非生物胁迫对三种泥炭藓生长与植物相互作用的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
泥炭藓(Sphagnum)是特殊的苔藓植物,常为泥炭地的优势植物和主要造炭物种,在全球碳循环中发挥重要作用。全球气候变化可创造高温、干旱、水淹等诸多胁迫,对泥炭藓的生长和相互作用产生重要影响。在高山,干旱区,盐沼,温带草原等环境严酷地区的研究发现,许多目标植物的生长受益于邻体植物,然而迄今,该方面鲜有苔藓植物特别是泥炭地苔藓植物的研究报道。
     本研究以长白山哈泥泥炭地的丘上种大泥炭藓(Sphagnum palustre)和尖叶泥炭藓(Sphagnum capillifolium)以及丘间种喙叶泥炭藓(Sphagnum fallax)为材料,按照自然密度构建单种群与两两组合混合群落,在干旱,淹水和两种遮阴胁迫条件下进行培养,尝试研究泥炭藓生长和相互作用对胁迫的响应,在泥炭地苔藓植物中验证胁迫梯度假说。研究得出主要结果和结论如下:
     (1)水分是影响泥炭藓生长最为重要的因子之一。干旱对3种泥炭藓生长的抑制作用远大于邻体对泥炭藓生长的影响,使高度,生物量,分枝数降低。丘间种喙叶泥炭藓受到邻体影响均为抑制作用。丘上种尖叶泥炭藓在干旱胁迫时未受邻体影响。
     (2)淹水处理时,种间相互作用对泥炭藓生长影响更为强烈。研究表明喙叶泥炭藓可适应于多水环境,同时邻体促进或对其无影响。丘上种尖叶泥炭藓也受到水淹的抑制作用。丘间种喙叶泥炭藓对两种丘上种的高度,生物量,分枝数都有显著的抑制作用。甚至尖叶泥炭藓也抑制大泥炭藓的生长。
     (3)泥炭藓高度生长对遮阴响应最为显著,遮阴对生物量影响较小。开阔地生境的丘上种大泥炭藓对光的敏感性要高于丘间种和林缘生境的丘上种。遮阴条件下两种邻体对大泥炭藓均为竞争作用。喙叶泥炭藓在遮阴条件下具有最强的竞争能力,使邻体的生物量和分枝数下降。物种间的光竞争使丘上种尖叶泥炭藓在混合群中容重下降。
     (4)不同的非生物胁迫对泥炭藓水平扩展的影响存在显著的差异。水平扩展与分枝生长之间具有一定的联系。在大泥炭藓和尖叶泥炭藓的混合群落中,在遮阴条件下,主要受遮阴的影响,大泥炭藓减少尖叶泥炭藓的盖度。在干旱条件下,却主要受邻体影响,尖叶泥炭藓减少大泥炭藓盖度。遮阴导致泥炭藓的疏松生长。
     (5)本研究中,水分和遮阴胁迫仅降低单种群尖叶泥炭藓的C含量。在混合群中,邻体在所有胁迫条件下使尖叶泥炭藓的C含量升高。在对照条件下,邻体抑制泥炭藓C积累。在所有胁迫下,邻体与处理交互作用显著,说明在胁迫条件下邻体可促进3种泥炭藓对泥炭地的碳输入。
     (6)随水分和遮阴增加,泥炭藓头状枝N含量表现出增加趋势。群落中的泥炭藓N含量主要受胁迫影响,邻体对其影响不大。
     (7)与N含量变化相反,随水分增加C/N呈下降趋势。淹水和深遮阴使群落中的泥炭藓C/N下降。浅遮阴影响下的C/N要显著高于深遮阴下的C/N,说明少量维管植物可造成泥炭藓C/N增加,有利于泥炭藓碳积累。淹水、遮阴与干旱发生时,与尖叶泥炭藓为邻的喙叶泥炭藓C/N分别增大和减少,使泥炭地碳积累向着两个相反的方向进行。
     (8)本研究中,仅喙叶泥炭藓受到邻体的正相互作用,为(+,-)的种间关系,无互利共生与偏利共生关系,更多为单方向的竞争(-,0)关系。由此可见,本研究不支持胁迫梯度假说,即植物相互作用未沿着胁迫梯度由竞争转向正相互作用。泥炭藓表现出的相互作用的净结果与泥炭藓物种的竞争响应能力和胁迫忍耐能力有重要关系。
Being one group of special bryophytes, Sphagnum usually is the dominant plant and major carbon manufacturer in peatlands. It plays an important role in global carbon cycle. Global change made an important impact on Sphagnum growth and plant-plant interaction. There are many studies on alpine areas, arid environment, salt marshes mires, temperate grassland and other environment stress areas, finding that the target with neighbor is better than targets without neighboring plants. There were few studies with bryophytes, especially the report with peatland bryophytes so far.
     In this study, I chose three Sphagnum species including one hollow specie S. fallax and two hummock species S. capillifolium and S. palustre as materials. Mono-culture and mix-culture communities were built in natural density to study the effects of drought, flooding and shading stresses on growth and plant-plant interaction between Sphagnum species. The main results and conclusions are as follows:
     (1) Water is one of the most important factors to impact the growth of Sphagnum. Drought stress depressed the growth of three species more than effects of neighbors, resulting in a decline of height, biomass and branch shoots. The hollow specie S. fallax was depressed by neighbors under drought. hummock specie S. capillifolium was seldom affected by neighbors.
     (2) Interspecies interaction were more significant under flooding stress. S. fallax was able to adept to flooding stress, and benefited from neighbors or no effects. The growth of S. palustre was depressed not only by flooding stress but also by neighbors. S. capillifolium was depressed by flooding stress. S. fallax depressed the height, biomass and branch shoots of the two hummock species significantly. Even S. capillifolium depressed the growth of S. palustre.
     (3) The height of the three sphagna had most significant response on shade, having feeble effect on biomass. Open-mire hummock was more sensitive than the other two species from hollow and forest edge. And the two species competed with S. palustre. S. fallax was the strongest competitor under shade, depressing the biomass and branch shoots of its neighbors. Competing for light between species made the capacity of S. capillifolium declined.
     (4) The coverage horizontal expansion were significantly different in different mixture conmunities and treatments. S. palustre mix-cultured with S. capillifolium, under shade, were mainly affected by shade, S. palustre coverage increased at the expense of the coverage expansion of S. capillifolium. under shade stress, Sphagna were mainly affected by neighbors, the coverage S. capillifolium expanded at the expense of the coverage of S. palustre. The shade resulted in a loose growth of Sphagnum.
     (5) In this study, water and shading stress only significantly reduced C concentration of mono-cultural S. capillifolium. In mix-cultured, the neighborhood increased C concentration of S. capillifolium under all stress. Under the control treatment, the C concentration was depressed by neighbors. There were significant interaction between neighborhood and all the stress treatments, indicating that the neighbors promote C input under stress in peatlands.
     (6) N concentration increased along water and shade level. N concentration of Sphagnum capitulum in mix-cultured were mainly affected by stress, not by neighbors.
     (7) The C/N is decreasing along the water increasing which is opposite to the N concentration. Flooding and deep shade depressed the C/N. The C/N under shallow shade is higher than deep shade, indicating that shading by modest vascular plant was benefit to carbon accumulation. When flooding, shade and drought stress occurs, the C/N of S. fallax mix-cultured with S. capillifolium changed along two opposite directions.
     (8) In this study, positive interaction was showed when other Sphagnum species as neighbor of S. fallax, with a interspecific interaction (+,-) and no mutulism and commensalism was found. Most plant-plant interactions are competition (-,0) . Hence, this study did not support Stress Gradient Hypothesis (SGH), namely plant-plant interaction did not change from competition to positive interaction along stress gradients. Sphagnum-Sphagnum interaction is related to ability of competition response and tolerant ability of stress in Sphagnum.
引文
[1] Aksenova A A , Blinnikov V G, Onipchenko M S. Plant interactions in alpine tundra: 13 years of experimental removal of dominant species[J]. Ecoscience, 1998, 5: 258-270 .
    [2] Aldous A R. Nitrogen retention by Sphagnum mosses:responses to atmospheric nitrogen deposition and drought[J]. Can J Bot, 2002a, 80: 721–731.
    [3] Aldous A R. Nitrogen translocation in Sphagnum mosses: effects of atmospheric nitrogen deposition[J]. New Phytol, 2002b, 156: 241–253.
    [4] Alm J, Schulman L, Walden J, et al. Carbon balance of a boreal bog during a year with an exceptionally dry summer[J]. Ecology, 1999, 80: 161–74.
    [5] Annika K J, Heinjo J D. Effects of simulated shade on growth, number of branches and biomass in Hylocomium splendens and Racomitrium lanuginosum[J]. Lindbergia, 2006, 30: 117-124.
    [6] Belyea L R. Separating the effects of litter quality and microenvironment on decomposition rates in a patterned peatland[J]. Oikos, 1996, 77 (3): 529-539.
    [7] Berendse F, Van Breemen N, Rydin H , et al. Raised atmospheric CO2 levels and increased N deposition cause shifts in plant species composition and production in Sphagnum bogs[J]. Global Change Biology, 2001, 7 (5): 591-598.
    [8] Bertness M D, Callaway R M. Positive interactions in communities[J]. Trends Ecol Evol, 1994, 9: 191-193.
    [9] Bertness M D, Ewanchuk P J. Latitudinal and climate-driven variation in the strength and nature of biological interactions in New England salt marshes[J]. Oecologia, 2002, 132: 392–401.
    [10] Bombonato L, Siffi C, Gerdol R. Variations in the foliar nutrient content of mire plants: effects of growth-form based grouping and habitat [J]. Plant Ecol , 2010, 211: 235–251.
    [11] Bonnett, S.A.F. Biogeochemical Implications of Plant-soil Interactions in Peatland Ecosystems[D]. 2005,Ph. D. thesis, University of Wales, Bangor.
    [12] Bonnett S A F, Ostle N, Freemen C. Short-term effect of deep shade and enhanced nitrogen supply on Sphagnum capillifolium morphophysiology[J]. Plant Ecology, 2010, 207 (2): 347-358.
    [13] Bragazza L. Sphagnum niche diversification in two oligotrophic mires in the southern Alps of Italy[J]. Bryologist, 1997, 100 (4): 507-515.
    [14] Bragazza L, Tahvanainen T, Kutnar L, et al. Nutritional constraints in ombrotrophic Sphagnum plants under increasing atmospheric nitrogen depositions in Europe[J]. New Phytologist, 2004, 163: 609–616.
    [15] Bragazza L, Freeman C, Jones T, et al. Atmospheric nitrogen deposition promotes carbon loss from peat bogs[J]. Proceedings of the National Academy of Sciences of the United States, 2006, 103: 19386–19389.
    [16] Bragazza L, Siffi C, Iacumin P, Gerdol R. Mass loss and nutrient release during litter decay in peatland: the role of microbial adaptability to litter chemistry[J]. Soil Biol Biochem, 2007, 39: 257–67.
    [17] Breeuwer A , Heijmans M M P D, Robroek BJM, et al. The effect of temperature on growth and competition between Sphagnum species [J]. Oecologia, 2008, 156 (1): 155-167.
    [18] Bruno J F, John J, Stachowicz J J, et al. Inclusion of facilitation into ecologicaltheory[J]. Trends in Ecology and Evolution, 2003, 18 (3): 119-125.
    [19] Bubier J L, Moore T R, Bledzki L A. Effects of nutrient addition on vegetation and carbon cycling in an ombrotrophic bog[J]. Global Change Biology, 2007, 13 (6): 1168-1186.
    [20] Callaghan T V, Carlsson B ?, Jónsdóttir I S, et al. Clonal plants and environmental change: Introduction to the proceedings and summary[J]. Oikos, 1992, 63: 341-347.
    [21] Callaway R M, Nadkarni N M, Mahall B E. Facilitation and interference of Quercus douglasii on understory productivity in central California[J]. Ecology, 1991, 72 (4): 1484-1499.
    [22] Callaway R M. Positive interactions among plants[J]. Botanical Review, 1995, 61 (4):306-349.
    [23] Callaway R M, Pugnaire F I. Facilitation in plant communities[M]. Handbook of functional plant ecology , 1999, 623-648.
    [24] Callaway R M and 12 others. Positive interactions among alpine plants increase with stress[J]. Nature, 2002, 417: 844–888.
    [25] Callaway R M, Pennings S C , Richards C L. Phenotypic plasticity and interactions among plants[J]. Ecology, 2003, 84 (5): 1115-1128.
    [26] Callaway R.M, Mahall B E. Plant ecology: Family roots[J]. Nature, 2007, 448 (7150) : 145-147.
    [27] Clymo R S, Hayward P M. The ecology of Sphagnum[J]. Bryophyte ecology, 1982, 229–289.
    [28] Choler P, Richard michalet &raganm callaway. Facilitation and competition on gradients in alpine plant connubities[J]. Ecology, 2001, 82 (12): 3295-3308.
    [29] Crum H, Planisek S. Peatlands and Sphagnum[M]. the university of Michigan Pres. 1992.
    [30] Dalby D H. The growth of Eucladium verticillatum in a poorly illuminated cave[J]. Rev. Bryol Lichénol, 1966, 34: 929-930.
    [31] Dorrepaal E, Cornelissen J H C, Aerts R, et al. Are growth forms consistent predictors of leaf litter quality and decomposability across peatlands along a latitudinal gradient[J]. Ecol, 2005, 93:817–28.
    [32] Dormann C F. Competition hierarchy, transitivity and diversity-productivity relationships:The role of positive interactions[J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98: 6704-6708.
    [33] Dormann C F, Brooker R W. Facilitation and competition in the high Arctic the importance of the experimental approach[J]. Acta Oecologica, 2002, 23: 297-301.
    [34] Dormann C F. Competition hierarchy, transitivity and additivity: Investigating the effect of fertilisation on plant-plant interactions using three common bryophytes[J]. Plant Ecology, 2007, 191 (2): 171-184.
    [35] Cousens R. Aspects of the design and interpretation of competition(interference) experiments.WeedTechnology, 1991,5: 664~673.
    [36] Evans J R. Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia,1989, 78: 9–19.
    [37] Lappalainen E. Global Peat Resources[M]. Finland :International Peat Society of Finland. 1996.
    [38] Folland C K, Karl T R, Christy J R, et al. Climate Change [M]. The Scientific Basis Cambridge: Cambridge Univiversity Press , 2001, 99-181.
    [39] Francisco I, Pugnaire, Maria T L. Changes in plant interactions along a gradient of environmental stress[J]. OIKOS, 2001, 93: 42-49.
    [40] Francez A J, Loiseau P. Devenir de l'azote mineral dans une tourbiere a Sphagnum fallax Klinggr. et Carex rostrata Stokes du Massif central (France). [The fate of mineral nitrogen from peat (Sphagnum fallax Klinggr. and Carex rostrata Stokes) of the Massif central (France) [J]. Can. J. Bot, 1999, 77: 1136-1143.
    [41] Fuentes E R., Otaiza R D, Alliende M C, et al. Shrub clumps of the Chilean matorral vegetation: structure and possible maintenance mechanisms[J]. Oecologia, 1984, 62: 405-411.
    [42] Glime J M. Bryophyte Ecology. Volume 1. Physiological Ecology. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. 2007, http://www.bryoecol.mtu.edu/.
    [43] Goldberg D E, Rajaniemi T, Gurevitch J. et al. Empirical approaches to quantifying interaction intensity: Competition and facilitation along productivity gradients[J]. Ecology, 1999, 80 (4): 1118-1131.
    [44] Greenlee J T, Callaway R M. Abiotic stress and the relative importance of interference and facilitation in montane bunchgrass communities in western Montana[J]. Am Nat. 1996, 148: 386–396.
    [45] Grime J P. Plant strategies and vegetation processes[J]. Wiley. 1979.
    [46] Gunnarsson U, Granberg G, Nilsson M. Growth,production and interspecific competition in Sphagnum: effects of temperature, nitrogen and sulphur treatments on a boreal mire[J]. New Phytologist, 2004, 163: 349–359.
    [47] Gerdol R, Petraglia A, Bragazza L, et al. Nitrogen deposition interacts with climate in affecting production and decomposition rates in Sphagnum mosses[J]. Global Change Biology, 2007, 13: 1810–1821.
    [48] Hacker S D, Gaines S D. Some implications of direct positive interactions for community species diversity[J]. Ecology, 1997, 78:1990–2003.
    [49] Hall D O, Rao K K. Photosynthesis [M]. Cambridge University Press. 1999.
    [50] Heijmans M D, Herman klees, Frank Berendse. Competition between Sphagnum magellanicum and Eriophrum angustigolum as affected by raised CO2 and increased N deposition[J]. Oikos, 2002, 97:415-425.
    [51] Hobbie S E. Temperature and plant species control over litter decomposition in Alaskan tundra[J]. Ecol Monogr, 1996, 66: 503–22.
    [52] IPCC. Land use , Land-use Change , and Forestry[R] . Cambridge and New York : Cambridge University Press , 2000.
    [53] Keddy P A, Twolan-Strutt L, Wisheu I C. Competitive effect and response ranking in 20 wetland plants:are they consistent across three environments[J]. Ecol, 1994, 82:635-643.
    [54] Keddy P A., Gaudet C, Fraser L H. Effects of low and high nutrients on the competitive hierarchy of 26 shoreline plants[J]. Ecol, 2000, 88: 413-423.
    [55] ?kland R H, ?kland T. Population biology of the clonal moss Hylocomium splendens in Norwegian boreal spruce forestⅡEffect of density[J]. Journal of Ecology, 1996, 84: 63-69.
    [56] Lappalainen E. Global Peat Resources[ M ]. Finland :International Peat Society of Finland. 1996.
    [57] Li Y, Glime J M, Liao C. Responses of two interacting Sphagnum species to water level[J]. Journal of Bryology, 1992, 17: 59-70.
    [58] Li J, Liu Y, Cao T, et al. A comparative study on ecophysiological characteristics of the two overwintering host mosses of gallaphids[J]. Nova Hedw, 1999, 68: 233-240.
    [59] Liancourt P, Callaway R M, Michalet R. Stress tolerance and competitive and competitive-response ability determine the outcome of biotic interactions [J]. Ecology, 2005, 86(6): 1611-1618.
    [60] Limpens J, Berendse F. How litter quality affects mass loss and N loss from decomposing Sphagnum[J]. Oikos, 2003, 103:537–547.
    [61] Limpens J, Heijmans M M P D. Swift recovery of Sphagnum nutrient concentrations after excess supply[J]. Oecologia, 2008, 157:153–161.
    [62] Lutke F T. Competition between two Sphagnum species under different deposition levels[J]. Journal Bryol, 1992, 17: 71-80.
    [63] Maestre F T, Bautista S, Cortina J, et al. Potential for using facilitation by grasses to establish shrubs on a semiarid degraded steppe[J]. Ecological Applications, 2001, 11 (6): 1641-1655.
    [64] Maestre F T, Cortina J. Do positive interactions increase with abiotic stress? A test from a semi-arid steppe[J]. biology, 2004, 271: 331-333.
    [65] Maestre F T, Ragan M. Callaway R M, et al. Refining the stress-gradient hypothesis for competition and facilitation in plant communities[J]. Journal of Ecology, 2009, 97: 199-205.
    [66] Maestre F T, Bautista S, Cortina J. Positive, negative and net effects in grass–shrub interactions in Mediterranean semi-arid grasslands[J]. Ecology, 2003, 84: 3186–3197.
    [67] Malson K, Rydin H. Competitive hierarchy,but no competitive exclusions in experiments with rich fen bryophytes[J]. Journal of Bryology, 2009, 31: 41-45.
    [68] Malmer N, Svensson B M, Wallén B, et al. Interaction Between Sphagnum Mosses and Field Layer Vascular Plants in the Development of Peat-forming Systems[J]. Folia Geobotanica et Phytotaxonomica, 1994, 29: 483-496.
    [69] Malkinson D and Katja T R. What does the stress-gradient hypothesis predict? Resolving the discrepancies[J]. Oikos, 2010, 119: 1546–1552.
    [70] Mark R & Harper J L. Interference in dune annuls: spatial pattern and neighbourhood effects. Journalof Ecology, 1977, 65: 345~363.
    [71] Marshall D R & Jain S K, interference in pure and mixed populations of Avena fatua and A. barbata. Journal of Ecology, 1969, 57: 251~270.
    [72] McClaran M P, Bartolome J P. Effect of Quercus douglasii (Fagaceae) on herbaceous understorey along a rainfall gradient[J]. Madrono, 1989, 36: 141-153.
    [73] Moore T R., Basiliko N. Decomposition in boreal peatlands[J]. Boreal peatland ecosystems, 2006, 125–144.
    [74] Mulligan R C, Gignac L D. Bryophyte community structure in a boreal poor fen: reciprocal transplants[J]. Botany, 2001, 79(4): 404–411.
    [75] Proctor M C F, Tuba Z. Poikilohydry and homoihydry: antithesis or spectrum of possibilities [J]. New Phytol, 2002, 156: 327–349.
    [76] Pugnaire F I, Lfzaro R. Seedbank and under-storey species composition in a semiarid environment: the effect of shrub age and rainfall[J]. Ann Bot, 2000, 86: 807-813.
    [77] Reich P B, Walters M B, Ellsworth D S. From tropics to tundra: global convergence in plant functioning[J]. Proc NatlAcad Sci,1998, 94: 13730–13734.
    [78] Rincone E, Grime J P. An analysis of seasonal patterns of bryophyte growt h in a natural habitat [J]. Journal of Ecology , 1989, 7 : 447-455.
    [79] Riutta T, Laine J, Tuittila E S. Sensitivity of CO2 exchange of fen ecosystem components to water level variation [J]. Ecosystems, 2007, 10: 718–733.
    [80] Rochefort L. Sphagnum-a keystone genus in habitat restoration [J ] . The Bryologist , 2000,103: 503 - 508.
    [81] Robroek B J M, Limpens J, Breeuwer A, et al. Interspecific competition between Sphagnum Mosses at different water tables[J]. Functional Ecology, 2007, 21: 805–812.
    [82] Roughgarden J, Iwasa Y. Dynamics of a metapopulation with space-limited subpopulations [J]. Theoretical Population Biology, 1986, 29 (2): 235-261.
    [83] Rydin H. Competition and niche separation in Sphagnum [J]. Can.J.Bot, 1986, 64:1817-1824.
    [84] Rydin H, Clymo R S. Transport of carbon and phosphorus compounds about Sphagnum[J]. Proc R Soc Lond, 1989, 237: 63–84.
    [85] Rydin H. Interspecific competition among Sphagnum mosses on a raised bog[J]. Oikos, 1993, 66: 413-423.
    [86] Rydin H, Jeglum J. The Biology of Peatlands [M]. Great Britain: Oxford University press. 2006, 176 -180.
    [87] Rydin H. Competion between Sphagnum species under controlled conditions[J]. Bryologist, 1997, 100 (3): 302-307.
    [88] Schipperges B, Rydin H. Response of photosynthesis of Sphagnum species from contrasting microhabitats to tissue water content and repeated desiccation[J]. New Phytologist,1998, 140: 677–684.
    [89] Schouten M G C, Streefkerk J G, Molen V D P C. Impact of climatic change on bog ecosystems, withspecial reference to sub-oceanic raised bogs [J]. Wetlands Ecology and Management , 1992, 2: 55–61.
    [90] Silander J A, Antonovics J. Analysis of interspecific competition in coastal plant community-a perturbation experiment[J]. Nature, 1982, 298: 557-560.
    [91] Sonesson M, Carlsson B ?, Callaghan T V, et al. Growth of two peat forming mosses in subarctic mires: species interactions and effects of simulated climate change [J]. Oikos, 2002, 99: 151-160.
    [92] Spitale D. Switch between competition and facilitation within a seasonal scale at colony level in bryophytes [J]. Oecologia, 2009, 160: 471–482.
    [93] Strack M,Price J S. Moisture controls on carbon dioxide dynamics of peat-Sphagnum monoliths[J]. Ecohydrol,2009, 2:34–41.
    [94] StrakováP, Niemi R M, Freeman C. Litter type a?ects the activity of aerobic decomposers in a boreal peatland more than site nutrient and water level regimes[J]. Biogeosciences Discussions,2011, 8:1979-1916.
    [95] Tallis J H. Periodicity of growth in Rhacomitrium lanuginosum [J]. J. Linn. Soc. Bot, 1959, 56: 212-217.
    [96] Tilman D. Plant strategies and the dynamics and struc-ture of plant communities [J]. Princeton University Press. 1988.
    [97] Titus J E, wagner D J , Stephens M D. Conterasting water relations of photosunthesis for two Sphagnum moss [J]. Ecology, 1983, 64(5): 1109-1115.
    [98] Watkinson A R. Density-dependence in single-species population of plant [J]. Journal of Theoretical Biology, 1980, 83: 345-357.
    [99] Zimdahl R L. Weed-Crop Competition: A Review. Corvallis: International Plant Protection Centre, 1980.
    [100]柯勒(K?rner C)著(瑞士);吴宁等译. 2008.高山植物功能生态学[M].北京:科学出版社.
    [101]卜兆君,陈旭,姜丽红等.苔藓植物相互作用的研究进展[J].应用生态学报. 2009,20(2): 460-466.
    [102]丁裕国.探讨灾害规律的理论基础-极端气候事件概率[J].气象与减灾研究.2006,29(1):44-50.
    [103]冯明.气候变化对水文水资源的影响研究[D].硕士学位论文.武汉:武汉大学,2004.
    [104]乔石英.长白山西麓哈尼泥炭沼泽初探[J].地理科学.1993,13(3):279~287 .
    [105]孙强,卜兆君,王升忠等.哈泥贫营养泥炭沼泽毛壁泥炭藓种群密度制约初探[J].湿地科学.2005, 3(2)5:116-120.
    [106]翟盘茂,章国材.气候变化与气象灾害[J].科技导报.2004,(7):11-14.
    [107]郑星星,卜兆君,马进泽等.水位和竞争对三种泥炭藓生长的影响[J].湿地科学. 2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700