鲜切茭白品质劣变机理及控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
茭白作为一种健康、天然的蔬菜,由于其色泽洁白、质地脆嫩、气味清香、味道鲜美和营养丰富等特点,适合加工成鲜切产品,但切分造成的机械损伤极易诱导切割面褐变和木质化等品质劣变现象的发生,商品价值急剧下降。本研究旨在通过对鲜切茭白品质和生理生化特性的探索,揭示其品质劣变机理,科学选择控制其品质劣变的适宜技术。主要研究结果如下:
     1、新鲜茭白含水量为94.46%,游离氨基酸、还原糖含量分别为5.34、16.37 mg.g-1FW,粗脂肪、粗纤维、木质素和可溶性固形物含量分别为0.29%、0.69%、0.37%和4.6%,抗坏血酸含量为27.6μg.g-1FW,其它成分与文献报道相近。综上所述,茭白营养价值较高,作为特色水生蔬菜有进一步发展的潜力。
     鲜切茭白酚提取物定性鉴定结果表明其主要酚类物质是咖啡酸、没食子酸和愈创木酚,分别占茭白酚提取物总量的25.57%、29.54%和22.100%,三种酚均可作为鲜切茭白POD作用的底物,咖啡酸同时也是木质素合成的前体物质,表明鲜切茭白不仅具有很强的褐变潜力,而且具备了快速木质化的物质基础。
     鲜切茭白冷藏期间品质和生理生化指标测定结果显示,与完整去壳茭白相比,切分显著加速了茭白白度(WI)、硬度、pH、总醣、还原糖、抗坏血酸及游离酚含量的下降和失重率、纤维素、木质素含量的增加;呼吸速率显著提高,切分后立即测定即从70.96增加到168 mgCO2.kg-1.h-1,且整个贮藏过程均显著高于完整茭白;O2.-生成速率加快,H2O2和MDA积累显著增多,但相对电导率在整个贮藏过程中与完整茭白差异不明显。此外,切分还显著增加了SOD、POD、APX、PAL、4CL及CAD活性,减小了CEL活性,但对PPO及CAT活性影响不大。相关性分析发现,鲜切茭白贮藏过程中WI值和木质素含量与POD活性均显著相关(r=-0.9130,r=0.9985)。以上结果表明,鲜切茭白品质的快速劣变是一个极其复杂的过程,是多种生理和生化代谢反应共同作用的结果。
     2、研究了鲜切茭白POD粗酶液特性。结果表明,鲜切茭白POD粗酶活力可达34.05 U.mg-1 protein,最适pH值为6.0,pH5.0~7.0范围内较稳定;最适温度为40℃60℃以上温度下稳定性较差;H2O2浓度在12.25 mmol.L-1以下时,POD活力随H2O2浓度增加直线上升(r=0.9786),浓度进一步增加POD活力上升不明显,浓度超过14.71mmol.L-1时对POD活力有抑制作用。鲜切茭白POD对H202的Kin为4.91 mmol.L-1,与不同酚类底物亲和力顺序为焦性没食子酸>咖啡酸>愈创木酚>表儿茶酚>儿茶酚>没食子酸>酪氨酸、肉桂酸,且与愈创木酚结合时表现出最大酶活力。
     经硫酸铵沉淀、Sephadex G-25脱盐和DEAE Sepharose Fast Flow离子交换色谱分离提纯了完整和鲜切茭白POD,得到了一个阳离子组分(PODc)和两个阴离子组分(PODaⅠ和Ⅱ),阳离子组分占总酶活的76%。阳离子组分经Sephadex G-100柱层析纯化后,完整和鲜切茭白POD分别纯化了99.48和61.51倍,回收率分别为9.68%和9.32%。SDS-PAGE图谱显示完整茭白POD为单一条带,根据蛋白质分子量标准计算其分子量为22.1 kDa,而鲜切茭白POD为两条带,分子量分别为20.6、22.1 kDa。Native-PAGE图谱显示完整茭白POD含有2条同工酶谱带(PODc1-2),鲜切茭白POD含有3条同工酶谱带(PODc1-3),表明鲜切诱导了茭白POD同工酶的合成。
     POD的酶学特性研究表明,完整和鲜切茭白POD最适pH值均为6.0,且分别在pH4.0~8.0和pH4.0~9.0范围内较稳定;完整茭白最适温度为40~60℃,鲜切茭白最适温度为40℃;完整和鲜切茭白热稳定性均较差,60℃保温1min残余酶活仅分别为3.87%和2.21%。完整和鲜切茭白POD对H202的Km分别为0.98和1.43 mmol.L-1,对咖啡酸和愈创木酚的Km分别为2.5、3.33 mmol.L-1和6.67、10 mmol.L-1。AA、L-cys和N-AC对鲜切茭白POD抑制效果最好,0.02%浓度可抑制鲜切茭白POD活力99.9%以上NaHSO3对鲜切茭白POD也有较强抑制作用;4-HR对抑制鲜切茭白POD活力有一定效果,但有效浓度较高,0.12%对鲜切茭白POD的抑制为69.3%;而CA、CC和EDTA-2Na在试验浓度下对鲜切茭白POD几乎没有抑制作用。
     3、根据NCBI中已报道的水稻、高粱、玉米和燕麦4种植物POD基因的保守区域设计简并引物,利用PCR和RACE技术对茭白POD基因进行克隆和分析。结果表明,茭白POD基因cDNA全长1318bp,含有621bp的ORF,编码207个氨基酸,推测该蛋白的相对分子质量为22.87 kDa,理论等电点为6.74。经生物学软件分析该基因与禾本科中高粱、水稻和玉米POD的亲缘关系较近,相似度达到80%以上。该基因的克隆与cDNA序列分析为采后茭白中POD的基因工程操作奠定了基础。
     4、研究了化学物质对鲜切茭白品质及生理生化的影响。结果显示,4-HR、CC、AA、N-AC和复合处理均显著抑制了鲜切茭白的褐变;失重率贮藏15天后分别为对照的95.6%、75.3%、74.5%、76.5%和57.9%;硬度分别为入贮时的66.1%、91.0%、80.4%、74.6%和86.7%,对照仅为63.6%;纤维素、木质素含量比入贮时分别增加了25.5%、36.8%、41.3%、17.1%、24.5%和138%、140%、120%、93.5%、75.4%,而对照分别增加了43.3%和149%;AA含量保留率分别为70.5%、75.1%、89.2%、83.3%和82.6%,对照仅保留57.5%;pH值、还原糖及FP含量维持在相对高的水平,呼吸速率、相对电导率及02-和MDA含量维持在相对低的水平;POD活力分别为入贮时的3.07、1.95、1.73、2.01和1.35倍,对照为3.88倍;PAL和PPO活力显著低于对照而CEL、SOD、CAT和APX活力显著高于对照。以上结果表明,试验所选化学物质均能有效延缓鲜切茭白褐变和生理代谢,提高抗氧化酶类活力和活性氧自由基清除能力,最终维持鲜切茭白较好的品质。由于复合处理表现出最好的效果,提示复合处理可用于商业上控制鲜切茭白褐变和维持其品质。
     5、研究了外源植物生长调节剂对鲜切茭白木质化及活性氧代谢的影响。结果表明,GA3、SA及6-BA处理显著抑制了鲜切茭白木质素含量的增加,对纤维素含量也有一定抑制作用,维持相对高的游离酚含量和纤维素酶活力。外源植物生长调节剂处理还抑制了PAL、4CL、CAD及POD活性。GA3处理在贮藏前9天抑制了SOD,APX及CAT活性,导致鲜切茭白O2.-和H2O2的积累增多;SA处理在贮藏显著提高了SOD活性,而对APX及CAT活性影响不明显,从而抑制O2-产生但促进H202的积累;6-BA处理显著提高了SOD,APX及CAT活性,O2-和H2O2的积累减少。以上结果表明GA3、SA及6-BA处理能有效抑制鲜切茭白的木质化,其机制可能主要是由于抑制木质化相关酶PAL、4CL、CAD及POD的活性而不是降低活性氧伤害。
Zizania latifolia (Griseb.) Turcz.ex Stabf, a healthy and natural vegetable, with the characteristics of white color, tender texture, attractive aroma, delicious flavor and rich in nutrients, is very suitable to be processed into fresh-cut product, but mechanical tissue damage induces enzyme activity which results in tissue damage that affects the commercial value of Z. latifolia. This thesis touched the quality, physiological and biochemical property of Z. latifolia after cutting and during refrigerated storage in order to obtain that how the quality, physiological and biochemical of fresh-cut Z. latifolia are changed, what browning and lignification mechanisms are and how we could control them. The main research results are as following:
     1. The fresh Z. latifolia contain 94.49% water, reducing sugar and free amino acid content were 39.6,5.34 mg.g-1FW. Crude fat, crude fiber, lignin and soluble solids contents were 0.29%,0.69%, 0.37% and 4.6%, respectively. Ascorbic acid content of 27.6μg.g-1FW. Other components were similar with the reported. In a word, Z. latifolia had higher nutritional values as a aquicolous vegetable.
     The phenols of fresh Z. latifolia were identified by combination of effect of acid and base, scanning spectrum and high performance liquid chromatography (HPLC). The results showed that the main phenols of Z. latifolia were gallic acid, caffeic acid and guaiacol, which accounted for 25.57%,29.54% and 22.10%, respectively, of the total content of Z. latifolia phenol extracts. All these phenols can be used as substrate for the fresh-cut Z. latifolia POD, while caffeic acid also was the precursor substance of lignin synthesis. These results indicated that fresh-cut Z. latifolia not only have very strong browning potential, but also have the material base of rapid lignification.
     The quality, physiological and biochemical changes of fresh-cut Z. latifolia were investigated. The results showed that fresh-cut significantly promoted the decrease of whiteness index (WI), firmness, pH, total sugar, reducing sugar, ascorbic acid and free phenol contents and the increase of weight loss, cellulose and lignin contents compared with the whole Z. latifolia. The respiratory rate significantly increased from 70.96 to 168 mgCO2.kg-1.h-1 when immediately determined after fresh-cut, and it was constantly higher than the whole Z. latifolia during whole storage time; Fresh-cut accelerated the accumulation of O2-, H2O2 and MDA significantly, while the relative conductivity was no significant difference compared with the whole Z. latifolia. In addition, fresh-cut were also significantly increased the SOD, POD, APX, PAL,4CL and CAD activities and decreased the CEL activity, but no significant difference on PPO and CAT activity between the fresh-cut and the whole Z. latifolia were found. These results indicated that the rapid quality deterioration of fresh-cut Z. latifolia is an extremely complex process, which result from variety of physiological and biochemical metabolic reactions.
     2. The characteristics of the POD in fresh-cut Z. latifolia was investigated. The results showed that the POD activity in fresh-cut Z. latifolia can reach 34.05 U.mg-1 protein. POD had its greatest activity at pH 6.0 and temperature 40.0℃, and lost its activity quickly when pH below 5.0 or temperature above 60℃. The POD activity increased fast when H2O2 was below 12.25 mmol.L-1, and increased a little afterwards, reached the maximum at the H2O3 level of 14.71 mmol.L-1, then decreased. The Km for H2O2 was 4.91 mmol.L-1. The combining capability of POD to various phenolic substrates were in the order of Pyrogallic acid> Caffeic acid> Guaiacol> Epicatechin> Catechol> Gallic acid> Tyrosine, Cinnamic acid. The POD shows the highest activity when combined with Guaiacol.
     POD from whole and fresh-cut Z. latifolia were purified using a combination of (NH4)2SO4 fractionation and anion exchange chromatography, resulting in one cationic (PODc) and two anionic fractions (PODaⅠandⅡ). The cationic fraction, which accounted for 76% of recovered activity, was further purified by gel filtration. The whole and fresh-cut Z. latifolia POD activity were purified 99.48 and 61.51-fold, respectively, and with 9.68% and 9.32% recovery, respectively. The purified whole Z. latifolia POD showed a single protein band while the fresh-cut Z. latifolia POD showed two protein bands on SDS-PAGE. The molecular weight of whole Z. latifolia POD was 22.1 kDa and that of fresh-cut Z. latifolia POD were 20.6 kDa and 22.1 kDa, respectivrly. Native-PAGE showed the purified whole Z. latifolia POD contains two POD isoenzymes (PODc1-2), while the fresh-cut Z. latifolia POD contains three POD isoenzymes (PODc1-3), which indicated that fresh-cut caused the de novo induction of PODc3 in Z. latifolia.
     Both the purified PODs showed optimum pH of 6.0, and they were stable in the pH range 4.0~8.0 and 4.0~9.0, respectively. The optimum temperature for the whole Z. latifolia POD was 40~60℃while for the fresh-cut Z. latifolia POD was 40℃. Both the purified PODs were very thermolabile and retained only 3.87% and 2.21%, respectively, of the activity for 1 min at 60℃. The purified whole and fresh-cut Z. latifolia showed the apparent Km values of 0.98 and 1.43 mmol.L-1, respectively, for H2O2, and of 2.5,3.33 mmol.L-1 and 6.67,10 mmol.L-1, for caffeic acid and guaiacol, respectively. AA, L-cys and N-AC have the best effect on inhibit the activity of fresh-cut Z. latifolia POD, which can inhibit more than 99.9% of the POD activity only at 0.02% concentration; NaHSO3 also has a strong inhibitory effect on fresh-cut Z. latifolia POD; 4-HR has some effect on inhibit the fresh-cut Z. latifolia POD, but a higher effective concentration was needed,0.12% concentration can inhibition 69.3% of the POD activity; However, CA, CC, and EDTA-2Na were no inhibiting effect at the test concentration on fresh-cut Z. latifolia POD.
     3. With degenerated primers designed according to conservative region of peroxidase gene sequence of Oryza sativa, Sorghum bicolor, Zea mays and Avena saliva L. on NCBI, the fragment of POD gene was cloned from Z. latifolia by polymerase chain reaction (PCR) method and the 3' and 5' end by rapid amplification of cDNA end (RACE) strategy. The results showed that the POD cDNA of Z. latifolia was 1 318 bp in length and it has an opening-reading frame (ORF) of 621 bp, which encoded a protein of 207 amino acid residues with molecular weight of 22.87 kDa and theoretical isoelectric point of 6.74. The similarly between the POD of Z. latifolia with that of S. bicolor, O. sativa and Z. mays was over 80%. The cloning and sequence analysis of the POD cDNA gene established base for gene engineering operation of POD from the postharvested Z. latifolia.
     4. The effect of antibrowning agents alone or in combination treatment on physiological, biochemical and quality of fresh-cut Z. latifolia were investigated. The results showed that the 4-HR, CC, AA, N-AC and combination treatments retarded browning of fresh-cut Z. latifolia significantly. After 15 days storage at 1±0.5℃, the weight loss were 95.6%,75.3%,74.5%,76.5% and 57.9%, respectively, of the control. Firmness were 66.1%,91.0%,80.4%,74.6% and 86.7%, respectively, compared to that at the beginning, while it was only 63.6% in the control. Cellulose and lignin contents were increased by 25.5%,36.8%,41.3%,17.1%,24.5% and 138%,140%,120%,93.5%,75.4%, respectively, and them were increased by 43.3% and 149% in the control, respectively. Ascorbic acid retention rate were 70.5%, 75.1%,89.2%,83.3% and 82.6%, respectively, and it was 57.5% in the control. All treatments maintained relatively high pH value, reducing sugar and free phenolic contents and relatively low respiratory rate, relative leakage rate, superoxide anion radical (O2-) and malondialdehyde (MDA) contents. POD activities were 3.07,1.95,1.73,2.01 and 1.35 folds, respectively, compared to that at the beginning, and it was 3.88 fold in the control. These treatments also inhibited activities of PAL and PPO while promoted CEL, SOD, CAT and APX activities compared with the control. The present findings indicate that the tested antibrowning agents could retard physiological metabolism and browning on cut surface, improve antioxidant enzymes activities and free radicals scavenging activities, and therefore maintain a better quality of fresh-cut Z. latifolia during storage at 1℃. Since the combination of antibrowning agents gives even better effect, it is suggested that the combination treatment could be commercially used to control browning and to maintain quality in fresh-cut Z. latifolia.
     5. The effect of exogenous plant growth regulator on reducing lignification in fresh-cut Z. latifolia and the possible mechanisms involved were investigated. The results showed that treatment of Z. latifolia slices with GA3, SA and 6-BA significantly slowed down the increase in lignin and cellulose contents, maintained relatively high free phenol content and cellulase activity. These treatments also inhibited phenylalanine ammonia-lyase (PAL),4-coumarate CoA ligase (4CL), cinnamyl alcohol dehydrogenase (CAD) and peroxidase (POD) activities. GA3 treatment promoted the accumulation of O2 and H2O2 over the first 9 days of storage; SA treatment inhibited the accumulation of O2-throughout storage time but promoted the accumulation of H2O2 over the first 9 days of storage; 6-BA treatment significantly inhibited O2- and H2O2 accumulation during the whole storage time, indicating that diminished oxidative damage is not the major mechanism for reducing lignification in fresh-cut Z. latifolia. These results suggested that GA3, SA and 6-BA treatments can effectively inhibits lignification in fresh-cut Z. latifolia. It is postulated that the control of the lignification by GA3, SA and 6-BA in fresh-cut Z. latifoli is mainly due to inhibited the activities of PAL,4CL, CAD and POD but not diminished the oxidative damage.
引文
[1]Asaeda, T., Siong, K. Dynamics of growth, carbon and nutrient translocation in Zizania latifolia[i]. Ecological Engineering,2008,32(2):156-165.
    [2]刘芳,李云飞.软包装贮藏切片茭白微生物及感官特性研究[J].农业工程学报,2005,21(6):180-183.
    [3]郜海燕,杨剑婷,陈杭君,等.气调小包装对去壳茭白品质的影响[J].中国农业科学,2004,37(12):1990-1994.
    [4]俞小平,陈建明.茭白高效安全生产大全[M].中国农业出版社,2008:1-10.
    [5]李时珍著,黄志杰,胡永年编.本草纲目中药学[M].辽宁科学技术出版社,2006:305.
    [6]谢英彪,颜培增,刘光隆.食物营养与食疗宝典[M].人民军医出版社,2007:237-239.
    [7]Lamikanra, O. Fresh-cut fruits and vegetables:science, technology, and market[M]. CRC Press LLC,2002:4.
    [8]Djioua, T., Charles, F., & Lopez-Lauri, F., et al. Improving the storage of minimally processed mangoes (Mangifera indica L.) by hot water treatments[J]. Postharvest Biology and Technology, 2009,52(2):221-226.
    [9]Corbo, M R., Altieri, C., & D'Amato, D., et al. Effect of temperature on shelf life and microbial population of lightly processed cactus pear fruit [J]. Postharvest Biology and Technology,2004, 31(1):93-104.
    [10]Fonseca, S.C., Oliveira, F.A.R., & Brecht, J.K., et al. Influence of low oxygen and high carbon dioxide on shredded Galega kale quality for development of modified atmosphere packages [J]. Postharvest Biology and Technology,2005,35(3):279-292.
    [11]Aguayo, E., Escalona, V.H., & Artes, F. Effect of cyclic exposure to ozone gas on physicochemical, sensorial and microbial quality of whole and sliced tomatoes [J]. Postharvest Biology and Technology,2006,39(2):169-177.
    [12]胡文忠.鲜切果蔬科学与技术[M].北京:化学工业出版社,2009.
    [13]Rico, D., Martin-Diana, A.B., & Barat, J.M., et al. Extending and measuring the quality of fresh-cut fruit and vegetables:a review[J]. Trends in Food Science & Technology,2007,18(7):373-386.
    [14]Toivonen, P.M.A., Brummell, D.A. Biochemical bases of appearance and texture changes in fresh-cut fruit and vegetables [J]. Postharvest Biology and Technology,2008,48(1):1-14.
    [15]Allende, A., McEvoy, J., & Tao, Y., et al. Antimicrobial effect of acidified sodium chlorite, sodium chlorite, sodium hypochlorite, and citric acid on Escherichia coli O157:H7 and natural microflora of fresh-cut cilantro[J]. Food Control,2009,20(3):230-234.
    [16]Baur, S., Klaiber, R., & Wei, H., et al. Effect of temperature and chlorination of pre-washing water on shelf-life and physiological properties of ready-to-use iceberg lettuce[J]. Innovative Food Science & Emerging Technologies,2005,6(2):171-182.
    [17]Degl' Innocenti, E., Pardossi, A., & Tognoni, F., et al. Physiological basis of sensitivity to enzymatic browning in 'lettuce','escarole' and 'rocket salad' when stored as fresh-cut products[J]. Food Chemistry,2007,104(1):209-215.
    [18]Del Nobile, M.A., Conte, A., & Scrocco, C., et al. New packaging strategies to preserve fresh-cut artichoke quality during refrigerated storage[J]. Innovative Food Science & Emerging Technologies, 2009,10(1):128-133.
    [19]郁志芳,夏志华,陆兆新,等.鲜切甘薯高效化学褐变抑制剂组合的筛选[J].食品科学,2003,24(11):31-34.
    [20]潘永贵,陈维信.鲜切荸荠/莲藕特异性变色机理及其控制研究[D].广州:华南农业大学,2007.
    [21]张立奎,陆兆新,汪宏喜.鲜切生菜在贮藏期间的微生物生长模型[J].食品与发酵工业,2004,30(2):107-110.
    [22]李里特,武龙,辰巳英三.电生功能水用于提高鲜切马铃薯产品品质的试验研究[J].食品科学2005,26(5):139-143.
    [23]Latorre, M.E., Narvaiz, P., & Rojas, A.M., et al. Effects of gamma irradiation on bio-chemical and physico-chemical parameters of fresh-cut red beet (Beta vulgaris L. var. conditiva) root[J]. Journal of Food Engineering,2010,98(2):178-191.
    [24]Kenny, O., O'Beirne, D. Antioxidant phytochemicals in fresh-cut carrot disks as affected by peeling method[J]. Postharvest Biology and Technology,2010,58(3):247-253.
    [25]Du, J., Fu, Y., & Wang, N. Effects of aqueous chlorine dioxide treatment on browning of fresh-cut lotus root[J]. LWT-Food Science and Technology,2009,42(2):654-659.
    [26]Rocculi, P., Galindo, F.G., & Mendoza, F., et al. Effects of the application of anti-browning substances on the metabolic activity and sugar composition of fresh-cut potatoes[J]. Postharvest Biology and Technology 43(1):151-157.
    [27]Perez-Gregorio, M.R., Garcia-Falcon, M.S., & Simal-Gandara, J. Flavonoids changes in fresh-cut onions during storage in different packaging systems [J]. Food Chemistry,2010,124(2):652-658.
    [28]Chisari, M., Todaro, A., & Barbagallo, R.N., et al. Salinity effects on enzymatic browning and antioxidant capacity of fresh-cut baby Romaine lettuce (Lactuca sativa L. cv. Duende)[J]. Food Chemistry,2010,119(4):1502-1506.
    [29]Vina, S.Z., Chaves, A.R. Antioxidant responses in minimally processed celery during refrigerated storage[J]. Food Chemistry,2006,94(1):68-74.
    [30]Chen, Z., Zhu, C., & Zhang, Y., et al. Effects of aqueous chlorine dioxide treatment on enzymatic browning and shelf-life of fresh-cut asparagus lettuce (Lactuca sativa L.)[J]. Postharvest Biology and Technology,2010,58(3):232-238.
    [31]Koide, S., Takeda, J., & Shi, J., et al. Disinfection efficacy of slightly acidic electrolyzed water on fresh cut cabbage[J]. Food Control,2009,20(3):294-297.
    [32]Lopez-Galvez, F., Allende, A., & Selma, M.V., et al. Prevention of Escherichia coli cross-contamination by different commercial sanitizers during washing of fresh-cut lettuce [J]. International Journal of Food Microbiology,2009,133(1-2):167-171.
    [33]Pirovani, M.E., Guemes, D.R, & Piagnetini, A.M. Predictive models for available chlorine depletion and total microbial count reduction during washing of fresh-cut spinach[J]. Journal of Food Science, 2001,66(6):860-864.
    [34]Bennik, M.H.J., Peppelenbos, H.W., & Nguyen-the, C., et al. Microbiology of minimally Processed, Modified atmosphere packaged chicory endive[J]. Postharvest Biology and Technology,1996, 9:209-221.
    [35]Allende, A., McEvoy, J., & Tao, Y, et al. Antimicrobial effect of acidified sodium chlorite, sodium chlorite, sodium hypochlorite, and citric acid on Escherichia coli O157:H7 and natural microflora of fresh-cut cilantro[J]. Food Control,2009,20(3):230-234.
    [36]Del Nobile, M.A., Conte, A., & Scrocco, C., et al. New packaging strategies to preserve fresh-cut artichoke quality during refrigerated storage[J]. Innovative Food Science & Emerging Technologies, 2009,10(1):128-133.
    [37]Lucera, A., Costa, C., & Mastromatteo, M., et al. Fresh-cut broccoli florets shelf-life as affected by packaging film mass transport properties[J]. Journal of Food Engineering,2010,102(2):122-129.
    [38]Cefola, M., Amodio, M.L., Rinaldia, R., et al. Exposure to 1-methylcyclopropene (1-MCP) delays the effects of ethylene on fresh-cut broccoli raab (Brassica rapa L.)[J]. Postharvest Biology and Technology,2010,58(1):29-35.
    [39]Conesa, A., Verlinden, B.E., & Artes-Hernandez, F., et al. Respiration rates of fresh-cut bell peppers under supertamospheric and low oxygen with or without high carbon dioxide." Postharvest Biology and Technology,2007,45(1):81-88.
    [40]Ahmed, L., Martin-Diana, A.B., & Rico, D., et al. The antioxidant properties of whey permeate treated fresh-cut tomatoes[J]. Food Chemistry,2010,124(4):1451-1457.
    [41]Escalona, V.H., Aguayo, E., & Artes, F. Metabolic activity and quality changes of whole and fresh-cut kohlrabi (Brassica oleracea L. gongylodes group) stored under controlled atmospheres [J]. Postharvest Biology and Technology,2006,41 (2):181-190.
    [42]Lucera, A., Costa, C., & Conte, A., et al. Influence of different packaging systems on fresh-cut zucchini (Cucurbita pepo)[J]. Innovative Food Science & Emerging Technologies,2010, 11(2):361-368.
    [43]Oms-Oliu, G., Aguilo-Aguayo, I., & Martin-Belloso, O., et al. Effects of pulsed light treatments on quality and antioxidant properties of fresh-cut mushrooms (Agaricus bisporus)[J]. Postharvest Biology and Technology,2010,56(3):216-222.
    [44]Olmez, H., Kretzschmar, U. Potential alternative disinfection methods for organic fresh-cut industry for minimizing water consumption and environmental impact[J]. LWT-Food Science and Technology,2009,42(3):686-693.
    [45]Saftner, R.A., Lester, G.E. Sensory and analytical characteristics of a novel hybrid muskmelon fruit intended for the fresh-cut industry[J]. Postharvest Biology and Technology,2009,51(3):327-333.
    [46]Ergun, M., Jeong, J., & Huber, D.J., et al. Physiology of fresh-cut'Galia" (Cucumis melo var. reticulatus) from ripe fruit treated with 1-methylcyclopropene[J]. Postharvest Biology and Technology,2007,44(3):286-292.
    [47]Mahajan, P.V., Oliveira, F.A.R., & Montanez, J.C., et al. Development of user-friendly software for design of modified atmosphere packaging for fresh and fresh-cut produce[J]. Innovative Food Science & Emerging Technologies 8(1):84-92.
    [48]Choi, Y.-J., Tomas-Barberan, F.A., & Saltveit, M.E. Wound-induced phenolic accumulation and browning in lettuce (Lactuca sativa L.) leaf tissue is reduced by exposure to n-alcohols[J]. Postharvest Biology and Technology,2005,37(1):47-55.
    [49]Lo, T.Y., Cui, H.Z., Tang, P.W.C., et al. Strength analysis of bamboo by microscopic investigation of bamboo fibre[J]. Construction and Building Materials,2008,22(7):1532-1535.
    [50]Villalobos-Carvajal, R., Hernadez-Munz, P., & Albors, A., et al. Barrier and optical properties of edible hydroxypropyl methylcellulose coatings containing surfactants applied to fresh cut carrot slices[J]. Food Hydrocolloids,2009,23(2):526-535.
    [51]Lopez-Galvez, F., Gil, M.I., Truchado, P., et al. Cross-contamination of fresh-cut lettuce after a short-term exposure during pre-washing cannot be controlled after subsequent washing with chlorine dioxide or sodium hypochlorite[J]. Food Microbiology,2010,27(2):199-204.
    [52]郁志芳,陆兆新.鲜切芦蒿的品质和酶促褐变机理研究[D].南京:南京农业大学,2006.
    [53]Martin-Diana, A.B., Rico, D., & Barry-Ryan, C., et al. Efficacy of steamer jet-injection as alternative to chlorine in fresh-cut lettuce[J]. Postharvest Biology and Technology,2007, 45(1):97-107.
    [54]Gallardo, M., Thompson, R.B., & Rodriguez, J.S. Simulation of transpiration, drainage, N uptake, nitrate leaching, and N uptake concentration in tomato grown in open substrate[J]. Agricultural Water Management,2009,96(12):1773-1784.
    [55]Mahajan, P.V., Oliveira, F.A.R., & Macedo, I. Effect of temperature and humidity on the transpiration rate of the whole mushrooms[J]. Journal of Food Engineering,2008,84(2):281-288.
    [56]罗云波,蔡同一主编.园艺产品贮藏加工学(贮藏篇)[M].北京:中国农业大学出版社,2001.
    [57]Karakurt, Y., Huber, D.J. Activities of several membrane and cell-wall hydrolases, ethylene biosynthetic enzymes, and cell wall polyuronide degradation during low-temperature storage of intact and fresh-cut papaya (Carica papaya) fruit[J]. Postharvest Biology and Technology,2003, 28(2):219-229.
    [58]Shibairo, S.I., Upadhyaya, M.K., & Toivonen, P.M.A., et al. Changes in water potential, osmotic potential, and tissue electrolyte leakage during mass loss in carrots stored under different conditions[J]. Scientia Horticulturae,2002,95(1-2):13-21.
    [59]Beaulieu, J.C., Gorny, J.R. Fresh-cut Fruits. (accessed 1.12.2007),2002.
    [60]Leonardia, C., Guichard, S., & Bertin, N. High vapour pressure deficit influences growth, transpiration and quality of tomato fruits[J]. Scientia Horticulturae,2000,84(3-4):285-296.
    [61]沈应柏,高海波.植株间伤害信息的传递:信号分子及感受机制[J].福建林学院学报,2006,26(1):92-96.
    [62]刘新,张蜀秋.茉莉酸类在伤信号转导中的作用机制[J].植物生理学通讯,2000,36(1):76-82.
    [63]毛国红,郭毅,崔素娟.伤害信号分子及其信号转导[J].西北植物学报,2002,22(6):1504-1511.
    [64]彭丽桃,蒋跃明,杨书珍.适度加工果蔬生理特性及质量控制措施[J].农业工程学报,2002,18(3):178-185.
    [65]Stahlberg, R., Cogrosive, D.J. Comparison of electric and growth responses to excision in cucumber and pea seedlings. Ⅱ. Long-distance effects are caused by the release of xylem pressure[J]. Plant, Cell & Environment,1994,18:33-41.
    [66]周艳超,沈应柏.Ca2+信号在植物细胞适应逆境中的调节作用[J].北方园艺,2010,(3):181-185.
    [67]张和臣,尹伟伦,夏新莉.非生物逆境胁迫下植物钙信号转导的分子机制[J].植物学通报,2007,24(1):114-122.
    [68]Rhodes, J.D., Thain, J.F., & Wildon, D.C. Evidence for physically distinct systemic signaling pathways in the wounded tomato plant[J]. Annals of Botany,1999,84(1):109-116.
    [69]Ryan, C.A. The systemin signaling pathway:differential activation of plant defensive genes[J]. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology,2000, 1477(1/2):112-121.
    [70]Kato, M., Kamo, T., & Wang, R., et al. Wound-induced ethylene synthesis in stem tissue of harvested broccoli and its effect on senescence and ethylene synthesis in broccoli florets[J]. Postharvest Biology and Technology,2002,24(1):69-78.
    [71]Lulai, E.C., Suttle, J.C. The involvement of ethylene in wound-induced suberization of potato tuber (Solarium tuberosum L.):a critical assessmen[J]. Postharvest Biology and Technology,2004, 34(1):105-112.
    [72]Saltveit, M.E. Effect of 1-methylcyclopropene on phenylpropanoid metabolism, the accumulation of phenolic compounds, and browning of whole and fresh-cut 'iceberg' lettuce[J]. Postharvest Biology and Technology,2004,34(1):75-80.
    [73]Aguayo, E., Escalona, V.H., & Artes, F. Effect of cyclic exposure to ozone gas on physicochemical, sensorial and microbial quality of whole and sliced tomatoes[J]. Postharvest Biology and Technology,2006,39(2):169-177.
    [74]Vandekinderen, I., Devlieghere, F., & Meulenaer, B.D., et al. Impact of decontamination agents and a packaging delay on the respiration rate of fresh-cut produce[J]. Postharvest Biology and Technology,2008,49(2):277-282.
    [75]Igual, M., Castell, M.L., & Ortola, M.D., et al. Influence of vacuum impregnation on respiration rate, mechanical and optical properties of cut persimmon[J]. Journal of Food Engineering,2008, 86(3):315-323.
    [76]Castell, M.L., Fito, P.J., & Chiralt, A. Effect of osmotic dehydration and vacuum impregnation on respiration rate of cut strawberries[J]. LWT-Food Science and Technology,2006.39(10):1171-1179.
    [77]de Angelia, A., Thominea, S., & Frachissea, J.-M., et al. Anion channels and transporters in plant cell membranes[J]. FEBS Letters,2007,581(12):2367-2374.
    [78]Ober, D., Kaltenegger, E. Pyrrolizidine alkaloid biosynthesis, evolution of a pathway in plant secondary metabolism[J]. Phytochemistry,2009,70(15-16):1687-1695.
    [79]Schreiner, M., Krumbein, A., & Mewis, I., et al. Short-term and moderate UV-B radiation effects on secondary plant metabolism in different organs of nasturtium (Tropaeolum majus L.)[J]. Innovative Food Science and Emerging Technologies,2009,10(1):93-96.
    [80]Chauhan, O.P., Raju, P.S., & Ravi, N., et al. Effectiveness of ozone in combination with controlled atmosphere on quality characteristics including lignification of carrot sticks [J]. Journal of Food Engineering,2011,102(1):43-48.
    [81]罗自生.采后竹笋木质化与内源激素的关系[J].中国农业科学,2006,39(4):792-797.
    [82]刘尊英,姜微波.绿芦笋木质化过程中细胞壁多糖与酚类物质变化研究[J].食品科学,2005,26(4):95-97.
    [83]Chisari, M., Todaro, A., & Barbagallo, R.N., et al. Salinity effects on enzymatic browning and antioxidant capacity of fresh-cut baby Romaine lettuce (Lactuca sativa L. cv. Duende)[J]. Food Chemistry,2009,119(4):1502-1506.
    [84]Lu, S., Luo, Y., & Turner, E., et al. Efficacy of sodium chlorite as an inhibitor of enzymatic browning in apple slices[J]. Food Chemistry,2007,104(2):824-829.
    [85]Toivonen, P.M.A., Stan, S. The effect of washing on physicochemical changes in packaged, sliced green peppers[J]. International Journal of Food Science & Technology,2004,39(1):43-51.
    [86]Degl'Innocenti, E., Guidi, L., & Paradossi, A., et al. Biochemical study of leaf browning in minimally processed leaves of lettuce (Lactuca sativa L. var. Acephala)[J]. Journal of Agricultural and Food Chemistry,2005,53(26):9980-9984.
    [87]Sgarbi, E., Fornasiero, R.B., & Lins, A.P., et al. Phenol metabolism is differentially affected by ozone in two cell lines from grape (Vitis vinifera L.) leaf[J]. Plant Science,2003,165(3):951-957.
    [88]石碧,狄莹.植物多酚[M].北京:科学出版社,2000.
    [89]吴坤主编.营养与食品卫生学[M].北京:人民卫生出版社,2005.
    [90]Boudet, A.-M. Evolution and current status of research in phenolic compounds[J]. Phytochemistry, 2007,68(22-24):2722-2735.
    [91]Saltveit, M.E., Choi, Y.-J. Aromatic- and di-carboxylates inhibit wound-induced phenolic accumulation in excised lettuce (Lactuca sativa L.) leaf tissue[J]. Postharvest Biology and Technology,2007,46(3):222-229.
    [92]杜传来,郁志芳,董炳发.鲜切慈菇酶促褐变底物的分析确定[J].食品与发酵工业,2006,32(2):46-49.
    [93]郁志芳,彭贵霞,夏志华,等.鲜切山药酶促褐变机理的研究[J].食品科学,2003,24(5):44-49.
    [94]王清章,彭光华,金悠,等.莲藕中酚类物质的提取分析及酶促褐变底物的研究[J].分析科学学报,2008,20(1):38-40.
    [95]Amiot, M.J., Fleuriet, A., & Cheynier, V., et al. Phenolic compounds and oxidative mechanisms in fruit and vegetables [A], In Tomas-barberan, F.A., Robins, R.J. Phytochemistry of fruits and vegetables, New Y ork:Oxford University Press,1997,51-85.
    [96]王佳宏,郁志芳,杜传来.芋艿褐变底物及多酚氧化酶特性研究[J].食品工业科技,2008,29(2):141-145.
    [97]李延清,郁志芳.溧阳白芹贮藏期间品质和生理变化及褐变特性研究[D].南京:南京农业大学,2007.
    [98]Lee, M.Y., Lee, M.K., & Park, I. Inhibitory effect of onion extract on polyphenol oxidase and enzymatic browning of taro (Colocasia antiquorum var. esculenta)[J]. Food Chemistry,2007, 105(2):528-532.
    [99]Zhang, Y., Zhang, R. Study on the mechanism of browning of pomegranate (Punica granafum L. cv. Ganesh) peel in different storage conditions[J]. Agricultural Sciences in China,2008,7(1):65-73.
    [100]Mayer, A.M., Harel, E. Polyphenol oxidases in plants[J]. phytochemistry,1979,18(2):193-215.
    [101]林河通,席玛芳,陈绍军.果实贮藏期间的酶促褐变[J].福州大学学报(自然科学版),2002,30:696-703.
    [102]Tadeo, F.R., Primo-Millo, E. Peroxidase activity changes and lignin deposition during the senescence process in citrus stigmas and styles[J]. Plant Science,1990,68(1):47-56.
    [103]孙谷畴.成熟和褐变荔枝果实呼吸作用和脂氧合酶活性[J].广西植物,1993,13(1):80-83.
    [104]Boudet, A.-M. Lignins and lignification:Selected issues[J]. Plant Physiology and Biochemistry, 2000,38(1-2):81-96.
    [105]聂会忠,崔兴凯,刘长斌,等.木质素生物合成及其在农业中的应用[J].河南农业科学,2007,4:14-17.
    [106]Hodges, D.M., Toivonen, P.M.A. Quality of fresh-cut fruits and vegetables as affected by exposure to abiotic stress. Postharvest Biology and Technology,2008,48(2):155-162.
    [107]Sothornvit, R., Kiatchanapaibul, P. Quality and shelf-life of washed fresh-cut asparagus in modified atmosphere packaging[J]. LWT-Food Science and Technology,2009,42(9):1484-1490.
    [108]Humphreys, J.M., Chapple, C. Rewriting the lignin roadmap[J]. Current Opinion in Plant Biology, 2002,5(3):224-229.
    [109]魏建华,宋艳茹.木质素生物合成途径及调控的研究进展[J].植物学报,2001,43(8):771-779.
    [110]Soliva-Fortuny, R.C., Martin-Belloso, O. New advances in extending the shelf-life of fresh-cut fruits:a review[J]. Trends in Food Science & Technology,2003,14(9):341-353.
    [111]Tournas, V.H. Moulds and yeasts in fresh and minimally processed vegetables, and sprouts[J]. International Journal of Food Microbiology,2005,99(1):71-77.
    [112]Gomez-Lopez, V.M., Ragaert, P., & Ryckeboer, J., et al. Shelf-life of minimally processed cabbage treated with neutral electrolysed oxidising water and stored under equilibrium modified atmosphere[J]. International Journal of Food Microbiology,2007,117(1):91-98.
    [113]Del Aguila, J.S., Sasaki, F.F., & Heiffiga, L.S., et al. Fresh-cut radish using different cut types and storage temperatures[J]. Postharvest Biology and Technology,2006,40(2):149-154.
    [114]Roura, S.I., Pereyra, L., & del Valle, C.E. Phenylalanine ammonia lyase activity in fresh cut lettuce subjected to the combined action of heat mild shocks and chemical additives[J]. LWT-Food Science and Technology,2008,41 (5):919-924.
    [115]Rico, D., Martin-Diana, A.B., & Barry-Ryan, C., et al. Optimisation of steamer jet-injection to extend the shelflife of fresh-cut lettuce[J]. Postharvest Biology and Technology,2008,48(3):431-442.
    [116]Saltveit, M. E., Qin, L. Heating the ends of leaves cut during coring of whole heads of lettuce reduces subsequent phenolic accumulation and tissue browning[J]. Postharvest Biology and Technology,2008,47(2):255-259.
    [117]Lemoine, M.L., Civello, P., Chaves, A., et al. Hot air treatment delays senescence and maintains quality of fresh-cut broccoli florets during refrigerated storage [J]. LWT-Food Science and Technology,2009,42(6):1076-1081.
    [118]Martin-Diana, A.B., Rico, D., & Barry-Ryan, C., et al. Efficacy of steamer jet-injection as alternative to chlorine in fresh-cut lettuce[J]. Postharvest Biology and Technology,2007, 45(1):97-107.
    [119]Tsouvaltzis, P., Gerasopoulos, D., & Siomos, A.S. Effects of base removal and heat treatment on visual and nutritional quality of minimally processed leeks[J]. Postharvest Biology and Technology, 2007,43(1):158-164.
    [120]Conesa, A., Artes-Hernandez, F., & Geysen, S., et al. High oxygen combined with high carbon dioxide improves microbial and sensory quality of fresh-cut peppers[J].Postharvest Biology and Technology,2007,43(2):230-237.
    [121]Angos, I., Virseda, P., & Fernandez, T., et al. Control of respiration and color modification on minimally processed potatoes by means of low and high O2/CO2 atmospheres[J]. Postharvest Biology and Technology,2008,48(3):422-430.
    [122]Babic, I., Watada, A.E. Microbial populations of fresh-cut spinach leaves affected by controlled atmospheres [J]. Postharvest Biology and Technology,1996,9(2):187-193.
    [123]张敏.气调包装对超市常温销售的鲜切芹菜品质影响研究[J].包装工程,2007,28(3):48-50.
    [124]Zhang, L., Lu, Z., & Wang, H. Effect of gamma irradiation on microbial growth and sensory quality of fresh-cut lettuce[J].International Journal of Food Microbiology,2006,106(3):348-351.
    [125]Zhang, L., Lu, Z., & Lu, F., et al. Effect of gamma irradiation on quality-maintaining of fresh-cut lettuce[J]. Food Control,2006,17(3):225-228.
    [126]Foleya, D.M., Dufourb, A., & Rodriguez, L. Reduction of Escherichia coli 0157:H7 in shredded iceberg lettuce by chlorination and gamma irradiation[J]. Radiation Physics and Chemistry,2002, 63(3-6):391-396.
    [127]Selma, M. V., Allende, A., & Lopez-Galvez, F., et al. Disinfection potential of ozone, ultraviolet-C and their combination in wash water for the fresh-cut vegetable industry[J]. Food Microbiology, 2008,25(6):809-814.
    [128]Gomez-Lopez, V.M., Devlieghere, F., & Bonduelle, V, et al. Intense light pulses decontamination of minimally processed vegetables and their shelf-life[J]. International Journal of Food Microbiology,2005,103(1):79-89.
    [129]Koide, S., Takeda, J.-i., & Shi, J., et al. Disinfection efficacy of slightly acidic electrolyzed water on fresh cut cabbage[J]. Food Control,2009,20(3):294-297.
    [130]Abadias, M., Usall, J., & Oliveira, M., et al. Efficacy of neutral electrolyzed water (NEW) for reducing microbial contamination on minimally-processed vegetables [J]. International Journal of Food Microbiology,2008,123(1-2):151-158.
    [131]Selma, M. V., Ibanez, A.M., & Cantwell, M., et al. Reduction by gaseous ozone of Salmonella and microbial flora associated with fresh-cut cantaloupe[J]. Food Microbiology,2008,25(4):558-565.
    [132]Peng, L., Yang, S., & Li, Q., et al. Hydrogen peroxide treatments inhibit the browning of fresh-cut Chinese water chestnut[J]. Postharvest Biology and Technology,2008,47(2):260-266.
    [133]An, J., Zhang, M., & Lu, Q. Changes in some quality indexes in fresh-cut green asparagus pretreated with aqueous ozone and subsequent modified atmosphere packaging[J]. Journal of Food Engineering,2007,78(1):340-344.
    [134]Tapia, M.S., Rojas-Gra, M.A.,& Carmona, A., et al. Use of alginate- and gellan-based coatings for improving barrier, texture and nutritional properties of fresh-cut papaya[J]. Food Hydrocolloids, 2008,22(8):1493-1503.
    [135]Vargas, M., Chiralt, A., Albors, A., et al. Effect of chitosan-based edible coatings applied by vacuum impregnation on quality preservation of fresh-cut carrot[J]. Postharvest Biology and Technology,2009,51(2):263-271.
    [136]Kona, R.P., Qureshi, N., & Pai, J.S. Production of glucose oxidase using Aspergillus niger and corn steep liquor[J]. Bioresource Technology,2001,78(2):123-126.
    [137]Parpinello, G.P., Chinnici, F., & Versari, A., et al. Preliminary Study on Glucose Oxidase-Catalase Enzyme System to Control the Browning of Apple and Pear Purees[J]. Lebensmittel-Wissenschaft und-Technologie,2002,35(3):239-243.
    [138]Pickering, G.J., Heatherbell, D.A., & Barnes, M.F. GC-MS Analysis of reduced-alcohol muller-thurgau wine produced using glucose oxidase-treated juice[J]. Lebensmittel-Wissenschaft und-Technologie,2001,34(2):89-94.
    [139]Allendea, A., Martinez, B., & Selma, V., et al. Growth and bacteriocin production by lactic acid bacteria in vegetable broth and their effectiveness at reducing Listeria monocytogenes in vitro and in fresh-cut lettuce[J].Food Mic robiology,2007,24(7-8):759-766.
    [140]Cong, F., Zhang, Y., & Dong, W. Use of surface coatings with natamycin to improve the storability of Hami melon at ambient temperature[J].Postharvest Biology and Technology,2007,46(1):71-75.
    [141]Iyidogan, N.F., Bayindirli, A. Effect of L-cysteine, kojic acid and 4-hexylresorcinol combination on inhibition of enzymatic browning in Amasya apple juice[J]. Journal of Food Engineering,2004, 62(3):299-304.
    [142]秦国政,田世平,刘海波,等.拮抗菌与病原菌处理对采后桃果实多酚氧化酶、过氧化物酶及苯丙氨酸解氨酶的诱导[J].中国农业科学,2003,36(1):89-93.
    [143]Raybaudi-Massilia, R.M., Mosqueda-Melgar, J., & Sobrino-Lopez, A., et al. Shelf-life extension of fresh-cut'Fuji'apples at different ripeness stages using natural substances[J]. Postharvest Biology and Technology,2007,45(2):265-275.
    [144]Trias, R., Badosa, E., & Montesinos, E., et al. Bioprotective Leuconostoc strains against Listeria monocytogenes in fresh fruits and vegetables[J]. International Journal of Food Microbiology,2008, 127(1-2):91-98.
    [145]Martin-Diana, A.B., Daniel R., & Barry-Ryan, C. Green tea extract as a natural antioxidant to extend the shelf-life of fresh-cut lettuce[J].Innovative Food Science & Emerging Technologies, 2008,9(4):593-603.
    [146]Naidoo, S., Murray, S.L., & Denby, K.J., et al. Microarray analysis of the Arabidopsis thaliana cirl (constitutively induced resistance 1) mutant reveals candidate defence response genes against Pseudomonas syringae pv tomato DC3000[J]. South African Journal of Botany,2007,73(3):412-421.
    [147]Simoes, A.D.N., Tudela, J.A., & Allende, A., et al. Edible coatings containing chitosan and moderate modified atmospheres maintain quality and enhance phytochemicals of carrot sticks[J]. Postharvest Biology and Technology,2009,51(3):364-370.
    [148]Xing, Y., Li, X., & Jiang, Y., et al. Effects of chitosan-based coating and modified atmosphere packaging (MAP) on browning and shelf life of fresh-cut lotus root (Nelumbo nucifera Gaerth)[J]. Innovative Food Science & Emerging Technologies,2010,21(4):684-689.
    [149]Allende, A., Luo, Y., & McEvoy, J.L., et al. Microbial and quality changes in minimally processed baby spinach leaves stored under super atmospheric oxygen and modified atmosphere conditions[J]. Postharvest Biology and Technology,2004,33(1):51-59.
    [150]Gorny, J.R., Hess-Pierce, B., & Cifuentes, R.A., et al. Quality changes in fresh-cut pear slices as affected by controlled atmospheres and chemical preservatives[J]. Postharvest Biology and Technology,2002,24(3):271-278.
    [151]Gonzalez-Aguilar, G.A., Ayala-Zavala, J.F., & Ruiz-Cruz, S., et al. Effect of temperature and modified atmosphere packaging on overall quality of fresh-cut bell peppers [J]. Lebensmittel-Wissenschaft und-Technologie,2004,37(8):817-826.
    [152]郑许松,叶恭银,吕仲贤.菱白田二化螟的发生规律及其植物源杀虫质筛选[D].杭州:浙江大学,2003.
    [153]董金龙,蔡晓尔,陈萍冰,等.茭白自发气调贮藏过程生理及相关酶活性的变化[J].漳州师范学院学报(自然科学版),2006,(4):116-118.
    [154]韩秀芹,江解增.茭白黑粉菌生物学特性的研究[D].扬州:扬州大学,2004.
    [155]何建军,陈学玲,周明,等.鲜切茭白贮藏性的研究[J].湖北农业科学,2007,46(6):990-991.
    [156]卞晓东,江解增.1,2,4-三氯苯和萘胁迫对茭白生长发育的影响[D].扬州:扬州大学,2007.
    [1]朱良其,潘仙鹏,赵永彬,等.包装袋对贮藏茭白保鲜效果的影响[J].浙江农业科学,2008,(3):265-267.
    [2]周涛,许时婴.MAP对轻度加工茭白贮藏过程中生理变化的影响[J].食品科学,2006,27(10):564-567.
    [3]王庆新,江波,张涛,等.超高压处理对轻度加工菱白品质的影响[J].食品与发酵工业,2007,33(10):89-92.
    [4]刘芳,李云飞.软包装贮藏切片茭白微生物及感官特性研究[J].农业工程学报,2005,21(6):180-183.
    [5]郜海燕,杨剑婷,陈杭君,等.气调小包装对去壳茭白品质的影响[J].中国农业科学,2004,37(12):1990-1994.
    [6]中国标准出版社第一编辑室编.中国农业标准汇编—经济作物卷[M].中国标准出版社,1997.
    [7]Cao, S., Zheng, Y., & Yang, Z., et al. Effect of methyl jasmonate on the inhibition of Colletotrichum acutatum infection in loquat fruit and the possible mechanisms[J]. Postharvest Biology and Technology,2008,49(2):301-307.
    [8]韩雅珊主编.食品化学实验指南[M].北京:北京农业大学出版社,1992.
    [9]李合生主编,孙群,赵世杰,章文华副主编.植物生理生化实验原理和技术[M].高等教育出版社,2000.
    [10]Saltveit, M.E. Effect of 1-methylcyclopropene on phenylpropanoid metabolism, the accumulation of phenolic compounds, and browning of whole and fresh-cut 'iceberg' lettuce[J]. Postharvest Biology and Technology,2004,34(1):75-80.
    [11]Rocculi, P., Galindo, F.G., & Mendoza, F., et al. Effects of the application of anti-browning substances on the metabolic activity and sugar composition of fresh-cut potatoes[J]. Postharvest Biology and Technology,2007,43(1):151-157.
    [12]Zhang, L., Lu, Z., & Yu, Z., et al. Preservation of fresh-cut celery by treatment of ozonated water[J]. Food Control,2005,16(3):279-283.
    [13]Elstner, E.F., Heapel, A. Inhibition of nitrite formation from hydroxylammouniun chloride:a simple assay for ssuperoxide dismutase[J], Analytical Biochemistry,1976,70:616-620.
    [14]Feng, G., Yang, H., & Li, Y. Kinetics of relative electrical conductivity and correlation with gas composition in modified atmosphere packaged bayberries (Myrica rubra Siebold and Zuccarini)[J]. LWT-Food Science and technology,2005,38(3):249-254.
    [15]Abu-Goukh, A.A., Bashir, H.A. Changes in pectic enzymes and cellulase activity during guava fruit ripening[J]. Food Chemistry,2003,83(2):213-218.
    [16]Arslan, O., Erzengin, M., & Sinan, S., et al. Purification of mulberry (Morus alba L.) polyphenol oxidase by affinity chromatography and investigation of its kinetic and electrophoretic properties[J]. Food Chemistry,2004,88(3):479-484.
    [17]Cai, C., Xu, C., Li, X., et al. Accumulation of lignin in relation to change in activities of lignification enzymes in loquat fruit flesh after harvest[J]. Postharvest Biology and Technology, 2006,40(2):163-169.
    [18]毕咏梅,欧阳光察.水稻—香豆酸连接酶的基本性质[J].植物生理学通讯,1990,(6):18-20.
    [19]周涛,许时婴,王璋,等.MAP包装对微加工茭白品质的影响[J].食品科技,2000,(5):64-66.
    [20]何建军,陈学玲,周明,等.鲜切茭白贮藏性的研究[J].湖北农业科学,2007,46(6):990-991.
    [21]冯双庆主编.果蔬贮运学(第二版)[M].北京:化学工业出版社,2008.
    [22]Jun, W. J., Han, B. K., & Yu, K. W., et al. Antioxidant effects of Origanum majorana L. on superoxide anion radicals[J]. Food Chemistry,2001,75(4):439-444.
    [23]Jiang, Y., Pen, L., & Li, J. Use of citric acid for shelf life and quality maintenance of fresh-cut Chinese water chestnut[J]. Journal of Food Engineering,2004,63(3):325-328.
    [24]Zhang, L., Lu, Z., & Yu, Z., et al. Preservation of fresh-cut celery by treatment of ozonated water[J]. Food Control,2005,16(3):279-283.
    [25]Tudela, J.A., Espin, J.C., & Gil, M.I. Vitamin C retention in fresh-cut potatoes[J]. Postharvest Biology and Technology,2002,26(1):75-84.
    [26]Chung, H.-S., Moon, K.-D. Browning characteristics of fresh-cut 'Tsugaru' apples as affected by pre-slicing storage atmospheres[J]. Food Chemistry,2009,114(4):1433-1437.
    [27]Alain-Michel, B. Evolution and current status of research in phenolic compounds[J]. Phytochemistry,2007,68(22-24):2722-2735.
    [28]印芳,葛红,彭克勤,等.蝴蝶兰组培褐变与酚酸类物质及相关酶活性的关系[J].中国农业科学,2008,41(7):2197-2203.
    [29]Ashok, B.T., Ali, R. The aging paradox:free radical theory of aging[J], Experimental Gerontology, 1999,34(3):293-303.
    [30]Ge, T., Sui, F., & Bai, L., et al. Effects of water stress on the protective enzyme activities and lipid peroxidation in roots and leaves of summer maize[J]. Agricultural Sciences in China,2006, 5(4):291-298.
    [31]Suvit, L., Paiboon, V., & Wipa, P., et al. Regulation of the oxidative stress protective enzymes, catalase and superoxide dismutase in Xanthomonas -- a review[J]. Gene,1996,179(1):33-37.
    [32]王佳宏,郁志芳,杜传来.芋艿褐变底物及多酚氧化酶特性研究[J].食品工业科技,2008,29(2):141-145.
    [33]Aquino-Bolanos, E.N., Mercado-Silva, E. Effects of polyphenol oxidase and peroxidase activity, phenolics and lignin content on the browning of cut jicama[J]. Postharvest Biology and Technology, 2004,33(3):275-283.
    [34]杜传来,郁志芳,董炳发.鲜切慈菇酶促褐变底物的分析确定[J].食品与发酵工业,2006,32(2):46-49.
    [35]李妍,章建浩,宋雯雯,等.贮藏温度对菱角采后品质和生理的影响[J].食品科学,2006,27(1):235-239.
    [36]Boudet, A.-M. Lignins and lignification:Selected issues[J]. Plant Physiology and Biochemistry, 2000,38(1-2):81-96.
    [37]Donaldson, L.A. Lignification and lignin topochemistry—an ultrastructural view[J]. Phytochemistry, 2001,57(6):859-873.
    [38]Shadle, G., Chen, F., & Srinivasa, R., et al. Down-regulation of hydroxycinnamoyl CoA:Shikimate hydroxycinnamoyl transferase in transgenic alfalfa affects lignification, development and forage quality[J]. Phytochemistry,2007,68(1):1521-1529.
    [39]张美玲,朱世东,王建.不同保鲜剂处理对岳西高山茭白贮藏效果的影响[J].食品科学,2008,24(2):110-114.
    [40]Tsouvaltzis, P., Gerasopoulos, D., & Siomos, A. S., et al. Effects of base removal and heat treatment on visual and nutritional quality of minimally processed leeks[J]. Postharvest Biology and Technology,2007,43(1):158-164.
    [41]Escalona, V. H., Aguayo, E., & Artes, F. Metabolic activity and quality changes of whole and fresh-cut kohlrabi (Brassica oleracea L. gongylodes group) stored under controlled atmospheres[J]. Postharvest Biology and Technology,2006,41 (2):181-190.
    [42]Zhang, L., Lu, Z., & Lu, F., et al. Effect of y irradiation on quality-maintaining of fresh-cut lettuce[J]. Food Control,2006,17(3):225-228.
    [43]郁志芳,夏志华,陆兆新.鲜切甘薯酶促褐变机理的研究[J].食品科学,2005,26(5):54-59.
    [44]侯田莹,郁志芳.贮藏温度和包装方式以及低氧气调对采后枸杞头品质及生理特性影响的研究[D].南京:南京农业大学,2008.31-32.
    [45]郁志芳,赵友兴,李宁.鲜切莲藕酶促褐变底物的分析确定[J].食品科学,2002,23(4):41-44.
    [46]李延清,郁志芳.溧阳白芹贮藏期间品质和生理变化及褐变特性研究[D].南京:南京农业大学,2007.
    [47]Humphreys, J.M., Chapple, C. Rewriting the lignin roadmap[J].Plant Biology,2002,5(3):224-229.
    [48]Zhang, L., Lu, Z., & Lu, F., et al. Effect of γ irradiation on quality-maintaining of fresh-cut lettuce[J]. Food Control,2006,17(3):225-228.
    [49]Zhu, Z., Wei, G., & Li, J., et al. Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.)[J]. Plant Science,2004,167(3): 527-533.
    [50]Kohler, J., Hernandez, J.A., & Caravaca, F., et al. Induction of antioxidant enzymes is involved in the greater effectiveness of a PGPR versus AM fungi with respect to increasing the tolerance of lettuce to severe salt stress[J]. Environmental and Experimental Botany,2009,65(2-3):245-252.
    [51]Wang, W.-B., Kim, Y.-H., & Lee, H.-S., et al. Analysis of antioxidant enzyme activity during gemiination of alfalfa under salt and drought stresses[J]. Plant Physiology and Biochemistry,2009, 47(7):570-577.
    [52]Hodges, D. M., Toivonen, P.M.A. Quality of fresh-cut fruits and vegetables as affected by exposure to abiotic stress[J]. Postharvest Biology and Technology,2008,48(2):155-162.
    [53]An, J., Zhang, M., & Lu, Q. Changes in some quality indexes in fresh-cut green asparagus pretreated with aqueous ozone and subsequent modified atmosphere packaging[J]. Journal of Food Engineering,2007,78(1):340-344.
    [1]Castillo Leon, J., Alpeeva, I.S.,& Chubar, T.A., et al. Purification and substrate specificity of peroxidase from sweet potato tubers [J]. Plant Science,2002,163(5):1011-1019.
    [2]Diaz, J., Bernal, A.,& Pomar, F., et al. Induction of shikimate dehydrogenase and peroxidase in pepper (Capsicum anmuum L.) seedlings in response to copper stress and its relation to lignification[J]. Plant Science,2001,161(1):179-188.
    [3]Serrano-Martinez, A., Fortea, M.I.,& del Amor, F.M., et al. Kinetic characterisation and thermal inactivation study of partially purified red pepper (Capsicum annuum L.) peroxidase[J]. Food Chemistry,2008,107(1):193-199.
    [4]Hadzi-Taskovic, S.V., Vuletic, M. The characterization of peroxidases in mitochondria of maize roots[J]. Plant Science,2003,164(6):999-1007.
    [5]Alves, T., Besson, S.,& Duarte, L.C., et al. A cytochrome c peroxidase from Pseudomonas nautica 617 active at high ionic strength:expression, purification and characterization[J]. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology,1999,1434(2):248-259.
    [6]Lagrimini, L.M., Gingas, V.,& Finger, F., et al. Characterization of antisense transformed plants deficient in the tobacco anionic peroxidase[J]. Plant Physiology,1997,114:1187-1196.
    [7]Sato, Y., Sugiyama, M.,& Gorecki, R. J., et al. Interrelationship between lignin deposition and the activities of peroxidase isoenzymes in differentiating tracheary elements of Zinnia[J]. Planta,1993, 189:584-589.
    [8]Gaspar, T., Penel, C.,& Castillo, F.J., et al. A two-step control of basic and acidic peroxidases and its significance for growth and development [J]. Physiologia plantarum,1985,64:418-423.
    [9]Van Den Berg, B.M., Chibbar, R.N.,& van Huystee, R.B. A comparative study of a cationic peroxidase from peanut and an anionic peroxidase from petunia[J]. Plant Cell Reports,1983, 2:304-307.
    [10]蒋益红.百合褐变与多酚氧化酶和过氧化物酶活性关系的研究[J].浙江大学学报(农业与生命科学版),2003,29(5):518-522.
    [11]Aquino-Bolanos, E.N., Mercado-Silva, E. Effects of polyphenol oxidase and peroxidase activity, phenolics and lignin content on the browning of cut jicama[J]. Postharvest Biology and Technology, 2004,33(3):275-283.
    [12]Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of the bacteriophage T4[J]. Nature,1970,227:680-685.
    [13]Deepa. S.S., Arumughan, C. Purification and characterization of soluble peroxidase from oil palm (Elaeis guineensis Jacq.) leaf[J]. Phytochemistry,2002,61:503-511.
    [14]萨姆布鲁克著,黄培堂主译.分子克隆实验指南:精编版[M].北京:化学工业出版社,2008.
    [15]Ajila, C.M., Prasada Rao, U.J.S. Purification and characterization of black gram (Vigna mungo) husk peroxidase[J]. Journal of Molecular Catalysis B:Enzymatic,2009,60(1-2):36-44.
    [16]周涛,许时婴,王璋,等.茭白中过氧化物酶的部分纯化及其性质的初步研究[J].食品工业利技,2005,26(7):81-83.
    [17]吴显荣.基础生物化学(第二版)[M].北京:中国农业出版社,1999.
    [18]郁志芳,陆兆新,李妍,等.鲜切芦蒿过氧化物酶特性的研究[J].食品科学,2005,26(9):29-33.
    [19]SatoY., Sugiyama M.,& Takashi, S., et al. Purification of cationic peroxidases boundionically to the cell walls from the roots of Ziniaelegans[J]. Journal of Plant Research,1995,108:463-468.
    [20]王臻,廖祥儒,张建国,等.女贞果实过氧化物酶的纯化及热稳定性研究[J].河北农业大学学报,2007,30(5):23-28.
    [21]Saraiva, J.A., Nunes, C.S.& Coimbra, M.A. Purification and characterization of olive (Olea europaea L.) peroxidase-Evidence for the occurrence of a pectin binding peroxidase[J]. Food Chemistry,2007,101 (4):1571-1579.
    [22]Devaiah, S.P., Shetty, H.S. Purification of an infection-related acidic peroxidase from pearl millet seedlings[J]. Pesticide Biochemistry and Physiology,2009,94(2-3):119-126.
    [23]林建城,吴智雄,彭在勤.枇杷果肉过氧化物酶的分离纯化及其性质研究[J].四川农业大学学报,2007,25(4):419-424.
    [24]Boeuf, G., Bauw, G.,& Legrand, B., et al. Purification and characterization of a basic peroxidase from the Medium of cell suspension cultures of chicory [J]. Plant Physiology and Biochemistry 2000,38(3):217-224.
    [25]Levin, G., Mendive, F.,& Targovnik, H., et al. Genetically engineered horseradish peroxidase for facilitated purification from baculovirus cultures by cation-exchange chromatography[J]. Journal of Biotechnology,2005,118(4):363-369.
    [26]Ikehata, K., Buchanan, I.D.,& Pickard, M.A., et al. Purification, characterization and evaluation of extracellular peroxidase from two Coprinus species for aqueous phenol treatment[J]. Bioresource Technology,2005,96(16):1758-1770.
    [27]Serrano-Martinez, A., Fortea, M.I.,& del Amor, F.M., et al. Kinetic characterization and thermal inactivation study of partially purified red pepper (Capsicum annuum L.) peroxidase[J]. Food Chemistry,2008,107(1):193-199.
    [28]Boer, C.G., Obici, L.,& de Souza, C.G.M., et al. Purification and some properties of Mn peroxidase from Lentinula edodes[J]. Process Biochemistry,2006,41 (5):1203-1207.
    [29]Rudrappa, T., Lakshmanan, V.,& Kaunain, R., et al. Purification and characterization of an intracellular peroxidase from genetically transformed roots of red beet (Beta vulgaris L.)[J]. Food Chemistry,2007,105(3):1312-1320.
    [30]Rompel, A., Albers, M.,& Naseri, J.I., et al. Purification, cloning and characterization of a novel peroxidase isozyme from sweetpotatoes (Ipomoea batatas)[J]. Biochimica et Biophysica Acta (BBA)-Proteins & Proteomics,2007,1774(11):1422-1430.
    [31]Esteban-Carrasco, A., Zapata, J.M.,& Lopez-Serrano, M., et al. Purification of two peroxidase isoenzymes of Aloe barbadensis which oxidize p-coumaric acid[J]. Plant Physiology and Biochemistry,2002,40(2):127-132.
    [32]Johri, S., Jamwal, U.,& Rasool, S., et al. Purification and characterization of peroxidases from Withania somnifera (AGB 002) and their ability to oxidize IAA[J]. Plant Science,2005, 169(6):1014-1021.
    [33]庞学群,段学武,张昭其,等.荔枝果皮过氧化物酶的纯化及部分酶学性质研究[J].热带亚热带植物学报,2004,12(5):449-454.
    [34]Srinivas, N.D., Rashmi, K.R.,& Raghavarao, K.S.M.S. Extraction and purification of a plant peroxidase by aqueous two-phase extraction coupled with gel filtration[J]. Process Biochemistry, 1999,35(1-2):43-48.
    [35]Jouili, H., Bouazizi, H.,& Rossignol, M., et al. Partial purification and characterization of a copper-induced anionic peroxidase of sunflower roots[J]. Plant Physiol Biochem,2008, 46(8-9):760-767.
    [36]Marquez, O., Waliszewski, K.N.,& Oliart, R.M., et al. Purification and characterization of cell wall-bound peroxidase from vanilla bean[J]. LWT-Food Science and Technology,2008, 41(8):1372-1379.
    [37]徐芝勇,严群,强毅,等.大豆过氧化物酶纯化及酶学特性研究[J].中国粮油学报,2006,21(2):82-85.
    [38]杜传米,郁志芳,王佳红,等.鲜切慈姑贮藏中的褐变及相关酶活性关系[J].安徽技术师范学院学报,2005,19(4):20-23.
    [39]Alvarez-Parrilla, E., de la Rosa, L.A.,& Rodrigo-Garcia, J., et al. Dual effect of b-cyclodextrin (b-CD) on the inhibition of apple polyphenol oxidase by 4-hexylresorcinol (HR) and methyl jasmonate (MJ)[J]. Food Chemistry,2007,101(4):1346-1356.
    [40]李建芳,蒲彪,周枫.鱼腥草中POD和PPO特性的研究[J].中国食品学报,2006,6(4):72-76.
    [41]林琳,郭志雄,潘东明.琯溪蜜柚果肉过氧化物酶cDNA的克隆及序列分析[J].农业生物技术 科学,2006,22(7):74-78.
    [42]王林嵩,李小娟,李芳军,等.萝卜过氧化物酶基因片段的c DNA克隆及花期表达谱分析[J].中国蔬菜,2009,22(6):14-20.
    [43]Rompel, A., Albers, M., Naseri, J.I., et al. Purification, cloning and characterization of a novel peroxidase isozyme from sweetpotatoes (Ipomoea batatas)[J]. Biochimica et Biophysica Acta (BBA)-Proteins & Proteomics,2007,1774(11):1422-1430.
    [44]Xie, Y., Zhu, B.,& Yang, X., et al. Delay of postharvest ripening and senescence of tomato fruit through virus-induced LeACS2 gene silencing [J]. Postharvest Biology and Technology,2006, 42(1):8-15.
    [45]Hu, Z.-l., Chen, X.-q,& Chen, G.-p, et al. The influence of co-suppressing tomato 1-aminocyclopropane-l-carboxylic acid oxidase I on the expression of fruit ripening-related and pathogenesis-related protein genes [J]. Agricultural Sciences in China,2007,6(4):406-413.
    [46]McCullum, C., Benbrook, C.,& Knowles, L., et al. Application of modern biotechnology to food and agriculture:food systems perspective [J]. Journal of Nutrition Education and Behavior,2003, 35(6):319-332.
    [1]Aguilo-Aguayo, I., Soliva-Fortuny, R.,& Martin-Belloso, O. Avoiding non-enzymatic browning by high-intensity pulsed electric fields in strawberry, tomato and watermelon juices[J]. Journal of Food Engineering,2009,92(1):37-43.
    [2]Segovia-Bravo, K.A., Jaren-Galan, M.,& Garcia-Garci, P., et al. Browning reactions in olives: Mechanism and polyphenols involved[J]. Food Chemistry,2009,114(4):1380-1385.
    [3]Aguayo, E., Jansasithorn, R.,& Kader, A.A. Combined effects of 1-methylcyclopropene, calcium chloride dip, and/or atmospheric modification on quality changes in fresh-cut strawberries[J]. Postharvest Biology and Technology,2006,40(3):269-278.
    [4]Roura, S.I., Pereyra, L.,& del Valle, C.E., et al. Phenylalanine ammonia lyase activity in fresh cut lettuce subjected to the combined action of heat mild shocks and chemical additives[J]. LWT-Food Science and Technology,2008,41(5):919-924.
    [5]Angos, I., Virseda, P.,& Fernandez, T. Control of respiration and color modification on minimally processed potatoes by means of low and high O2/CO2 atmospheres[J]. Postharvest Biology and Technology,2008,48(3):422-430.
    [6]Zhang, L., Lu, Z.,& Wang, H. Effect of gamma irradiation on microbial growth and sensory quality of fresh-cut lettuce[J]. International Journal of Food Microbiology,2006,106(3):348-351.
    [7]Gomez-lopez, V.M., Ragaert, P.,& Ryckeboer, J., et al. Shelf-life of minimally processed cabbage treated with neutral electrolysed oxidising water and stored under equilibrium modified atmosphere[J]. International Journal of Food Microbiology,2007,117(1):91-98.
    [8]del Aguila, J.S., Sasaki, F.F.,& Heiffiga, L.S., et al. Fresh-cut radish using different cut types and storage temperatures[J]. Postharvest Biology and Technology,2006,40(2):149-154.
    [9]Marrero, A., Kader, A.A. Optimal temperature and modified atmosphere for keeping quality of fresh-cut pineapples[J]. Postharvest Biology and Technology,2006,39(2):163-168.
    [10]Gonzalez-Aguilar, G.A., Ruiz-Cruz, S.,& Cruz-Valenzuela, R., et al. Physiological and quality changes of fresh-cut pineapple treated with antibrowning agents[J]. Lebensmittel-Wissenschaft und-Technologie,2004,37(3):369-376.
    [11]Bico, S.L.S., Raposo, M.F.J.,& Morais, R.M.S.C., et al. Combined effects of chemical dip and/or carrageenan coating and/or controlled atmosphere on quality of fresh-cut banana[J]. Food Control, 2009,20(5):508-514.
    [12]Teixeira, G.H.A., Durigan, J.F.,& Alves, R.E., et al. Response of minimally processed carambola to chemical treatments and low-oxygen atmospheres[J]. Postharvest Biology and Technology,2008, 48(3):415-421.
    [13]Rocculi, P., Galindo, F.G.,& Mendoza, F., et al. Effects of the application of anti-browning substances on the metabolic activity and sugar composition of fresh-cut potatoes[J]. Postharvest Biology and Technology,2007,43(1):151-157.
    [14]Perez-Gago, M.B., Serra, M.,& del Rio, M.A. Color change of fresh-cut apples coated with whey protein concentrate-based edible coatings[J]. Postharvest Biology and Technology,2006, 39(1):84-92.
    [15]Kang, R., Yu, Z.,& Lu, Z. Effect of coating and intermittent wanning on enzymes, soluble pectin substances and ascorbic acid of Prunus persica (Cv. Zhonghuashoutao) during refrigerated storage[J]. Food Research International,2005,38(3):331-336.
    [16]Beaulieu, J.C., Gorny, J.R. Fresh-cut Fruits. (accessed 1.12.2007),2002.
    [17]Aguayo, E., Escalona, V.H.,& Artes, F. Effect of hot water treatment and various calcium salts on quality of fresh-cut'Amarillo'melon[J]. Postharvest Biology and Technology,2008,47(3):397-406.
    [18]Hodges, D.M, Toivonen, P.M.A. Quality of fresh-cut fruits and vegetables as affected by exposure to abiotic stress [J]. Postharvest Biology and Technology,2008,48(2):155-162.
    [19]Goujon, T., Sibout, R.,& Eudes, A., et al. Genes involved in the biosynthesis of lignin precursors in Arabidopsis thaliana[J]. Plant Physiology and Biochemistry,2003,41(8):677-687.
    [20]Degl'Innocenti, E., Pardossi, A.,& Tognoni, F., et al. Physiological basis of sensitivity to enzymatic browning in'lettuce','escarole'and'rocket salad'when stored as fresh-cut products[J]. Food Chemistry,2007,104(1):209-215.
    [21]Peter, G., Neale, D. Molecular basis for the evolution of xylem lignification[J]. Current Opinion in Plant Biology,2004,7(6):737-742.
    [22]Martinez-Alvarez, O., Lopez-Caballero, M.E.,& Montero, P., et al. Spraying of 4-hexylresorcinol based formulations to prevent enzymatic browning in Norway lobsters [Nephrops norvegicus) during chilled storage[J]. Food Chemistry,2007,100(1):147-155.
    [23]苏新国,蒋跃明,李月标,等.4-HR对鲜切莲藕褐变以及贮减品质的影响[J].食品科学,2003, 22(4):142-145.
    [24]诸水志,王静,王道营,等.4-己基间苯二酚对鲜切牛蒡褐变及贮藏品质的影响[J].食品科学,2009,22(4):1061-1064.
    [25]乔方,余海虎,黄晓钰.4-己基间苯二酚对切分蔬菜及莲藕汁护色效果的研究[J].食品科学,2007,28(7):511-514.
    [26]Luna-Guzman, I., Cantwell, M.,& Barrett, D.M. Fresh-cut cantaloupe:effects of CaCl2 dips and heat treatments on firmness and metabolic activity[J]. Postharvest Biology and Technology,1999, 17(3):201-213.
    [27]覃海元.钙处理浓度和温度对鲜切绿熟木瓜质量的影响[J].食品工业科技,2006,27(1):88-91.
    [28]Luna-Guzman, I., Barrett, D.M. Comparison of calcium chloride and calcium lactate effectiveness in maintaining shelf stability and quality of fresh-cut cantaloupes[J]. Postharvest Biology and Technology,2000,19(1):61-72.
    [29]Zhu, L., Zhou, J.,& Zhu, S., et al.Inhibition of browning on the surface of peach slices by short-term exposure to nitric oxide and ascorbic acid[J]. Food Chemistry,2009,114(1):174-179.
    [30]Raybaudi-Massilia, R.M., Mosqueda-Melgar, J.,& Sobrino-Lopez, A., et al. Shelf-life extension of fresh-cut 'Fuji' apples at different ripeness stages using natural substances[J]. Postharvest Biology and Technology,2007,45(2):265-275.
    [31]Rojas-Grau Maria, A., Tapia, M.S.,& Martin-Belloso, O., et al. Using polysaccharide-based edible coatings to maintain quality of fresh-cut Fuji apples[J]. LWT-Food Science and Technology,2008, 41(1):139-147.
    [32]Gorny, J.R., Hess-Pierce, B.,& Cifuentes, R.A., et al. Quality changes in fresh-cut pear slices as affected by controlled atmospheres and chemical preservatives[J]. Postharvest Biology and Technology,2002,24(3):271-278.
    [33]Vilas-Boas, E.V. de B.,& Kader, A. A. Effect of atmospheric modification,1-MCP and chemicals on quality of fresh-cut banana[J]. Postharvest Biology and Technology,2006,39(2):155-162.
    [34]Luo, Y., Barbosa, C. Inhibition of apple-slice browning by 4-hexylresorcino[M]. Woshington DC:American Chemical Society,1995.
    [35]郑林彦,韩涛,李丽萍,等.4-己基间苯二酚对鲜切桃色泽相关生理的影响[J].园艺学报,2007,34(6):1367-1372.
    [1]Hodges, D.M., Toivonen P.M.A. Quality of fresh-cut fruits and vegetables as affected by exposure to abiotic stress[J]. Postharvest Biology and Technology,2008,48(2):155-162.
    [2]Yang, S., Sun, C.,& Wang, P., et al. Expression of expansin genes during postharvest lignification and softening of 'Luoyangqing' and 'Baisha' loquat fruit under different storage conditions[J]. Postharvest Biology and Technology,2009,49(1):46-53.
    [3]Wang, W.-B., Kim, Y.-H.,& Lee, H.-S., et al. Analysis of antioxidant enzyme activity during germination of alfalfa under salt and drought stresses[J]. Plant Physiology and Biochemistry,2009, 47(7):570-577.
    [4]席玙芳,罗自生,程度,等.竹笋采后活性氧化代谢对木质化的影响[J].中国农业科学,2001,34(2):197-199.
    [5]Rico, D., Martin-Diana, A.B., & Frias, J.M., et al. Improvement in texture using calcium lactate and heat-shock treatments for stored ready-to-eat carrots[J]. Journal of Food Engineering,2007, 79(4):1196-1206.
    [6]Martin-Diana, A.B., Rico, D., & Frias, J., et al. Effect of calcium lactate and heat-shock on texture in fresh-cut lettuce during storage[J]. Journal of Food Engineering,2006,77(4):1069-1077.
    [7]罗海波,姜丽,余坚勇,等.鲜切果蔬的品质及贮藏保鲜技术研究进展[J].食品科学,2010,31(3):307-311.
    [8]Tang, D., Wang, Y.,& Cai, J., et al. Effects of exogenous application of plant growth regulators on the development of ovule and subsequent embryo rescue of stenospermic grape (Vitis vinifera L.)[J]. Scientia Horticulturae,2009,120(-):51-57.
    [9]An, J., Zhang, M.,& Lu, Q., et al. Effect of a prestorage treatment with 6-benzylaminopurine and modified atmosphere packaging storage on the respiration and quality of green asparagus spears[J]. Journal of Food Engineering,2006,77(4):951-957.
    [10]刘尊英,姜微波.常温下GA3处理对绿芦笋采后木质化的影响[J].中国农业科学,2005,38(2):383-387.
    [11]Luo, Z., Xu, X.,& Cai, Z., et al. Effects of ethylene and 1-methylcyclopropene (1-MCP) on lignification of postharvest bamboo shoot[J]. Food Chemistry,2007,105(2):521-527.
    [12]Shen, Q, Kong, F,& Wang, Q. Effect of modified atmosphere packaging on the browning and lignification of bamboo shoots[J]. Journal of Food Engineering,2006,77(2):348-354.
    [13]刘晓军,刘晓娜,邹东云,等.湿冷贮藏对冬枣软化水解酶活性影响的研究[J].食品科学,2005,26(7):231-234.
    [14]魏建梅,马锋旺,关军锋,等.京白梨果实后熟软化过程中细胞壁代谢及其调控[J].中国农业科学,2009,42(8):2987-2996.
    [15]Rouraa, S.I., Pereyra, L.,& del Valle, C.E. Phenylalanine ammonia lyase activity in fresh cut lettuce subjected to the combined action of heat mild shocks and chemical additives[J]. LWT-Food Science and Technology,2008,41(5):919-924.
    [16]Chen, M., McClure, J.W. Altered lignin composition in phenylalanine ammonia-lyase-inhibited radish seedlings:implications for seed-derived sinapoyl esters as lignin precursors[J]. Phytochemistry,2000,53(3):365-370.
    [17]Bate, N.J., Orr, J.,& Ni, W., et al. Quantitative relationship between phenylalanine ammonia-lyase levels and phenylpropanoid accumulation in transgenic tobacco identifies a rate-determining step in natural product synthesis[J]. Proceedings of the National Academy of Sciences,1994, 91(16):7608-7612.
    [18]Sewalt, V.J.H., Ni, W.,& Blount, J.W., et al. Reduced lignin content and altered lignin composition in transgenic tobacco down-regulated in expression of L-phenylalanine ammonia-lyase or cinnamate 4-hydroxylase[J]. Plant Physiology,1997,115(-):41-50.
    [19]Stuible, H.-P., Buttner, D.,& Ehlting J., et al. Mutational analysis of 4-coumarate:CoA ligase identifies functionally important amino acids and verices its close relationship to other adenylate-forming enzymes[J]. FEBS Letters,2000,467(1):117-122.
    [20]Hu, W.J., Harding, S.A.,& Lung, J., et al. Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic trees[J]. Nature Biotechnology,1999,17(8):808-812.
    [21]Lee, D., Meyer, K.,& Chapple, C., et al. Antisense suppression of 4-coumarate:coenzyme A ligase activity in Arabidopsis leads to altered lignin subunit composition[J]. The Plant Cell,1997, 9(11):1985-1998.
    [22]Kajita, S., Hishiyama, S.,& Tomimura, Y., et al. Structural characterization of modified lignin in transgenic tobacco plants in which the activity of 4-coumarate:coenzyme A ligase is depressed[J]. Plant Physiology,1997,114(3):871-879.
    [23]Humphreys, J.M., Chapple, C. Rewriting the lignin roadmap[J].Plant Biology,2002,5(3):224-229.
    [24]章霄云,郭安平,贺立卡,等.木质素生物合成及其基因调控的研究进展[J].分子植物育种,2006,4(3):431-437.
    [25]Cai, C., Xu, C.,& Li, X., et al. Accumulation of lignin in relation to change in activities of lignification enzymes in loquat fruit flesh after harvest[J]. Postharvest Biology and Technology, 2006,40(2):163-169.
    [26]Luo, Z., Xu, X.,& Cai, Z., et al. Effects of ethylene and 1-methylcyclopropene (1-MCP) on lignification of postharvest bamboo shoot[J]. Food Chemistry,2007,105(2):521-527.
    [27]Belinky, P.A., Flikshtein, N.,& Lechenko, S., et al. Reactive oxygen species and induction of lignin peroxidase in phanerochaete chrysosporium[J]. Applied and Environmental Microbiology,2003, 69(11):6500-6506.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700