长白山哈泥泥炭地七种苔藓植物种间联结和生态位研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在哈泥泥炭地调查苔藓典型生境,测量各环境因子和分析泥炭样品的基础上,采用方差比率法、χ2检验、Spearman秩相关和Jaccard指数分析方法对优势植物种间联结进行定量分析,同时采用Levins和Pianka公式和典范对应分析对七种苔藓的生态位及其分异进行研究,初步探讨七种苔藓种间联结与生态位关系。主要结论如下:
     (1)种间联结结果表明,中位泥炭藓(Sphagnum magellanicum)、锈色泥炭藓(S.fuscum)和桧叶金发藓(Polytrichum juniperinum)之间呈显著正关联,且在开阔地中与小叶杜鹃(Rhododendrom parvifolium)、鹿药(Smilacina japonica)、狭叶杜香(Ledum palustre var. ngustum)的种间联结表现明显一致性,大泥炭藓(S. palustre)与小叶杜鹃、鹿药、狭叶杜香的关联性同这3种苔藓相反。喙叶泥炭藓(S. fallax)和尖叶泥炭藓(S. capilifolium)与其他苔藓主要呈负关联,沼泽皱缩藓(Aulacomnium palustre)与其他苔藓种间联结呈中性;
     (2)两种生境下的种间联结对比分析发现,郁闭度是影响沼泽植被分布的重要环境因子之一,本文中,在同种生境下重要值大的物种之间通常出现正联结,在两种生境下重要值差异大的物种之间一般表现为负联结;
     (3)苔藓在各种环境因子梯度上的平均生态位宽度排序为:沼泽皱缩藓(0.677)>喙叶泥炭藓(0.670)>中位泥炭藓(0.661)>尖叶泥炭藓(0.651)=桧叶金发藓(0.651)>大泥炭藓(0.547)>锈色泥炭藓(0.512),7种苔藓中锈色泥炭藓倾向于是特化种,沼泽皱缩藓倾向于是泛化种;
     (4)各种环境因子的平均重叠值中,以电导率平均重叠值最高(0.9205);三个平均重叠值低的环境因子依次为:水位埋深(0.625)、乔木郁闭度(0.7144)和pH (0.7553),多数苔藓沿着这三个环境因子梯度上产生生态位分异,水位埋深、pH和乔木郁闭度是影响苔藓分布主要环境因子;少数苔藓种对在所有环境因子梯度上重叠值高,反映苔藓之间存在水分协作关系,同时提供了苔藓种间竞争的间接证据,但需要通过移植试验验证。
     (5)典范对应分析准确地描述苔藓生境分异,七种苔藓中,尖叶泥炭藓、大泥炭藓在乔木郁闭度和pH梯度上,以及喙叶泥炭藓和沼泽皱缩藓在水位埋深梯度上,与其他苔藓分异明显。锈色泥炭藓、桧叶金发藓、中位泥炭藓在各个环境梯度上生态位比较相似;
     (6)苔藓之间种间正关联同时表现为一个或几个生态位维度上高的重叠值,负关联则比较复杂,由于生境差异导致的负关联种对生态位重叠值低,而由于种间资源竞争引起的负关联种对生态位重叠值高。
Based on investigation of typical bryophytes habitats, measurement of environmental factors and analysis of peat samples, the inter-specific relationships were analyzed in the methods including variance ratio,χ2-test , Spearman rank correlation and Jaccard index, and the niches and their differentiations of seven species of bryophyte were researched in the methods including Levins and Pianka formulas and canonical correspondence analysis (CCA). Furthermore, the relationships of interspecific association and niche were discussed. The main conclusions are as following:
     1)The interspecific association of Sphagnum magellanicum, S. fuscum, and Polytrichum juniperinum was positive, and in open area the interspecific associations were similar between the three bryophyte species and three vascular plants including Rhododendrom parvifolium, Smilacina japonica, Ledum palustre var. ngustum. The interspecific association of S. palustre and the three vascular plants was opposite to the three bryophytes’. The interspecific association of S. fallax and other bryophytes was negative, and S. capilifolium was as same as it. The interspecific association of Aulacomnium palustre and other bryophytes was neutral.
     2) Through comparison of interspecific association in two habitats, I found that canopy density was one of the most important environmental factors influencing vegetation distribution pattern in Hani Peatland. In this paper, ins open area (or forest edge) habitat the species of higher significant values appeared positive association and the species which have great difference of significant values in two different habitats appeared negative association.
     3) The niche breadths of the seven bryophytes decreased in the order of A. palustre(0.677)>S. fallax(0.670)>S. magellanicum(0.661)>S. capilifolium(0.651)=P. juniperinum(0.651)>S. palustre(0.547)>S. fuscum(0.512). S. fuscum was niche-specific specie, while A. palustre was niche-general specie.
     4)From the overall mean overlap values of environmental variables, the maximum occured in electrical conductivity gradient(0.9205) and the three low values occurred in depth to water table (0.625), tree coverage (0.7144)and pH of surface water (0.7553) gradients. Bryophytes niches mostly segregated along these three gradients. Depth to water table, tree coverage and pH were three most important environmental factors influencing distribution of bryophytes. Some bryophytes species-pairs with high overlap values in all niche dimensions lived in similar habitats in order to increase water use efficiency. The high overlap values could offer indirect evidence of competition, however, accurate results could be verified by transplant experiments.
     5)Canonical Correspondence Analysis accurately described the differentiation of bryophyte habitats. The niche differentiations were more obvious among S. capilifolium, S.palustre in tree coverage and pH gradients, S. fallax and A. palustre in depth to water table gradient. The niches in all environmental dimensions were similar among S.fuscum, P. juniperinum, S. magellanicum.
     6) The positive association went with large niche overlap in one or more niche dimension. The reasons of negative association were complicated. Firstly, when the habitats of species were different, in this case the niche overlap of the species was low. Secondly, while negative association may be caused by resource competition, the niche overlap of the species is high.
引文
[1] Hubalek Z. Coefficients of association and similarity, based on binary(presence-absence) data: an evaluation [J]. Biological Reviews, 1982, 57(4):669-689.
    [2] Cox GW (蒋有绪译). 普通生态学实验手册[M].北京:科学出版社, 1979, 106-109.
    [3] 张金屯. 数量生态学[M].北京:科学出版社,2004,98-109.
    [4] Clymo R S, Hayward P M. The ecology of Sphagnum. In Bryophyte ecology[M]. Edited by A J E Smith. Chapman and Hall.London, 1982, 229-289.
    [5] Andrus R E. Some aspects of Sphagnum ecology [J]. Canadian Journal of Botany, 1986, 64: 416-426.
    [6] Rydin H. Mechanisms of interactions among Sphagnum species along water-level gradients. Advances in Bryology ,1993,5:153-185.
    [7] Forbes S A. On the local distribution of certain Illinois fishes: an essay in statistical ecology [J].Bulletin of the Illinois State Laboratory of Natural History, 1907,7(2):237-303.
    [8] Fisher R A. The relation between the number of species and the number of individuals in a random sample of an animal population [J]. Journal of Animal Ecology, 1943, 12(1): 42-58.
    [9] Krylov V V. Species association in plankton [J]. Oceanology, 1968, 8(2):243-251.
    [10] Yates F E. Integration of the whole organism-a foundation for a throretical biology. Challenging biological problem: direction towards their solution [M]. Oxford University Press New York, 1972.
    [11] Kershaw K A. The measurement of partial interspecific association [J]. Journal of Ecology, 1960, 48(2): 233-242.
    [12] Cole, L C. The measurement of partial interspecific association [J]. Ecology, 1957, 38(2):226-233.
    [13] Pielou, E C.2k contingency tables in ecology [J]. Journal of Theoretical Biology, 1972, 34(2):337-352.
    [14] Schluter, D. A variance test for detecting species association with some example application [J]. Ecology, 1984, 65: 998-1005.
    [15] Soro A, Sundberg S , Rydin H. Species diversity, niche metrics and species associations in harvested and undisturbed bogs [J]. Journal of Vegetation Science, 1999, 10(4): 549-560.
    [16] 王伯荪,彭少麟. 鼎湖山森林群落分析-物种联结性[J]. 中山大学学报(自然科学版),1983(4).
    [17] 黄宝强,罗毅波,于飞海等.四川黄龙沟森林植被中兰科植物群落优势种种间联结和相关分析[J].植物生态学报,2007,31(5): 865-872.
    [18] 郭逍宇,张金屯,高洪文.白羊草群落优势种种间联结性的分析[J].草业学报,2003,12(2):14-19 .
    [19] 朱桂林,杨洪琴,卫智军等. 短花针茅草原群落种间联结研究[J]. 草业学报,2004,13(5):33-38.
    [20] 郭水良,曹同. 长白山森林生态系统腐生木生苔藓植物生态分布的 DCA 排序研究[J]. 应用生态学报,1999,10(4): 399-403
    [21] 郭水良,曹同. 长白山森林生态系统树附生苔藓植物分布与环境关系研究[J]. 生态学报,2000,20(6):922-931
    [22] Abrams P. Some comments on measuring niche overlap [J]. Ecology. 1980,61(1):44-49
    [23] Clymo R S. The growth of Sphagnum: methods of measurement [J]. Journal of Ecology, 1970, 58: 13-49.
    [24] Vitt D H, Slack N G. Niche diversification of sphagnum relative to environmental factors in northern Minnesota peatlands [J]. Canadian Journal of Botany, 1984, 62:1409-1430.
    [25] Mcqueen C B. Niche breadth and overlap of four species of Sphagnum in Southern Ecuador [J]. The Bryologist, 1991, 94 (1):39-43.
    [26] Gignac L D. Niche structure, resource partitioning and species interactions of mire bryophytes relatives to climatic and ecological gradients in western Canada [J]. The Bryologist, 1992, 95(4): 406-418.
    [27] Bragazza L. Sphagnum niche diversification in two oligotrophic mires in the southern Alps of Italy [J]. The Bryologist, 1997, 100(4):507-515.
    [28] 王刚,赵松岭,张鹏飞 等.关于生态位定义的探讨及生态位重叠计测公式改进的研究[J].生态学报,1984,4(2):119-127.
    [29] 王正文,王德利. 大兴安岭森林草原过渡带白桦及主要草本植物生态位关系的研究[J]. 应用生态学报,2001,12(5):677-681.
    [30] 王德利,张宝田,祝玲.东北草地羊草种群生态位的研究[J]. 东北师范大学学报(自然科学版),1995,1:86-92.
    [31] 郎惠卿,赵魁义,陈克林等.中国湿地植被[M].北京:科学出版社,1999,1-4,200-212.
    [32] 郭水良,曹同. 应用典范对应分析探讨长白山金发藓科植物的生态位分化[J]. 木本植物研究, 2000, 20(3): 286-293
    [33] 陈怡,曹同,宋国元等.上海市地面藓类植物生态位研究[J]. 应用生态学报,2005,16(1):39-43
    [34] 徐晟冲,曹同,于晶等. 上海市树附生苔藓植物生态位[J]. 生态学杂志,2006,25(11):1338-1343
    [35] 徐波,朱永清,王幼芳. 崇明岛地面生藓类植物生态位[J]. 生态学杂志,2007, 26(10): 1542-1548.
    [36] 刘艳,曹同,王剑等. 杭州市区土生苔藓植物分布与生态因子的关系[J]. 应用生态学报,2008,19(4):775-781.
    [37] 柴岫. 泥炭地学[M]. 北京:科学出版社,1990.1-7.
    [38] 周纪纶,郑师章,杨持. 植物种群生态学[M]. 北京:高等教育出版社,1993,215-231.
    [39] 王伯荪,李鸣光,彭少麟. 植物种群学[M]. 广州:广东高等教育出版社,1993,132-148,198-209.
    [40] 卜兆君. 东北贫营养泥炭沼泽几种植物的种群生态学研究 [D]: 博士学位论文. 长春:东北师范大学,2004.
    [41] 乔石英. 长白山西麓哈尼泥炭沼泽初探[J]. 地理科学,1993,13(3):279-287.
    [42] 卜兆君,杨允菲,代丹等. 长白山泥炭沼泽桧叶金发藓种群的年龄结构与生长分析[J]. 应用生态学报,2005,16(1):44-48.
    [43] 杜荣骞. 生物统计学[M]. 北京:高等教育出版社;海德堡:施普林格出版社,1999,262-265.
    [44] Jaccard P. Distribution de la flore alpine dans le Bassin des. Dranses dt dans quelques voisines [J].Bull Soc Vaud Sci Nat,1901,37:241-272.
    [45] Levins R. Evolution in changing environments: some theoretical explorations [J]. Princeton: Princeton University Press,1968.
    [46] Pianka E R. Niche overlap and diffuse competition [J]. Proceedings of the National Academy of Science ,1974,71:2141-2145.
    [47] 唐启义,冯明光 等. DPS 数据处理系统[M].北京:科学出版社,2006,445-449.
    [48] Ter Braak C J F. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis [J]. Ecology, 1986, 67:1167-1179.
    [49] Ter Braak C J F, Smilauer P. CANOCO Reference Manual and CanoDraw for Windows User's Guide: Software for Canonical Community Ordination (version 4.5). Microcomputer Power (Ithaca NY, USA), 2002, 500 pp.
    [50] 陆健健,何文珊,童春富等. 湿地生态学[M]. 北京:高等教育出版社,2006,110-127
    [51] Glaser, P H, Janssens, J A, Siegel, D I. The response of vegetation to chemical and hydrological gradients in the lost river peatland, Northern Minnesota [J]. Journal of Ecology, 1990, 78:1021-1048.
    [52] 邓贤兰,刘玉成,吴杨. 井冈山自然保护区栲属群落优势种群的种间联结关系研究[J]. 植物生态学报,2003,27(4):531-536.
    [53] 胡乐理,闫伯前,刘琪璟等. 南方丘陵人工林林下植物种间关系分析[J]. 应用生态学报,2005,16(11):2019-2024.
    [54] 王琳,张金屯. 历山山地草甸优势种的种间联结和相关分析[J]. 西北植物学报,2004,24(8):1435-1440.
    [55] 杜道林,刘玉成,李睿. 缙云山亚热带栲树林优势种群间联结性研究[J]. 植物生态学报,1995,19(2):149-157.
    [56] Greig-smith P. Quantitative Plant Ecology [M]. 3rd ed. Blackwell Scientific publications,1983.
    [57] Kershaw K A, Looney J H. Quantitative and dynamic plant ecology [M]. 3rd ed. Oxford: Blackwell Scientific Publications, 1985, 105-128 .
    [58] Green B H. Factors influencing the spatial and temporal distribution of Sphagnum imbricatum hornsch.Ex Russ. In the British Isles [J]. Journal of Ecology, 1968, 56 (1):47-58.
    [59] Rydin H. Competition and niche separation in Sphagnum [J]. Canadian Journal of Botany,1986, 64:1817-1824.
    [60] Rydin H. Competition between Sphagnum species under controlled conditions [J]. The bryologist, 1997, 100(3): 302-307.
    [61] Kooijman A M, Bakker C. Species replacement in the bryophyte layer in mires: the role of water type, nutrient supply and interspecific interactions [J]. Journal of Ecology, 1995, 83(1):1-8
    [62] Mulligan R C. Bryophyte community structure in a high boreal poor fen in Northern Alberta, Canada [D]: Doctor Thesis. Alberta: University of Alberta, 2002.
    [63] 尚玉昌. 普通生态学[M].北京:北京大学出版社,2002,284-295.
    [64] 王正文,祝廷成. 松嫩草原主要草本植物的生态位关系及其对水淹干扰的响应[J].草业学报,2004,13(3):27-33.
    [65] Hurlbert S H. The measurement of niche overlap and some relatives. Ecology, 59(1),1978, 67-77.
    [66] Mahdi A, Law R, Wills A J. Large niche overlaps among coexisting plant species in a limestone grassland community [J]. Journal of Ecology, 1989, 77(2): 386-400
    [67] Li Y, Glime J M, Liao C. Responses of two interacting Sphagnum species to water level [J]. Journal of Bryology, 1992,17: 59-70.
    [68] Clymo R S. The growth of sphagnum: some effects of the environment [J]. Journal of Ecology, 1973, 61: 849-869.
    [69] 孙中伟,赵士洞. 长白山北坡椴树阔叶红松林群落木本植物种间联结性与相关性研究[J]. 应用生态学报,1996(7):1-5.
    [70] 李新荣. 俄罗斯平原针阔混交林群落的灌木层植物种间相关研究[J]. 生态学报,1999,19(1):55 -60.
    [71] 郭志华,卓正大,陈洁等. 庐山常绿阔叶、落叶阔叶混交林乔木种群种间联结性研究[J]. 植物生态学报,1997, 21(5):424-432.
    [72] Slivertown J W. The distribution of plants in limestone pavement: tests of species interaction and niche seperation against null hypotheses[J]. Journal of Ecology, 1983, 71(3): 819-828.
    [73] 张继义,赵哈林,张铜会等. 科尔沁沙地植物群落恢复演替系列种群生态位动态特征[J]. 生态学报,2003,23(12):2741-2746.
    [74] 杨一川,庄平,黎系荣. 峨眉山峨嵋栲、华木荷群落研究[J]. 植物生态学报,1994,18(2):105-120.
    [75] 彭李菁. 鼎湖山气候顶级群落种间联结变化[J]. 生态学报,2006,26(11):3732-3739.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700