土地利用对吉林省东部泥炭地有机碳储量影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以吉林省东部泥炭地为研究对象,参照文献资料、地形图和实地调查,首先确定泥炭地边界,然后根据2001年Landsat ETM+遥感影像,对泥炭地土地利用类型进行解译分析,结合实地调查的泥炭开采情况,分析了泥炭地土地利用现状。依据前人研究结果,估算受干扰前泥炭地有机碳储量、土地利用变化后不同利用类型的有机碳损失量、泥炭开采的有机碳损失量以及土地利用变化后泥炭地有机碳储量。最后,分析土地利用变化对泥炭地有机碳储量的影响,得出以下结论:
    (1)泥炭地分布表现为:富营养泥炭沼泽分布最广,中营养和贫营养泥炭沼泽零星分布;低山盆谷区泥炭沼泽多,熔岩台地中山区和丘陵宽谷区泥炭沼泽相对较少;南老北新。
    (2)受干扰前泥炭储量约为0.63×10~8t,有机碳储量约为0.1905×10~8t。在空间上,从熔岩台地中山区-低山盆谷区-丘陵宽谷区,有机碳储量逐渐减少,体现了由南到北逐渐减少的特点;在时间上,晚全新世泥炭有机碳储量最多,中全新世泥炭次之,早全新世泥炭最少,并且体现了新多老少的特点。
    (3)吉林省东部泥炭地土地利用类型有以下四种:未垦泥炭地、水田、旱田和林地。约13785.48hm2的泥炭地被开垦,占泥炭地总面积的77.43%。泥炭地土地利用以旱田开垦为主,水田次之,未开垦泥炭地再次之,林地最少。现已开采泥炭总量约为55.73×10~4t。
    (4)土地利用对泥炭地有机碳储量的影响主要表现在土地利用类型的变化和泥炭开采两种方式对其的影响。吉林省东部泥炭地现有有机碳储量约为0.1691×10~8t,占受干扰前有机碳储量的88.7%,有机碳损失约214.42×10~4t。其中,泥炭地开垦为旱田的有机碳损失量最大,约123.29×10~4t,占受干扰前有机碳储量的6.5%;开垦为水田的有机碳损失量次之,约为75.45×10~4t,占受干扰前有机碳储量4.0%;再次为泥炭开采造成的有机碳损失,约为17.41×10~4t,占受干扰前有机碳储量0.9%;有机碳损失量最小的是造林,约为6.44×10~4t,占受干扰前有机碳储量0.3%。
This dissertation focuses on the peatland in the eastern part of JiLin province. Accordingto the literatures, topographic maps and field investigation, this paper determines thepeatland's distributing boundary, then carries on an investigation in the land use types ofpeatland by remote sensing interpretation of the landsat ETM+ images acquired in 2001.Based on the investigation in exploitation of peatland, this paper analyses the land usecharacteristics of peatland. Based on previous researches, the paper estimates the organiccarbon storage of the peatland before disturbance , the organic carbon loss of different landuse types after land use changed,the organic carbon loss after exploitation and the organiccarbon storage of peatland after land use changed. At last, this paper analyses the impacts ofland use change on the organic carbon storage of peatland. The conclusions are as follows:
     (1) The features of distribution of peatland: Eutrophy peat mire is widespread, themesotrophy and oligotrophy peat mire distribute sporadically;Peat mire is more in basin andrelatively rare in lava plateau and hilly-gully;The southern peatlands are older than that in thenorthern.
    (2) The reserves of peat is about 0.63 hundred million ton, organic carbon storage is0.1905 hundred million ton. Spatially, the organic carbon storage is decreased form lavaplateau area and basin area to hilly-gully area, from south to north it decreased gradually.Temporally, the organic carbon storage was the maximum in the late Holocene, fewer in themiddle Holocene, and the minimum in the early Holocene. Embodies the characteristics: Thenew peatland is more than the older.
    (3) The land use of the peatland in the eastern part of Jilin Province is categorized intouncultivated peatland, paddy, upland and forestland. There are 77.43% peatlands(approximately 13785.48 hm2) were reclaimed. The majority type of land use was upland,followed by paddy, uncultivated peatland and forestland. The total peat exploited was 557300ton.
     (4) There are two major types of impacts of land use on the peatland's organic carbonstorage: changing the land use patterns and peatland exploiting. The current organic carbonstorage of the peatland in the eastern part of Jilin Province is about 0.1691 hundred millionton (88.7% of the organic carbon storage before disturbance), the organic carbon loss is about2144200 ton. The organic carbon loss is the most serious after peatland have been reclaimedto upland(about 1232900 ton,6.5% of the organic carbon storage before disturbance), thesecond is the organic carbon loss after peatland have been reclaimed to paddy(about 754500
    ton, 4.0% of the organic carbon storage before disturbance), the third is the organic carbonloss after peatland exploitation(about 174100 ton, 0.9% of the organic carbon storage beforedisturbance), The organic carbon loss is the lightest after peatland have been reclaimed toforestland(about 64400 ton, 0.3% of the organic carbon storage before disturbance)
引文
[1]Elser J J,Fagan W F,Denno R F,et al.Nutritional constraints in terrestrial and freshwater food webs [J].Nature,2000,408:578-580.
    [2]Gates D M. Climate change and its biological consequences 1993. Massachusetts : Sinauer Associates Inc.
    [3]Falkowski P,Scholes R J, Boyle E, et al. The Global Carbon Cycle: A test of Our Knowledge of Earth as a System [J]. Science, 2000, 290: 291-296.
    [4]陶发祥,洪业汤,李汉鼎. 泥炭地对全球变化的贡献及对全球变化信息的自然记录[J].矿物岩石地球化通讯,1995,(2):92-94.
    [5]Glenn S et al.Carbon dioxide and methane fluxes from drained peat soils[J]. southern Quebec,Global Biogeochem.Cycles.1993,7:247-257.
    [6]Dixon R K, Brown S , Houghton R A , et al.Carbon pools and flux of global forest ecosystems [J]. Science,1994,263 :185-190.
    [7]Canadell J G,Mooney H A,Baldocchi D D,et al.Carbon metabolism of the terrestrial biosphere: A multitechenique approach for improved understanding[J].Ecosystems,2000,3:115-130.
    [8]杨昕,王明星.陆面碳循环研究中若干问题的评述[J].地球科学进展,2001,16:427-435.
    [9]Cramer W, Kichklighter D W, Bondeau A ,et al. Comparing global models of terrestrial net primary productivity(NPP):Overview and key results[J]. Global Change Biology, 1999,5:1-15.
    [10]Watson R T , Verardo D J. Land-use change and forestry[M]. Cambridge University Press, 2000.
    [11]Woodward F I,Smith T M,Emanuel W R.A global land primary productivity and phytogeography model[J].Global Biogeochemical Cycles,1995,9:471-490.
    [12]汪业勖.陆地碳循环研究中的模型方法[J].应用生态学报,1998,12(6):658-664.
    [13]陈泮勤,黄耀,于贵瑞.地球系统碳循环[M].北京:科学出版社,2004.357-358.
    [14]柴岫.泥炭地学[M].北京:地质出版社,1990.1-189.
    [15]李海涛,沈文清,刘琪璟,等.湿地生态系统的碳循环研究进展[J].江西科学,2003, 21(3):161-167.
    [16]Shurpali N J,S B Verma,J Kim,et al. Carbon dioxide exchange in a peatland ecosystem[J].J Geophys Res,1995,100:14.
    [17]Chair T A,Warner B G,Robarts R,et al. Presentation to impacts of climate change to inland wetlands:a Canadian Perspective[C].Oak Hammock Marsh Conservation Centre , Stonewall, Manitoba,April,1997.
    [18]Laine J.Carbon balance in northem peatlands and global change. Symposium 1999 ,43. Carbon Balance. of Peatlands Sponsor:International Peat Society. http://aswm.org/science/carbon/quebec/sym43.html
    [19]Lafleur P,Annual net ecosystem exchange of CO_2 at a boreal bog. Symposium 1999 ,43. Carbon Balance of Pealands Sponsor : International Peat Society. http://aswm.org/science/carbon/quebec/sym43.html
    [20]杨青,吕宪国.三江平原湿地土壤中碳素向大气的释放研究[C].见:陈宜瑜主编.中国湿地研究.长春:吉林科学技术出版社, 1995. 141-146.
    [21]王德宣,吕宪国,丁维新,等.三江平原沼泽湿地与稻田 CH_4 排放对比研究[J].地理科学,2002,22(4):500-503.
    [22]王德宣,吕宪国,丁维新,等.若尔盖高原沼泽湿地 CH_4 排放研究[J].地球科学进展,2002, 17(6):877-880.
    [23]宋长春,阎百兴,王跃思,等.三江平原沼泽湿地 CO_2 和 CH_4 通量及影响因子[J].科学通报,2003, 48(23):2473-2477.
    [24]孟宪民.湿地碳积累模型及其参数估计[C].见:陈宜瑜主编.中国湿地研究. 长春:吉林科学技术出版社,1995. 73-78.
    [25]Leemans R. Land-use change and terrestrial carbon cycle[J]. IGBP Newsletter , 1999. 37:24-26.
    [26]Houghton R A,Hackler J L,Lawrence K T. The U S carbon budget: contributions from land-use change[J].Science, 1999,285:574-578.
    [27]Houghton R A,Lefkowitz D S,Skole D L. Changes in the landscape of Latin America between 1850 and1985.I.Progessive loss of forests[J].Forest Ecology and Management,1991,38:143-172.
    [28]Melillo J M,Fruci J R,Houghton R A et al.1988.Land-use change in the Soviet Union between 1850 and 1980:causes of a net release of CO_2 to the atmosphere[J].Tellus , 40(B):116-128.
    [29]Janssens V A,Freibauer A,Ciais P,et al. Europe's terrestrial biosphere absorbs 7 to 12% of European anthropogenic CO_2 emissions[J].Science,2003,300:1538-1542.
    [30]Fang J Y,Chen A ,Peng C H,et al. Changes in forest biomass carbon storage in China between 1949 and 1998[J]. Science, 2001,292:2320-2322.
    [31]王绍强,周成虎.中国陆地土壤有机碳库的估算[J].地理研究,1999,18(4):349-356.
    [32]王绍强,周成虎,李克让,等.中国土壤有机碳库及空间分布特征分析[J].地理学报,2000,55(5):533-544.
    [33]王绍强,刘纪远,于贵瑞.中国陆地土壤有机碳蓄积量估算误差分析[J].应用生态学报,2003,14(5):797-802.
    [34]李克让,王绍强,曹明奎.中国植被和土壤碳贮量[J].中国科学(D 辑),2003,33(1):72-80.
    [35]于贵瑞,李海涛,王绍强.全球变化与陆地生态系统碳循环和碳蓄积[M].北京:气象出版社,2003.241-269.
    [36]郎惠卿,祖文辰,金树仁.中国沼泽[M].济南:山东科学技术出版社,1983.37-39.
    [37]地质矿产部.中国泥炭资源报告附表.1988.35-57.
    [38]赵红艳,冷雪天,王升忠.长白山地泥炭分布、沉积速率与全新世气候变化[J].山地学报.2002,20(5):513-518.
    [39]柴岫,郎惠卿,金树仁,等.吉林省东部沼泽类型及其农业利用[C].长白山地理系统论文集,1981.81-92.
    [40]彭贵,张景文,焦文强,等.14C 年龄测定报告(CG)Ⅰ[C].第四纪冰川与第四纪地质论文集,第四集.北京:地质出版社,1987.44-70.
    [41]仇士华,蔡连珍,冼自强,等. 14C 年龄测定报告(CG)Ⅰ[C].第四纪冰川与第四纪地质论文集,第六集.北京:地质出版社, 1990.103-113.
    [42]冷雪天,李汉鼎. 14C 年龄测定报告(CG)Ⅰ[C].第四纪冰川与第四纪地质论文集,第六集.北京:地质出版社. 1990,81-85.
    [43]乔石英.长白山西麓哈尼泥炭沼泽初探[J].地理科学.1993,13(3):279-286.
    [44]Albuquerque A L S , Mozeto A A. C∶N∶P ratios and stable carbon isotope compositions as indicators of organic matter sources in a riverine wetland system (Moji Guacu River , Sao Paulo,Brazil)[J].Wetlands,1997,17:1~9.
    [45]Jean P C, Anver G. The role of the European Union in global change research[J]. AMB IO, 1994, 23(1): 101-103.
    [46]张坤民,何雪炀,温宗国(译).气候保护倡议[M] . 北京: 中国环境科学出版社,2000. 267-288.
    [47]Gorham E. Northern peatlands: Role in the carbon cycle and probable responses to climatic warming[J].Ecological Applications,1991,1: 182-195.
    [48]IPCC. Land use,Land-use Change,and Forestry[R] . Cambridge and New York : Cambridge University Press,2000.
    [49]刘子刚,张坤民.黑龙江省三江平原湿地土壤碳储量变化[J].清华大学学报(自然科学版),2005,45(6):788-791.
    [50]宋长春,王毅勇,阎百兴,等.沼泽湿地垦殖前后土壤水热条件变化与碳、氮动态[J].环境科学,2004,25(3):168-172.
    [51]Houghton R A,Hobbie J E,Melillo J M ,et al. Changes in the carbon content of terrestrial biota and soils between 1860 and 1980:a net release of CO_2 to the atmosphere[J]. Ecological Monogtaphy,1983,53(3):235-262.
    [52]Wang Y. The impact of land use change on C turnover in soils[J]. Global Biogechemical Cycles,1999,13(1):47-57.
    [53]Houghton R A, Davidson E A, Woodwell D M. Missing sinks, feedbacks, and understanding the role of terrestrial ecosystems in the global carbon balance[J]. Global Biogeochemical Cycles, 1998, 12:25-38.
    [54]Shaffer P W, Ernst T L. Distribution of soil organic matter in freshwater emergent/open water wetlands in the Portland, Oregon metropolitan area[J]. Wetlands,1999, 19(3):70-75.
    [55]Schlesinger W H, Andrews J A. Soil respiration and the global carbon cycle[J]. Biogeochemistry, 2000, 48:7-12.
    [56]Raich J W,Tufekcioglu A. Vegetation and soil respiration:correlations[J]. Biogeochemistry,2000,48:71-90.
    [57]Chimner R A,Cooper D J,Parton W J. Influence of water table position on CO_2 emission in a Colorado subalpine fen:an in situ microcosm study[J]. Soil Biology and biogeochemistry,2002,35(3):345-351.
    [58]Knops M H,Tilmal D. Dynamics of soil nitrogen and carbon accumulation for 61 years after agricultural abandonment[J].Ecology,2000,81:88-98.
    [59]李跃林,彭少麟,赵平,等.鹤山几种不同土地利用方式的土壤碳储量研究[J].山地学报,2002,20(5) :548~552.
    [60]Charles T. Garten J r. Soil carbon storage beneath recently established tree plantations in Tennessee and South Carolina ,USA[J].Biomass Bioenerg, 2002,23:93-102.
    [61] Grigal D F ,Berguson W E. Soil carbon changes associated with shortrotation systems [J] . Biol Bioeng, 1998.14(4) : 371-377.
    [62]Paul K I , Polglase P J ,Richards G P. Sensitivity analysis of predicted change in soil carbon Following afforestation [J] .Ecol Model,2003,164:137-152.
    [63]Turner J, Lambert M. Change in organic carbon in forest plantation soils in eastern Australia [J]. For Ecol Man, 2000,133:231-247.
    [64]Ross D J , Tate K R ,Scott N A , et al.Land-use change:effects on soil carbon ,nitrogen and phosphorus pools in three adjacent ecosystems [J].Soil Biol Biochem,1999,31:803-813.
    [65]黄昌勇主编. 土壤学[M]. 北京:中国农业出版社,2001
    [66]徐阳春,沈其荣,冉炜. 长期免耕与施用化肥对土壤微生物生物量碳、氮、磷的影响[J]. 土壤学报,2002,39(1):89-96.
    [67]Aon M A,Sarena D E,Burgos J L,et al. Interaction between gas exchange rates,physical and microbiological properties in soil recently subjected to agriculture[J]. Soil & Tillage Research,2001,60:163-171.
    [68]Rasmussen P,Collins H. Long-term impacts of tillage,fertilizer,and crop residue on soil organic matter in temperate semiarid region[J].Adv in Agronomy,1991,45:93-134.
    [69]Cavazzna J,Volk T. Assessing long-term impacts of increasing crop productivity on atmospheric CO2[J]. Energy Policy,1996,24:403-411.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700