表面修饰纳米TiO_2和SrTiO_3光催化剂的贮氢合金电极的光电特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本工作选择半导体光催化剂TiO_2和SrTiO_3作为研究对象,主要研究了TiO_2和SrTiO_3的制备及其在光充电储氢合金电极中的应用。
     本工作首先研究了采用溶胶—凝胶法制备纳米TiO_2时酸催化剂、水、无水乙醇加入量对溶胶胶凝时间的影响,并对原因进行了解释。不添加HNO_3时Ti(OBu~n)_4直接水解873K下热处理1h,可得到粒径分布均匀、基本上呈球状的纳米TiO_2粉末,添加HNO_3有利于降低相转变温度和缩小两相共存的温度范围。在本实验范围内,起决定胶凝时间作用的主要因素是体系的粘度,水加入量增加大大延长了胶凝时间,同时水加入量不同会影响相变终止温度,且由于锐钛矿和金红石两相的热焓值相差较小而不存在明显的相转变温度。
     研究表明:物理掺杂TiO_2的储氢合金电极不具有光充电性能。PHSA TOhd电极光充电6h后以6mA/g的电流放电时最大容量为14.6mAh/g,充电终止电位最负可达-0.89V(vs.Hg/HgO/6M KOH)。光充电7h后PHSA STO973电极电位能负移至-0.904V,以6mA/g电流放电时其初次容量为5mAh/g。光充电过程可以由两种机理来解释,即光电催化储氢机理和光催化储氢机理。表面覆有TiO_2和SrTiO_3的储氢合金电极均具有可光充电性能。
The preparation of semiconductor photocatalysts, including TiO2 and SrTiO3, and their applications in photochargeable HSA electrodes have been investigated in this paper.
    At first, for the sol-gel method, the effects of the amount of acid catalyst, water and free alcohol in the solution on the time span from sol to gel have been studied, and the reasons have been explained as well. When the precursor was prepared by direct hydrolysis of Ti(OBun)4 without the addition of HNO3 then heat-treatment at 873 K for Ih, the as-prepared spherical TiO2 powder gives the relative uniform size distribution. The addition of HNO3 into solution can finally reduce the temperature of the phase transformation from anatase to rutile and shrink the temperature range of co-existence of two phases. The major factor determining the time span from sol to gel is the viscosity of the system, so the increase in the amount of water can increase the time span from sol to gel and the terminated temperature of phase transformation. The little difference of enthalpy between anatase and rutile phase makes the temperature of phase transformation unnoticeable.
    The experimental results showed that HSA electrodes mixed physically with TiO2 have no apparent photochargeable properties. The maximum discharge capacity of PHSA TOhd electrode is 14.6mAh/g at the discharge current of 6mA/g after photocharging for 6h, and the corresponding final photocharging potential is up to -0.89V(vs.Hg/HgO/6M KOH). Final photocharging potential of PHSA STO973 electrode after photocharging for 7h is up to -0.904V, and its first capacity is 5mAh/g at the discharge current of 6mA/g . The photocharging process can be explained by two kind of mechanisms, namely photoelectrocatalytic hydrogen storage mechanism and photocatalytic hydrogen storage mechanism. HSA electrodes modified with and SrTiO3 photocatalysts exhibit the obvious photochargeability.
引文
[1] Authur J. Nozik, Memming R., Physical chemistry of semiconductor-liquid interfaces[J]. J.Phys. Chem., 1996, 100 (31): 13061-13078
    [2] Akuto K., Sakurai Y. A., Photochargeable metal hydride/air battery[J]. J.Electrochem.Soc., 2001,148 (2): A121-A125
    [3] Masayuki Okuya, Koji Nakade, Shoji Kaneko, Porous TiO_2 thin films synthesized by a spray pyrolysis deposition (SPD) technique and their application to dye-sensitized solar cells[J], Solar Energy Materials and Solar Cells, 2002, 70(4): 425-435
    [4] N.G. Park, J.van de Lagemaat, A.J.Frank., Comparison of dye-sensitized rutile-and anatase-based TiO_2 solar cells[J]. J. Phys. Chem.B,2000,104:8989-8994
    [5] Srivastava O. N., Kam R.K., Misra M. , Semiconductor-septum photoelectrochemical solar cell for hydrogen production[J], Inter. J. Hydrogen Energy,2000,25:495-503
    [6] Shukla P.K., Karn R.K., Singh A.K., Srivastava O.N.,Studies on PV assisted PEC Solar cells for hydrogen production through photoeleetrolysis of water[J]. Inter. J. Hydrogen Energy, 2002, 27: 135-141
    [7] Ichikawa S., Doi R., Photoelectrocatalytic hydrogen production from water on transparent thin film titania of different crystal structures and quantum efficiency characteristics [J].Thin solidfilms,1997, 292:130-134
    [8] Bak T., Nowotny J., Rekas M., C.C.Sorrell, Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects[J]. Inter. J. Hydrogen Energy, 2002, 27: 991-1022
    [9] O'Regon B., Grtzel M., A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO_2 films[J], Nature,1991, 353:737-739
    [10] Ferrere S., Zaban A., Dye sensitization of nanocrystalline Tin oxide by perylene derivatives[J]. J. Phys. Chem. B, 1997, 101: 4490-4493
    [11] Tata N.Rao, Lal Bahadur., Photoelectrochemical studies on dye-sensitized
    
    particulate ZnO thin-film photoelectrode in nonaqueous media[J]. J. Electrochem.Soc., 1997, 144(1): 179-185
    [12] El Zayat M.Y., Saed A.O., El-Dessouki M.S.. Photoelectrochemical properties dye sensitized Zr-doped SrTiO_3 electrodes[J]. Inter. J. Hydrogen Energy, 1998, 23(4): 259-266
    [13] 查全性等.电极过程动力学导论(第三版)[M],北京:科学出版社,2002,418-424
    [14] Hagfeldt A., Gritzel M., Light-induced redox reactions in nanocrystalline systems[J]. Chem. Rev., 1995,95(1): 49-68
    [15] 李树本.太阳能光解水的研究回顾与展望[J].太阳能学报(特刊),1999
    [16] Karn R.K., Misra M., Srivastava O.N., Semiconductor-septum photoelectrochemical cell for solar hydrogen production[J], Inter.J.Hydrogen Energy, 2000,25:407-413
    [17] Grzegorz Milczarek, Atsuo Kasuya, Sergiy Mamykin, T. Arai, K.Shinoda, K.Tohji, Optimization of a two-compartment photoelectrochemical cell for solar hydrogen production[J], Inter.J.Hydrogen Energy,2003,28:919-926,
    [18] Misra M., Pandey R.N., Srivastava O.N., Solar hydrogen production employing n-TiO_2/Ti SC-SEP photoelectrochemical solar cells[J], Inter. J. Hydrogen Energy, 1997,22(5):501-508
    [19] 魏培海,姚发业,王娅娟,MOCVD法制备TiO_2薄膜的光电化学性质[J],山东师大学报(自然科学版),2000,16(2):151~153
    [20] Ichikawa S.. Photoelectrocatalytic production of hydrogen from natural seawater under sunlight[J], Inter.J.Hydrogen Energy, 1997, 22(7): 675-678
    [21] Akikusa J., Shahed U.M.Khan. Photoresponse and ac impedance characterization of n-TiO_2 films during hydrogen and oxygen evolution reaction in an electrochemical cell[J], Inter.J.Hydrogen Energy,1997, 22(9):875-882
    [22] P.R.Mishra, P.K.shukla, A.K.singh, Srivastava O.N., Investigation and optimization of nanostructured TiO_2 photoelectrode in regard to hydrogen production through photoelectrochemical process[J, Inter. J. Hydrogen Energy, 2003, 28:1089-1094
    
    
    [23] Kozuka H., Y. Takahashi, Zhao Gaoling, Toshinobu. Yoto, Preparation and photoelectrochemical properties of porous thin films composed of submicron TiO_2 particles[J],Thin Solid films, 2000, 358: 172-179
    [24] Lubomir S., Weller H., Henglein A.. Photochemistry of semiconductor colloids.22.Electron injection from illuminated CdS into attracted TiO_2 and ZnO particles[J], J. Am. Chem. Soc., 1987,109(22):6632-6635
    [25] 李芳柏,古国榜,李新军,万洪福,WO_3/TiO_2纳米材料的制备及光催化性能[J],物理化学学报,2000,16(11):997-1002
    [26] N.mala Chandrasekharan, Prashant V.Kamat.Improving the photoelectrochemical performance of nano-structured TiO_2 films by adsorption of gold nanoparticles[J]. J.Phys. Chem.B., 2000,104:10851-10857
    [27] Serpone N., Lawless D., Spectroscopic, photoconductivity and photocatalytic studies of TiO_2 colloids: Naked and with the lattice doped with Cr~(3+),Fe~(3+),V~(5+) cations[J], Langmuir, 1994, 10(3): 643-652
    [28] K.B. Dhanalakshmi, S. Latha, S. Anandan, P. Maruthamuthu, Dye sensitized hydrogen evolution from water[J], Inter.J.Hydrogen Energy, 2001, 26:669-674
    [29] Yishhay Diamant, S.G.chen, Ophira Melamed, Arie Zaban, Core-shell nanoporous electrode for dye sensitized solar cells: the effect of the SrTiO_3 shell of the electronic properties of the TiO_2 core[J]. J.Phys. Chem.B., 2003, 107:1977-1981
    [30] 高濂,郑珊,张青红,纳米氧化钛光催化材料及应用,第一版,北京,化学工业出版社,2002,23-52
    [31] Amy L.Linsegibler, Guangqun Lu, John T. Yates Jr., Photoeatalysis on TiO_2 surfaces: principles, mechanisms and selected results[J], Chem.Rev., 1995, 95 (3): 735-758
    [32] K.A.Borotilov, E.V.Orlova, V.I.Petrovsky, sol-gel TiO_2 films on silicon substrates[J].Thin Solid Films, 1992, 207:180-184
    [33] 尹荔松,周歧发,唐新桂,林光明,张进修,溶胶—凝胶法制备纳米TiO_2的胶凝过程机理研究[J],功能材较,1999,30(4):407-409
    
    
    [34] C.H.Shek, J.K.L.Lai, G.M.Lin, Grain growth in nanocrystalline SnO_2 prepared by sol-gel route[J], Nanostructed Materials, 1999,11(7): 887-893
    [35] Wang xuewen, Zhang zhiyong, Zhou shuixian, Preparation of nanocrystalline SrTiO_3 powder in sol-gel process[J], Material Science and Engineering, 2001, B86:29-33
    [36] Ulagaraj Slvaraj, Alamanda V.Prasadarao, Sridhar Komemani, Rustum Roy, Sol-gel processing of oriented SrTiO_3 thin films[J], Material Letters, 1995, 23: 123-127
    [37] Lal Bahadar, Tata N.Rao, Photoelectrochemical investigations on particulate ZnO thin film electrode in non-aqueous solutions[J], Journal of photochemistry and photobiology A: Chemistry, 1995,91:233-240
    [38] 李春燕,李懋强,TiO_2的溶胶—凝胶过程研究[J],硅酸盐学报,1996,24(3):338-341
    [39] 于向阳,程继健,杜永娟,TiO_2光催化薄膜的制备法[J],玻璃与搪瓷,2001,29(1):37-41
    [40] 黄云龙,赵光明,溶剂、催化剂对 TiO_2溶胶—凝胶过程的影响[J],功能材料,1997,28(1):37-41
    [41] 李光明,徐子颉,甘礼华,沙海祥,TiO_2凝胶形成的动力学研究[J],同济大学学报,1999,27(3):347-350
    [42] D. Bersani, G.Antonli, RRLottici, T.Lopez, Raman study of nanosized titania prepared by sol-gel route[J], J.Non-Crystal. Solids, 1998, 232-234:175-181
    [43] 王连洲,范福康,pH值对化学共沉淀法制备SrTiO_3粉料性能的影响[J],硅酸盐通报,1999,1:3-8
    [44] 罗瑾,周静,祖延兵,林仲华,电沉积纳米二氧化钛微粒膜的光电化学性能和表面形貌研究[J],高等学校化学学报,1998,19(9):1484-1487
    [45] 傅正文,孔继烈,秦启宗,田中群,脉冲激光沉积纳米TiO_2薄膜电极的现场光电化学[J],中国科学(B辑),1999,29(6):546-552
    [46] Cheng Humin, Ma Jiming, Zhao Zhenguo, Qi Limin, Hydrothermal preparation of uniform nanosize rutile and anatase particles[J], Chem. Mater., 1995, 7: 663-671
    
    
    [47] Christophe Petit, Patricia Lixon, Maurie-Paule Pileni, In situ synthesis of silver nanocluster in AOT reverse micelles[J], Journal of Physical Chemistry, 1993, 97(49): 12974-12983
    [48] 王笃金,吴瑾光,徐光宪,反胶团或微乳液法制备超细颗粒的研究进展[J],化学通报 ,1995,9:1-5
    [49] 牛新书,许亚杰,张学治,刘国光,蒋凯,微乳液法制备纳米二氧化钛及其光催化活性[J],功能材料,2003,34(5):548-549,552
    [50] 冯琳,楮莹,刘景林,孙闻东,江雷,反胶束体系制备负载型TiO_2纳米光催化剂[J],高等学校化学学报,2002,23(8):1567-1569
    [51] 高伟,吴凤清,罗臻,富菊霞,王德军,徐宝琨,TiO_2晶型与光催化活性关系的研究[J],高等学校化学学报,2001,22(4):660-662
    [52] 张金龙,徐宝胜,安保正一,紫外光照射下丙炔光催化水解反应的研究Ⅰ.纳米二氧化钛光催化剂的性能[J],催化学报,2003,24(11):845-848
    [53] 张青红,高濂,郭景坤,二氧化钛纳米晶的光催化活性研究[J],无机材料学报,2000,15(3):556-560
    [54] 钱新明,宋庆,白玉白,李铁津,汤心颐,董绍俊,汪尔康,CdS敏化对TiO_2纳米薄膜电极光生电荷转移特性的影响[J],高等学校化学学报,2000,1(2):295-297
    [55] 吕红辉,文子,刘艳梅,钱新明,汤心颐,白玉白,表面态对TiO_2纳米晶薄膜光电流的影响[J],吉林大学自然科学学报,2001,2:95-98
    [56] 苏文悦,付志贤,魏可镁,SO_4~(2-)表面修饰对TiO_2及光催化性能的影响[J],物理化学学报,2001,17(1):28-31
    [57] 唐新硕,王新平,金寿松,SO_4~(2-)/ZrO_2型超强酸酸中心形成机理[J],中国科学(B辑),1994,24(6):584-595
    [58] 尹峰,林瑞峰,林原,肖绪瑞,TiO_2表面电子结构及其光催化活性[J],催化学报,1999,20(3):343-346
    [59] 王卫红,刘长生,周爱军,纳米二氧化钛表面包覆改性及光催化性能研究[J],武汉化工学院学报,2003,25(1):69-72
    [60] Bunsho Ohtani, Kunihiro Iwai, Sei-ichi Nishimoto, Shinri Sato, Role of platinum
    
    deposits on titanium(Ⅳ) oxide particles: structural and kinetic analyses of photocatalytic reaction in aqueous alcohol and amino acid solutions[J], J. Phys. Chem. B.,1997,101(17): 3349-3359
    [61] Wonyong Choi, Andreas Termin, Michael R.Hoffmann, The role of metal ion dopants in quantum-sized TiO_2: Correlation between photoreactivity and charge carrier recombination dynamics[J], J. Phys.Chem., 1994, 98(51): 13669-13679
    [62] 陈晓青,杨娟玉,蒋新宇,宋江锋,掺铁TiO_2纳米微粒的制备及光催化性能[J],应用化学,2003,20(1):73-76
    [63] 余家国,赵修建,多孔TiO_2纳米光催化薄膜的制备和微观结构研究[J],无机材料学报,2000,15(2):347-355
    [64] Kato K, Tsuzuki A, Yorii Y, Morphology of thin anatase coatings prepared from alkoxide solutions containing organic polymer, affecting the photocatalytic decomposition of aqueous acetic acid[J], J. Mater Sci., 1995,30: 837-841.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700