Design for the HIFiRE-1 Flight Vehicle[R]. AIAA 2008-4034
    [34]Kevin R. Jackson, Mark R. Gruber, Salvatore Buccellato. HIFiRE Flight 2 Overview and Status Update 2011 [R]. AIAA 2011-2202
    [35]Michael D. Bynum, Robert A. Baurle. A Design of Experiments Study for the HIFiRE Flight 2 Ground Test Computational Fluid Dynamics Results[R]. AIAA 2011-2203
    [36]Karen Cabell, Neal Hass, Andrea Storch, Mark Gruber. HIFiRE Direct-Connect Rig (HDCR) Phase I Scramjet Test Results from the NASA Langley Arc-Heated Scramjet Test Facility[R]. AIAA 2011-2248
    [37]Andrea M. Storch, Michael Bynum, Jiwen Liu, Mark Gruber. Combustor Operability and Performance Verification for HIFiRE Flight 2[R]. AIAA 2011-2249
    [38]丛敏,褚运.印俄拟进一步加强高超声速巡航导弹计划的合作[J].飞航导弹.2010(9)
    [39]文苏丽,何煦虹,叶蕾.印度高超声速技术验证器HSTDV[J].飞航导弹.2010(5)
    [40]Kristen Nicole Roberts. Analysis and design of a hypersonic scramjet engine with a starting Mach number of 4.0[D]. University of Texas Master's degree Thesis.2008
    [41]乐嘉陵,胡欲立,刘陵.双模态超燃冲压发动机研究进展[J].流体力学实验与测量.2000,14(1)
    [42]黄勇,林宇震,樊未军,许全宏,李锋等.燃烧与燃烧室[M].北京航空航天大学出版社,2009
    [43]Wickham D. T., J. R. Engel, B. D. Hitch and M. E. Karpuk. Initiators for Endothermic Fuels[J]. Journal of Propulsion and Power.2001,17(6)
    [44]Powell O.A., J. T. Edwards, R. B. Norris, K. E. Numbers and J. A. Pearac. Development of Hydrocarbon-Fueled Scramjet Engines:the Hypersonic Technology (Hytech) Program[J]. Journal of Propulsion and Power.2001,17(6)
    [45]Chadwick C. Rasmussen, James F. Driscoll et al. Stability limits of cavity-stabilized flames in supersonic flow[J]. Proceedings of the Combustion Institute.2005(30)
    [46]Edwards T., Anderson S. D.. Results of high temperature JP-7 cracking assessment[R]. AIAA Aerospace Sciences Meeting and Exhibit,31st, Reno, NV,1993
    [47]Edwards T.. USAF supercritical hydrocarbon fuels interests[R]. AIAA 93-0807
    [48]何龙,潘富敏,林瑞森.吸热型碳氢燃料催化裂解的研究述评[J].推进技术.2001,22(2)
    [49]范学军,俞刚.超临界煤油超声速特性实验[J].推进技术.2006,27(1)
    [50]甘晓华.航空燃气轮机燃油喷嘴技术[M].北京:国防工业出版社,2006.4
    [51]赵钦新,惠世恩.燃油燃气锅炉[M].西安:西安交通大学出版社.1999
    [52]K.-C. Lin, K. A. Kirkendall, P. J. Kendedy, T. A. Jackson. Spray Structures of Aerated Liquid Fuel Jets in Supersonic Cross-flows[R]. AIAA 99-2374
    [53]K.-C. Lin, P. J. Kendedy, T. A. Jackson. Spray Penetration Heights of angled-injected aerated-liquid jets in supersonic cross-flows[R]. AIAA 2000-0194
    [54]K.-C. Lin, P. J. Kendedy, T. A. Jackson. Penetration Heights of Liquid jets in High-speed Crossflows[R]. AIAA 2002-0873
    [55]K.-C. Lin, P. J. Kendedy, T. A. Jackson. Structures of Aerated-Liquid Jets in Hign-Speed Crossflows[R]. AIAA 2002-3178
    [56]D.R.Dixon, M.R.Gruber, T.A.Jackson, K.-C.Lin, R.A.Anthenien. Structures of Angled Aerated-Liquid jets in Mach 1.94 Supersonic Cross-flow[R]. AIAA 2005-0733
    [57]Chung-Jen Tam, Susan Cox-Stouffer, Kuo-Cheng Lin, Mark Gruber and Thomas Jackson. Gaseous and Liquid Injection into High-Speed Cross-flows[R]. AIAA 2005-0301
    [58]B. Miller, K. A. Sallam, M. Bingabr, K.-C. Lin, C. Carter. Secondary Breakup of Aerated Liquid Jets in Subsonic Crossflow[R]. AIAA 2007-1342
    [59]J. Lee, K. A. Sallam, K.-C. Lin, C. D. Carter. Spray Structure in Near-Injector Region of Aerated Jet in Subsonic Crossflow[R]. AIAA 2008-1043
    [60]Daniel A. Cassidy, Jung-il Choi, Ming Tian, Jack R. Edwards, Kuo-Cheng Lin, Thomas J. Jackson. Numerical Simulation of Two-Phase Flow within an Aerated-Liquid Injector[R]. AIAA 2010-0098
    [61]Kuo-Cheng Lin, Christopher Rajnicek, Jonathan McCall et al. Structures of Aerated-Liquid Jets Injected From Various Nozzle Contours[R]. AIAA 2011-0232
    [62]C. Ghenai, H, Sapmaz, C. X. Lin.Effect of Gas/Liquid Mass Ratio on the Penetration of Aerated Liquid Jet in Supersonic Cross Flow[R]. AIAA 2006-1340
    [63]Hrishikesh P. Gadgil, B. N. Raghunandan. Some features of spray breakup in effervescent atomizers[J]. Experimental Fluids.2011,50
    [64]Yoshitaka URIUDA, Jun OSAKA, Mitsuhiro TSUE et al.A Study of Effects of Spray Characteristics on Kerosene Supersonic Combustion[R]. ISABE-2005-1237
    [65]刘联胜,傅茂林,吴晋湘等.气泡雾化喷嘴喷雾平均直径在下游流场中的分布[J].工程热物理学报.2001,22(5)
    [66]刘联胜,杨华,吴晋湘,闫运忠.环状出口气泡雾化喷嘴研究[J].工程热物理学报.2005,26(1)
    [67]刘联胜,杨华,衡国辉等.气液质量流量比对气泡雾化喷嘴燃烧特性的影响[J].燃烧科学与技术.2007,13(1)
    [68]岳连捷,俞刚.气泡雾化喷嘴液雾特性[J].推进技术.2003,24(4)
    [69]G. Yu, J. G. Li, X. Y. Chang, L. H. Chen, C. J. Sung. Investigation of Fuel Injection Flame Stabilization in Liquid Hydrocarbon-Fueled Supersonic Combustors[R]. AIAA 2001-3608
    [70]G. Yu, J. G. Li, S.R. Yang, et al. Investigation of Liquid Hydrocarbon Combustion in Supersonic Flow Using Effervescent Atomization[R].AIAA 2002-4279
    [71]G. Yu, J.G. Li, L.J. Yue et al. Characterization of Kerosene Combustion in Supersonic Flow Using Effervescent Atomization[R]. AIAA 2002-5225
    [72]Adela Ben-Yakar and Ronald K. Hanson. Cavity Flame-Holder for Ignition and Flame Stabilization in Scramjet:An Overview[J]. Journal of Propulsion and Power.2001,17(4)
    [73]M. R. Gruber, R. A. Baurle, T. Mathur, K.-Y. Hsu. Fundamental Studies of Cavity-Based Flameholder Concepts for Supersonic Combustor[J]. Journal of Propulsion and Power.2001,17(1)
    [74]Adam Quick, Paul I. King, Mark R. Gruber, et al. Upstream Mixing Cavity Coupled with a Downstream Flameholding Cavity Behavior in Supersonic Flow[R]. AIAA 2005-3709.
    [75]肖隐利.超燃燃烧室凹槽流动特性研究[D].西北工业大学硕士学位论文.2005
    [76]丁猛.基于凹腔的超声速燃烧火焰稳定技术研究[D].国防科学技术大学博士论文.2005
    [77]孙明波.超声速来流稳焰凹腔的流动及火焰稳定机制研究[D].国防科学技术大学博士论文.2008
    [78]潘余.双模态超燃冲压发动机试验与数值仿真研究[D].国防科学技术大学博士论文.2004
    [79]刘欧子.双模态冲压发动机燃烧室碳氢燃料凹槽火焰稳定性研究[D].西北工业大学博士论文.2006
    [80]A.D. Gardner, A. Paull, T.J. Mcintyre. Upstream Porthole injection in a 2-D scramjet model[J]. Shock Waves.2002(11)
    [81]B. Parent, J. P. Sislian. Turbulent Hypervelocity Fuel/Air Mixing By Cantilevered Ramp Injectiors[R]. AIAA 2001-1888
    [82]Jean Pascal Sislian, Bernard Parent. Hypervelocity Fuel/Air Mixing in a Shcramjet Inlet[R]. AIAA 2002-5212
    [83]Viacheslav A. Vinogradov, Yuri M. Shikhman, et al. Experimental Research of Pre-Injected Methane Combustion in High Speed Subsonic Flow[R]. AIAA 2003-6940
    [84]Thomas E. Schwartzentruber Jean P. Sislian. Suppression of Premature Ignition in the Pre-mixed Inlet flow of A Schramjet[R]. AIAA 2003-5187.
    [85]V. L. Semenov, O. N. Romankov, Dave Van Wie. The Investigation of operation domain of strut fuel feed system for model scramjet combustor[R]. AIAA 98-1514
    [86]Jason C. Doster, Paul I. King, Mark R. Gruber et al. Pylon Fuel Injector Design for a Scramjet Combustor[R]. AIAA 2007-5404
    [87]Charles R. McClinton, Marvin G. Torrence, Paul B, Goodemm et al. Nonreactive Mixing Study of a Scramjet swept-strut fuel injector[R]. NASA TN D-8069.
    [88]陈立红,顾洪斌,张新宇.支板凹腔一体化超燃冲压发动机实验研究[J].工程热物理学报.2007,28(4)
    [89]Griffin Y. Anderson, Patricia G. Reugon, Paul B. Gooderum et al. Experimental Investigation of a swept-strut fuel-injector concept for scramjet application[R]. NASA TN D-8454.
    [90]D.M. Bushnell. Hypervelocity Scramjet Mixing Enhancement[J]. Journal of Propulsion and Power. 2005,11(5)
    [91]S. ASO, Y. YAMANE, K. UMII, K. TOKUNAGA, et al. A Study on Supersinic Mixing Flowfield with Swept Ramp Injectors[R]. AIAA 97-0397.
    [92]T. M. Abdel-Aalam, S. N. Tiwari, S. K. Chaturvedi, et al. Mixing and Combustion in Scramjet Combustor with Raised and Relieved Ramp[R]. AIAA 2000-3709.
    [93]M. D. Payne, J. W. Chrissis, E. A. Pohl, R.D.W. Bowersox et al.OPTIMIZING SCRAMJET FUEL INJECTION ARRAY DESIGN[R]. AIAA 99-2251
    [94]K. Hirano, A. Matsuo, T. Kouchi et al. New Injector Geometry for Penetration Enhancement of Perpendicular Jet into Supersonic Flow[R]. AIAA 2007-5028
    [95]Peter Grossman, Luca Maddalena.Wall Injectors for High Mach Number Scramjet[R]. AIAA 2006-4682
    [96]M. Gruber, J. Donbar, T. Jackson et al. Performance of an Aerodynamic Ramp Fuel Injector in a Scramjet Combustor[R]. AIAA 2000-3708.
    [97]Luca Maddalena, Theresa L. Campioli, Joseph A. Schetz. Experimental and Computational Investigation of an Aeroramp Injector in a Mach Number Four Cross Flow[R]. AIAA 2005-3235
    [98]Wei Baoxi, Xu Xu, Yan Minglei, Shi Xinxing,Yang Yang. Study on intefrated aeroramp injector/Gas pilot flame in a supersonic combustor[J]. Journal of Propulsion and Power.2012,28(3)
    [99]Cody D. Anderson and Joseph A. Schetz. Liquid-Fuel Aeroramp Injector for Scramjet[J]. Journal of Propulsion and Power.2005,21(2)
    [100]Manoj Sharma, V Rishikesh,U.S.P Shet et al.Enhancement of Fuel-Air Mixing in Supersonic Flow by Wall-Mounted Opposed Cavities[R].ISABE-2005-1112.
    [101]丁猛,余勇,梁剑寒,刘卫东,王振国.碳氢燃料超燃冲压发动机点火技术实验[J].推进技术.2004,25(6)
    [102]Lance S. Jacobsen. An Integrated Aerodynamic-Ramp-Injector/Plasma-Torch-Igniter for Supersonic Combustion Applications with Hydrocarbon Fuels[D]. Virginia polytechnic institute and state university doctoral thises.2001
    [103]Aristides M. Bonanos. Scramjet operability range studies ofn a integrated aerodynamic-ramp-injector/plasma-torch igniter with hydrogen and hydrocarbon fuels[D]. Virginia polytechnic institute and state university doctoral thises.2005
    [104]Junya Watanabe, Naoyuki Abe, Kenichi Takita. Effect of a Rearward-Facing Step on Plasma Ignition in Supersonic Flow[J]. Journal of Spacecraft and Rockets.2009,46(3)
    [105]C. Gruenig, V. Avrashkov, F. Mayinger. Self-Ignition and Supersonic Reaction of Pylon-Injected Hydrogen Fuel[J]. Journal of Propulsion and Power.2000,16(1)
    [106]K.-Y. Hsu, C. Carter, J. Crafton, M. Gruber, J. Donbar et al. Fuel Distribution About A Cavity Flameholder in Supersonic Flow[R]. AIAA 2000-3585
    [107]Mark Gruber, Jeffrey Donbar, Kevin Jackson, et al. Newly Developed Direct-Connect High-Enthalpy Supersonic Combustion Research Facility[J]. JOURNAL OF PROPULSION AND POWER.2001,17(6)
    [108]T. Mathur, K.-C. Lin, P. Kennedy. Liquid JP-7 Combustion in a Scramjet Combustor[R]. AIAA-2000-3581,2000
    [109]J. Donbar, O. Powell, M. Gruber, et al. Post-test Analysis of Flush-wall Fuel Injection Experiments In a Scramjet Combustor[R]. AIAA 2001-3197
    [110]Viacheslav A. Vinogradov, Yuri M. Shikhman, et al. Experimental Research of Pre-Injected Methane Combustion in High Speed Subsonic Flow[R]. AIAA 2003-6940
    [111]Vigor Yang, Jian Li, Jeong Yeol Choi, Kuo-Cheng Lin. Ignition Transient in an Ethylene Fueled Scramjet Engine with Air Throtteling Part I:Non-Reacting flow Development and Mixing[R]. AIAA 2010-409
    [112]Vigor Yang, Jian Li, Jeong Yeol Choi, Kuo-Cheng Lin. Ignition Transient in an Ethylene Fueled Scramjet Engine with Air Throtteling Part II:Ignition and Flame Development[R]. AIAA 2010-410
    [113]Wang Dian,Song Wenyan, Li Jianping, Cai Yuanhu. Investigation of Hydrocarbon-fuel ignition and combustion in scramjet combustor[J]. Journal of Solid Rocket Technology.2008,31(5)
    [114]Sun, Y. Y, Man, Z. Y, Luo, X. S. et al. A Fundamental Study for Supersonic Combustion of Hydrocarbon Fuel[R]. AIAA 2001-0522.
    [115]司徒明.碳氢燃料超燃研究与应用[J].流体力试验与测量.2000,14
    [116]K.-C.Lin, G.-J.Tam, K. R. Jackson, D.R.Eklund, T. A. Jackson. Characterization of Shock Train Structures inside Constant-Area Isolators Of Model Scramjet Combustor[R]. AIAA 2006-816
    [117]K.-C.Lin, G.-J.Tam, D. R. Eklund, K. R. Jackson, T. A. Jackson. Effects of Temperature and Heat Transfer on Shock Train Structures inside Constant-Area Isolators[R]. AIAA 2006-817
    [118]Kuo-Cheng Lin, Chung-Jen Tam. Fueling Study on Scramjet Operability Enhancement[R]. AIAA 2009-5116
    [119]MacKenzie J. Collatz, Mark R. Gruber, Dell T. Olmstead et al.Dual Cavity Scramjet Operability and Performance Study[R].AIAA 2009-5030.
    [120]王兰,邢建文,郑忠华,乐嘉陵.超燃冲压发动机内流性能的一维评估[J].推进技术.2008,29(6)
    [121]张鹏,俞刚.超燃燃烧室一维流场分析模型的研究[J].流体力学实验与测量.2003,17(1)
    [122]路艳红,凌文辉等.双模态超燃燃烧室计算[J].推进技术.1999,20(5)
    [123]刘敬华,刘陵等.超音速燃烧室性能非定常准一维流数值模拟[J].推进技术.1998,19(1)
    [124]杨顺华.碳氢燃料超燃冲压发动机数值研究[D].中国空气动力研究与发展中心博士论文.2006,P10-P35
    [125]Rodriguez C G, White J A, Riggins D W. Three-Dimensional Effects in Modeling of Dual-Mode Scramjets[R]. AIAA 2000-3704
    [126]P.K. Tretyakov. The study of supersonic combustion for a Scramjet, experimentation, modeling and computation in flow[J]. Turbulence and Combustion.1996,1
    [127]C. G.. Rodrigurz and W. F. O'bien. One-dimensional steady model for straight- and reverse-flow gas-turbine combustors[R]. AIAA 97-0289
    [128]Ryan P. Starkey and Mark J. Lewis. Sensitivity of hydrocarbon combustion modeling for hypersonic missile design[R]. AIAA 2000-3312
    [129]Timothy F. O'Brien, M. J. Lewis. RBCC engine-airframe integration on an osculating conewaverider vehicle[R].AIAA 2000-3823
    [130]傅维标,卫景彬.燃烧物理学基础[M].机械工业出版社.1981,P120-P145
    [131]傅维镳,张永廉,王清安.燃烧学[M].高等教育出版社.1987,P76-P95
    [132]刘陵,刘敬华,张榛,唐明.超音速燃烧与超音速燃烧冲压发动机[M].西北工业大学出版社.1993
    [133]张弯洲,乐嘉陵,田野,杨顺华,邓维鑫,程文明.超燃发动机混合效率评估方法探讨.航空动力学报.2012,27(9)
    [134]James F. Driscoll and Chadwick C. Rasmussen. Correlation and Analysis of Blowout Limits of Flames in High-Speed Airflows. Journal of Propulsion and Power.2005,21(6)
    [135]Jian Li, Fuhua Ma, Vigor Yang, et al. A Comprehensive Study of Ignition Transient in an Ethylene-Fueled Scramjet Combustor. AIAA 2007-5025

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700