水稻心白突变体flo2灌浆期籽粒中miRNA鉴定与表达分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
miRNA作为重要的负调控因子在植物中广泛存在,调控植物生长发育、响应生物和非生物胁迫等各类生物学过程。水稻种子在灌浆期的生长是一个复杂的生理过程,其发育程度和物质积累状况决定稻米的产量与品质。目前对灌浆期水稻基因表达谱研究以及对一些参与物质积累,尤其淀粉合成相关的基因挖掘已有大量阐述。但目前关于miRNA在水稻灌浆期是如何表达并在参与怎样的调控作用还未见报道。本研究以一个淀粉积累发生变化的心白突变体flo2和对应野生型一个地方籼稻品种白丰B为实验系统,利用高通量测序和信息学分析小RNA库,鉴定出在灌浆期表达的水稻miRNA,并通过小RNA芯片,比较灌浆不同时期(乳熟,蜡熟,完熟),以及白丰B和flo2中各个miRNA的表达变化,找出在灌浆期优势表达和变化显著的miRNA,并通过对靶基因的预测和功能分析阐述miRNA在水稻灌浆过程中对颖果发育,尤其是对淀粉积累过程的影响。
     从构建的两个水稻灌浆时期白丰B和flo2种子小RNA库中,通过高通量测序获得的小RNA序列总数分别为3240709和3266135个,小RNA种类为974934和1542192个,其中与9311基因组匹配的序列数为1363246和1990385,测序深度足够作进一步研究。对数据库中的分析结果表明20个保守家族和约33个非保守家族的miRNA可以在库中检测到。此外还鉴定出了11个新的miRNA和200多个在已知基因座上但不同位置的miRNA变体。
     为了进一步研究文库中鉴定得到的miRNA在灌浆期是如何变化,在flo2和白丰B灌浆的三个时期(乳熟期、蜡熟期和完熟期)分别取样,通过小RNA芯片来分析miRNA的表达变化。芯片结果验证了142个已知miRNA及47个已知miRNA变体的表达;有45个miRNA表达水平较高(信号值大于500)。以花后10天miRNA的表达量为参照,表达量上升的保守miRNA家族有4个,非保守家族5个;表达量下降的保守家族5个,非保守家族4个。8个新miRNA也在芯片结果中验证。对应白丰B灌浆各时期miRNA的表达量,发现flo2在花后10天差异显著(p-value<0.01)的miRNA最多,说明两者miRNA表达差异主要发生在灌浆早期。
     对这些miRNA做进一步的靶基因预测,验证和功能分析,结果显示这些靶基因参与多种生理过程。通过5'RACE验证部分靶基因,其中miR1862d和miR1874-5p的靶基因GBSS1b和BE1分别参与直链淀粉和支链淀粉的合成,并且两者在flo2和白丰B的不同时期积累水平也不一样。qPCR结果显示GBSS1b和BE1也呈现相对应的负调控趋势,这可能与flo2和白丰B中直链淀粉和支链淀粉的含量及构成存在差异相关,其中miR1862在加2乳熟期的表达量要显著高于白丰B,同时GBSS1b在flo2乳熟期的表达量要低于白丰B,该变化来自miRNA的调控并影响到加2的直链淀粉含量.Q-PCR结果显示大部分靶基因与miRNA表达呈负相关;另一些呈正相关的miRNA如miR164和miR167,可能因为靶基因对miRNA的表达存在反馈调控作用。对靶基因的功能分析发现多数靶基因参与种子的物质积累和成熟过程。
     此外,我们还发现心白突变体加2的突变基因可能会影响到体内miRNA的表达水平。一些预测能够标靶该基因的miRNA在flo2中的表达显著下降,但这种调控机制目前还不清楚。
     本研究通过对水稻颖果发育时期的miRNA进行分离、鉴定和表达谱分析,发现了一批在水稻灌浆期高表达并参与物质积累和种子成熟途径的miRNA,并首次发现miRNA可能直接调控一些淀粉合成途径中的关键酶,拓宽了对植物miRNA的认知,并为开展后续的功能研究提供了信息。
MicroRNA (miRNA) is a group of short (21-24nt), non-coding RNAs which is widely existed in various tissues, and can modulate biological processes such as growth, development and response to biotic or abiotic stress in plants. The periodjjfrom spikelet filling to maturation is a complex physiological process in rice seed, which is also extremely important for the yield and quality of the production. However, the probable connection of the procedure and the miRNA has not been researched so far. In this study, using two indica varieties of white-core flo2and its corresponding wild type Baifeng B, we isolated several new miRNAs in seeds of10-20days after flowering (DAF) and analyzed the expression profiles of both novel and known miRNAs in this period. The possible role of miRNA in seed development was also investigated through the function prediction and analyzing of the miRNA target genes.
     We constructed two small RNA libraries of developing spikelet (flo2&Baifeng B), and3240709and3266135miRNAs were collected respectively through high throughput sequencing. By comparing to the9311genome,1363246(74.4%) and1990385(72.6%) matching miRNAs were chosed for further analysis.20conserved families and33nonconserved families could be detected in our libraries, and280more candidate miRNA were also identified.
     Through microarray strategy, we compared miRNA profiles among3filling stages (the milky, soft dough and hard dough stage). The chip analysis confirmed the expression of142known miRNAs,8novel miRNAs and47annotated miRNA variants. There were45miRNAs with a high signal value. By comparing to signals in10DAF, the results showed that4conserved miRNAs and5nonconserved miRNAs were up-regulated,5conserved miRNAs and4nonconserved miRNAs were down-regulated with available variants (p-value<0.05).8novel miRNAs were also confirmed by chip detection. By comparing to wild type, a number of miRNAs showed reduced or increased signal values in flo2especially in10DAF, which suggest the difference between flo2and Baifeng B mainly exist in the early filling phase.
     MiRNAs with high and variant expression levels during the spikelet development were selected for the prediction of target genes, the results of which implied the possible involvements of miRNA in various biological processes. Transcription factors of NAC and GAMYB families, regulated by miR164and miR159respectively by prediction, has been reported to participate in the endosperm development and substance accumulation; GBSS1b and BE1, regulated by miR1862d and miR1874-5p respectively by prediction, directly involves in the biosynthesis of starch in seeds. The expression level of miR1862in flo2was higher at milky-ripe stage than Baifeng B and the level of GBSS1was much lower in flo2at milky-ripe stage, which suggested the possible role of miRNA in the regulation of starch biosynthesis in rice seeds. Q-PCR verified the negative correlation between the expression profiles of miRNAs and their target genes. Some miRNAs like miR164and miR167had a positive correlation with their target genes, which suggested a feed-back circuit of miRNA and their targets.
     By sequencing, the phenotype of flo2in our research was mainly caused by8bp deletion in exon10of FLO2, a gene well reported previously. Target miRNA prediction showed the3'UTR region of FLO2could be affected by miR444and other miRNAs, which expressed in a lower level in flo2than in Baifeng B. The function of FLO2has been less known and its possible regulation mechanism by miRNA needs to be further investigated.
     Through the identification and expression profiles analysis, we found a group of miRNAs involved in the substance accumulation in rice caryopsis development stages and we found miRNA can have effect on starch sythensis pathway for the first time. Our study grained a deeper understanding of plant miRNAs and offered more imformation on the research of miRNAs in rice filling phase.
引文
Adai A. Computational prediction of miRNAs in Arabidopsis thaliana. Genome Research,2005, 15:78-91.
    Albani D, Hammond-Kosack MC, Smith C, et al. The wheat transcriptional activator SPA:a seed-specific bZIP protein that recognizes the GCN4-like motif in the bifactorial endosperm box of prolamin genes. Plant Cell,1997,9:171-184.
    Allen E, Xie Z, Gustafson AM, et al. Evolution of microRNA genes by inverted duplication of target gene sequences in Arabidopsis thaliana. Nature Genetics,2004,36:1282-1290.
    Alonso-Peral MM, Li J, Li Y, et al. The microRNA 159-regulated GAMYB-like genes inhibit growth and promote programmed cell death in Arabidopsis. Plant Physiology,2010,154:757-771.
    Altuvia Y, Landgraf P, Lithwick G, et al. Clustering and conservation patterns of human microRNAs. Nucleic Acids Research,2005,33:2697-2706.
    Arazi T, Talmor-Neiman M, Stav R, et al. Cloning and characterization of micro-RNAs from moss. The Plant Journal,2005,43:837-848.
    Axtell MJ, Bowman JL. Evolution of plant microRNAs and their targets. Trends in Plant Science,2008, 13:343-349.
    Baker CC, Sieber P, Wellmer F, et al. The early extra petalsl Mutant Uncovers a Role for MicroRNA miR164c in Regulating Petal Number in Arabidopsis. Current Biology,2005,15:303-315.
    Bao N, Lye KW, Barton MK. MicroRNA binding sites in Arabidopsis class Ⅲ HD-ZIP mRNAs are required for methylation of the template chromosome. Developmental Cell,2004,7:653-662.
    Baumberger N, Baulcombe DC. Arabidopsis ARGONAUTE1 is an RNA Slicer that selectively recruits microRNAs and short interfering RNAs. Proc Natl Acad Sci U S A,2005,102:11928-11933.
    Bartel DP. MicroRNAs:genomics, biogenesis, mechanism, and function. Cell,2004,116:281-297.
    Baskerville S, Bartel DP. Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. Rna,2005,11:241-247.
    Bass BL. Double-stranded RNA as a template for gene silencing. Cell,2000,101:235-238.
    Baulcombe D. RNA silencing in plants. Nature,2004,431:356-363.
    Beitzinger M, Peters L, Zhu JY, et al. Identification of human microRNA targets from isolated argonaute protein complexes. RNA Biology,2007,4:76-84.
    Bologna NG, Mateos JL, Bresso EG, et al. A loop-to-base processing mechanism underlies the biogenesis of plant microRNAs miR319 and miR159. EMBO Journal,2009,28:3646-3656.
    Burton RA, Bewley JD, Smith AM, Bhattacharyya MK, Tatge H, Ring S, Bull V, Hamilton WD, Martin C. Starch branching enzymes belonging to distinct enzyme families are differentially expressed during pea embryo development. The Plant Journal,1995,7:3-15
    Busi MV, Bustamante C, D'Angelo C, et al. MADS-box genes expressed during tomato seed and fruit development. Plant Molecular Biology,2003,52:801-815.
    Chapman EJ, Carrington JC. Specialization and evolution of endogenous small RNA pathways. Nat Rev Genet,2007,8:884-896.
    Chen K, Rajewsky N. The evolution of gene regulation by transcription factors and microRNAs. Nature Reviews Genetics,2007,8:93-103.
    Diaz I, Vicente-Carbajosa J, Abraham Z, et al. The GAMYB protein from barley interacts with the DOF transcription factor BPBF and activates endosperm-specific genes during seed development. The Plant Journal,2002,29:453-464.
    Conlan RS, Hammond-Kosack M, Bevan M. Transcription activation mediated by the bZIP factor SPA on the endosperm box is modulated by ESBF-1 in vitro. The Plant Journal,1999,19:173-181.
    Diaz I, Vicente-Carbajosa J, Abraham Z, et al. The GAMYB protein from barley interacts with the DOF transcription factor BPBF and activates endosperm-specific genes during seed development. The Plant Journal,2002,29:453-464.
    Dung LV, Mikami I, Amano E, Sano Y. Study on the response of dull endosperm 2-2, du2-2, to two Wx alleles in rice. Breeding Science.2000,50:215-219
    Dunoyer P, Leoellier CH, Parizotto EA, et al. Probing the microRNA and small interfering RNA pathways with virus-encoded suppressors of RNA silencing. Plant Cell,2004,16:1235-1250.
    Duval M, Hsieh TF, Kim SY, et al. Molecular characterization of AtNAM:a member of the Arabidopsis NAC domain superfamily. Plant Molecular Biology,2002,50:237-248.
    Fahlgren N, Howell MD, Kasschau KD, et al. High-Throughput Sequencing of ArabidopsismicroRNAs: Evidence for Frequent Birth and Death of MIRNA Genes. PLoS ONE,2007,2:e219.
    Fang Y, Spector DL. Identification of nuclear dicing bodies containing proteins for microRNA biogenesis in living Arabidopsis plants. Current Biology,2007,17:818-823.
    Fang Y, You J, Xie K, et al. Systematic sequence analysis and identification of tissue-specific or stress-responsive genes of NAC transcription factor family in rice. Mol Genet Genomics,2008, 280:547-563.
    Ferrandiz C, Pelaz S, Yanofsky MF. Control of carpel and fruit development in Arabidopsis. Annu Rev Biochem,1999,68:321-354.
    Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature,1998,391:806-811.
    Fujita N, Yoshida M, Kondo T, et al. Characterization of SSIIIa-Deficient Mutants of Rice:The Function of SSⅢa and Pleiotropic Effects by SSIIIa Deficiency in the Rice Endosperm. Plant Physiology,2007,144:2009-2023
    Grad Y, Aach J, Hayes GD, et al. Computational and experimental identification of C. elegans microRNAs. Molecular Cell,2003,11:1253-1263.
    Guddeti S, Zhang DC, Li AL, et al. Molecular evolution of the rice miR395 gene family. Cell Research, 2005,15:631-638.
    Guo S, Kemphues KJ. par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell,1995,81:611-620.
    Hanashiro I, Itoh K, Kuratomi Y, et al. Granule-bound starch synthase I is responsible for biosynthesis of extra-long unit chains of amylopectin in rice. Plant Cell Physiol,2008,49:925-933.
    Hennen-Bierwagen TA, Liu F, Marsh RS, Kim S, Gan Q, Tetlow IJ, Emes MJ, James MG, Myers AM. Starch biosynthetic enzymes from developing maize endosperm associate in multisubunit complexes. Plant Physiology,2008,146:1892-1908
    Hirose T, Terao T. A comprehensive expression analysis of the starch synthase gene family in rice (Oryza sativa L.). Planta,2004,220:9-16.
    Isshiki M, Nakajima M, Satoh H. dull:rice mutants with tissue-specific effects on the splicing of the waxy pre-mRNA. Plant J,2000,23:451-460
    Jiao Y, Wang Y, Xue D, et al. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nature Genetics,2010,42:541-544.
    Jones-Rhoades MW. Prediction of plant miRNA genes. Methods Mol Biol,2010,592:19-30.
    Jones-Rhoades MW, Bartel DP. Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Molecular Cell,2004,14:787-799.
    Kaneko M, Inukai Y, Ueguchi-Tanaka M, et al. Loss-of-function mutations of the rice GAMYB gene impair alpha-amylase expression in aleurone and flower development. Plant Cell,2004,16:33-44.
    Kang H-G, Park S, Matsuoka M, et al. White-core endosperm floury endosperm-4 in rice is generated by knockout mutations in the C4-type pyruvate orthophosphate dikinase gene (OsPPDKB). The Plant Journal,2005,42:901-911
    Karrer EE, Rodriguez RL. Metabolic regulation of rice alpha-amylase and sucrose synthase genes in planta. The Plant Journal,1992,2:517-523.
    Kawakatsu T, Yamamoto MP, Touno SM, et al. Compensation and interaction between RISBZ1 and RPBF during grain filling in rice. The Plant Journal,2009,59:908-920.
    Kawashima CG, Yoshimoto N, Maruyama-Nakashita A, et al. Sulphur starvation induces the expression of microRNA-395 and one of its target genes but in different cell types. The Plant Journal,2009, 57:313-321.
    Kim JH, Kende H. A transcriptional coactivator, AtGIFl, is involved in regulating leaf growth and morphology in Arabidopsis. Proc Natl Acad Sci U S A,2004,101:13374-13379.
    Kim YS, Kim SG, Park JE, et al. A membrane-bound NAC transcription factor regulates cell division in Arabidopsis. Plant Cell,2006,18:3132-3144.
    Kurihara Y, Watanabe Y. Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions. Proc Natl Acad Sci U S A,2004,101:12753-12758.
    Kurihara Y, Takashi Y, Watanabe Y. The interaction between DCL1 and HYLl is important for efficient and precise processing of pri-miRNA in plant microRNA biogenesis. Rna,2006,12:206-212.
    Lagos-Quintana M. Identification of Novel Genes Coding for Small Expressed RNAs. Science,2001, 294:853-858.
    Lai EC, Tomancak P, Williams RW, et al. Computational identification of Drosophila microRNA genes. Genome Biology,2003,4:R42.
    Lau NC, Lim LP, Weinstein EG, et al. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science,2001,294:858-862.
    Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell,1993,75:843-854.
    Lee Y, Ahn C, Han J, et al. The nuclear RNase III Drosha initiates microRNA processing. Nature,2003, 425:415-419.
    Li Y-F, Zheng Y, Addo-Quaye C, et al. Transcriptome-wide identification of microRNA targets in rice. The Plant Journal,2010,62:742-759.
    Liljegren SJ, Ditta GS, Eshed Y, et al. SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis. Nature,2000,404:766-770.
    Liu B. Loss of Function of OsDCLl Affects MicroRNA Accumulation and Causes Developmental Defects in Rice. Plant Physiology,2005,139:296-305.
    Liu Z, Bao W, Liang W, et al. Identification of gamyb-4 and analysis of the regulatory role of GAMYB in rice anther development. Journal of Integrative Plant Biology,2010,52:670-678.
    Llave C, Kasschau KD, Rector MA, et al. Endogenous and silencing-associated small RNAs in plants. Plant Cell,2002a,14:1605-1619.
    Llave C, Xie Z, Kasschau KD, et al. Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science,2002b,297:2053-2056.
    Loreti E, Matsukura C, Gubler F, et al. Glucose repression of alpha-amylase in barley embryos is independent of GAMYB transcription. Plant Molecular Biology,2000,44:85-90.
    Lu C, Jeong DH, Kulkarni K, et al. Genome-wide analysis for discovery of rice microRNAs reveals natural antisense microRNAs (nat-miRNAs). Proceedings of the National Academy of Sciences, 2008,105:4951-4956.
    Ma JB, Ye K, Patel DJ. Structural basis for overhang-specific small interfering RNA recognition by the PAZ domain. Nature,2004,429:318-322.
    Ma JB, Yuan YR, Meister G, et al. Structural basis for 5'-end-specific recognition of guide RNA by the A. fulgidus Piwi protein. Nature,2005,434:666-670.
    Ma K, Xiao J, Li X, et al. Sequence and expression analysis of the C3HC4-type RING finger gene family in rice. Gene,2009,444:33-45.
    Martin C, Smith AM. Starch biosynthesis. Plant Cell,1995,7:971-985
    Matranga C, Tomari Y, Shin C, et al. Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi en2yme complexes. Cell,2005,123:607-620.
    Matsukura C, Saitoh T, Hirose T, et al. Sugar uptake and transport in rice embryo. Expression of companion cell-specific sucrose transporter (OsSUTl) induced by sugar and light Plant Physiology, 2000,124:85-93.
    McElver J, Tzafiir I, Aux G, et al. Insertional mutagenesis of genes required for seed development in Arabidopsis thaliana. Genetics,2001,159:1751-1763.
    Megraw M. MicroRNA promoter element discovery in Arabidopsis. Rna,2006,12:1612-1619.
    Meng Y, Huang F, Shi Q, Cao J, Chen D, Zhang J, Ni J, Wu P, Chen M (2009) Genome-wide survey of rice microRNAs and microRNA-target pairs in the root of a novel auxin-resistant mutant. Planta 230:883-898
    Messeguer R, Ganal MW, Steffens JC, et al. Characterization of the level, target sites and inheritance of cytosine methylation in tomato nuclear DNA. Plant Molecular Biology,1991,16:753-770.
    Mette MF, van der Winden J, Matzke M, et al. Short RNAs can identify new candidate transposable element families in Arabidopsis. Plant Physiology,2002,130:6-9.
    Montgomery TA, Howell MD, Cuperus JT, et al. Specificity of ARGONAUTE7-miR390 interaction and dual functionality in TAS3 trans-acting siRNA formation. Cell,2008,133:128-141.
    Nagasaki H, Itoh J, Hayashi K, et al. The small interfering RNA production pathway is required for shoot meristem initiation in rice. Proc Natl Acad Sci U S A,2007,104:14867-14871.
    Nakamura Y, Umemoto T, Ogata N, et al. Starch debranching enzyme (R-enzyme or pullulanase) from developing rice endosperm:purification, cDNA and chromosomal localization of the gene. Planta, 1996,199:209-218.
    Napoli C, Lemieux C, Jorgensen R. Introduction of a Chimeric Chalcone Synthase Gene into Petunia Results in Reversible Co-Suppression of Homologous Genes in trans. Plant Cell,1990,2:279-289.
    Nishi A, Nakamura Y, Tanaka N, Satoh H. Biochemical and genetic analysis of the effect of amylose-extender mutation in rice endosperm. Plant Physiology,2001,127:459-472
    Nogueira FT, Chitwood DH, Madi S, et al. Regulation of small RNA accumulation in the maize shoot apex. PLoS Genet,2009,5:e1000320.
    Nonomura K, Morohoshi A, Nakano M, et al. A germ cell specific gene of the ARGONAUTE family is essential for the progression of premeiotic mitosis and meiosis during sporogenesis in rice. Plant Cell,2007,19:2583-2594.
    Onodera Y, Suzuki A, Wu CY, et al. A rice functional transcriptional activator, RISBZ1, responsible for endosperm-specific expression of storage protein genes through GCN4 motif. Journal of Biology Chemistry,2001,276:14139-14152.
    Parizotto EA, Dunoyer P, Rahm N, et al. In vivo investigation of the transcription, processing, endonucleolytic activity, and functional relevance of the spatial distribution of a plant miRNA. Genes Development,2004,18:2237-2242.
    Park MY, Wu G, Gonzalez-Sulser A, et al. Nuclear processing and export of microRNAs in Arabidopsis. Proc Natl Acad Sci U S A,2005,102:3691-3696.
    Pysh LD, Aukerman MJ, Schmidt RJ. OHP1:a maize basic domain/leucine zipper protein that interacts with opaque2. Plant Cell,1993,5:227-236.
    Qu F, Ye X, Morris TJ. Arabidopsis DRB4, AGO1, AGO7, and RDR6 participate in a DCL4-initiated antiviral RNA silencing pathway negatively regulated by DCL1. Proc Natl Acad Sci U S A,2008, 105:14732-14737.
    Reinhart BJ. MicroRNAs in plants. Genes & Development,2002,16:1616-1626.
    Reinhart BJ, Slack FJ, Basson M, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature,2000,403:901-906.
    Rivas FV, Tolia NH, Song JJ, et al. Purified Argonaute2 and an siRNA form recombinant human RISC. Nature Structrual Molecular Biology,2005,12:340-349.
    Ryoo N, Yu C, Park C-S, Baik M-Y, et al. Knockout of a starch synthase gene OsSSIIIa/Flo5 causes white-core floury endosperm in rice (Oryza sativa L.). Plant Cell Reports,2007,26:1083-1095
    Satoh H, Nishi A, Yamashita K, et al. Starch-branching enzyme I-deficient mutation specifically affects the structure and properties of starch in rice endosperm. Plant Physiology,2003,133:1111-1121.
    Schwab R, Palatnik JF, Riester M, et al. Specific effects of microRNAs on the plant transcriptome. Developmental Cell,2005,8:517-527.
    Schwarz DS, Hutvagner G, Du T, et al. Asymmetry in the assembly of the RNAi enzyme complex. Cell, 2003,115:199-208.
    Shen B, Goodman HM. Uridine addition after microRNA-directed cleavage. Science,2004,306:997.
    Singh V, Okadome H, Toyoshima H, et al. Thermal and physicochemical properties of rice grain, flour and starch. Journal of Agriculture Food Chemistry,2000,48:2639-2647.
    Smith A M, Denyer K, Martin C R. What controls the amount and structure of starch in storage organs. Plant Physiology,1995,107:673-677
    Song JJ, Joshua-Tor L. Argonaute and RNA--getting into the groove. Current Opinion Structural Biology,2006,16:5-11.
    Song JJ, Smith SK, Hannon GJ, et al. Crystal structure of Argonaute and its implications for RISC slicer activity. Science,2004,305:1434-1437.
    Souret FF, Kastenmayer JP, Green PJ. AtXRN4 degrades mRNA in Arabidopsis and its substrates include selected miRNA targets. Molecular Cell,2004,15:173-183.
    Sunkar R. Novel and Stress-Regulated MicroRNAs and Other Small RNAs from Arabidopsis. Plant Cell, 2004,16:2001-2019.
    Sunkar R. Identification and characterization of endogenous small interfering RNAs from rice. Nucleic Acids Research,2005a,33:4443-4454.
    Sunkar R. Cloning and Characterization of MicroRNAs from Rice. Plant Cell,2005b,17:1397-1411.
    Sunkar R, Chinnusamy V, Zhu J. Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends in Plant Science,2007,12:301-309.
    Sunkar R, Zhou X, Zheng Y, et al. Identification of novel and candidate miRNAs in rice by high throughput sequencing. BMC Plant Biology,2008,8:25.
    Tang G, Reinhart BJ, Bartel DP, et al. A biochemical framework for RNA silencing in plants. Genes Dev,2003,17:49-63.
    Tetlow IJ, Beisel KG, Cameron S, Makhmoudova A, Liu F, Bresolin NS, Wait R, Morell MK, Emes MJ. Analysis of protein complexes in wheat amyloplasts reveals functional interactions among starch biosynthetic enzymes. Plant Physiology,2008,146:1878-1891
    Toyota K, Tamura M, Ohdan T, Nakamura Y. Expression profiling of starch metabolism-related plastidic translocator genes in rice. Planta,2006,223:248-257
    Tsuji H, Aya K, Ueguchi-Tanaka M, et al. GAMYB controls different sets of genes and is differentially regulated by microRNA in aleurone cells and anthers. The Plant Journal,2006,47:427-444.
    Uauy C, Distelfeld A, Fahima T, et al. A NAC Gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science,2006,314:1298-1301.
    Valoczi A, Varallyay E, Kauppinen S, et al. Spatio-temporal accumulation of microRNAs is highly coordinated in developing plant tissues. The Plant Journal,2006,47:140-151.
    Vanyushin BF. DNA methylation in plants. Curr Top Microbiol Immunol,2006,301:67-122.
    Vazquez F, Blevins T, Ailhas J, et al. Evolution of Arabidopsis MIR genes generates novel microRNA classes. Nucleic Acids Res,2008,36:6429-6438.
    Vicente-Carbajosa J, Moose SP, Parsons RL, et al. A maize zinc-finger protein binds the prolamin box in zein gene promoters and interacts with the basic leucine zipper transcriptional activator Opaque2. Proc Natl Acad Sci U S A,1997,94:7685-7690.
    Voinnet O. Post-transcriptional RNA silencing in plant-microbe interactions:a touch of robustness and versatility. Curr Opin Plant Biol,2008,11:464-470.
    Voinnet O. Origin, Biogenesis, and Activity of Plant MicroRNAs. Cell,2009,136:669-687.
    Vrebalov J, Ruezinsky D, Padmanabhan V, et al. A MADS-box gene necessary for fruit ripening at the tomato ripening-inhibitor (rin) locus. Science,2002,296:343-346.
    Wang AY, Kao MH, Yang WH, et al. Differentially and developmentally regulated expression of three rice sucrose synthase genes. Plant Cell Physiology,1999,40:800-807.
    Wang XJ, Reyes JL, Chua NH, et al. Prediction and identification of Arabidopsis thaliana microRNAs and their mRNA targets. Genome Biology,2004,5:R65.
    Waters BM, Uauy C, Dubcovsky J, et al. Wheat (Triticum aestivum) NAM proteins regulate the translocation of iron, zinc, and nitrogen compounds from vegetative tissues to grain. Journal of Experimental Botany,2009,60:4263-4274.
    Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell,1993,75:855-862.
    Wu G, Park MY, Conway SR, et al. The Sequential Action of miR156 and miR172 Regulates Developmental Timing in Arabidopsis. Cell,2009a,138:750-759.
    Wu L, Zhang Q, Zhou H, et al. Rice MicroRNA effector complexes and targets. Plant Cell,2009b, 21:3421-3435.
    Wu L, Zhou H, Zhang Q, et al. DNA methylation mediated by a microRNA pathway. Molecular Cell, 2010,38:465-475.
    Xie Z. Expression of Arabidopsis MIRNA Genes. Plant Physiology,2005,138:2145-2154.
    Xie Z, Kasschau KD, Carrington JC. Negative feedback regulation of Dicer-Like1 in Arabidopsis by microRNA-guided mRNA degradation. Current Biology,2003,13:784-789.
    Xie Z, Allen E, Fahlgren N, et al. Expression of Arabidopsis MIRNA genes. Plant Physiology,2005, 138:2145-2154.
    Xie Z, Johansen LK, Gustafson AM, et al. Genetic and Functional Diversification of Small RNA Pathways in Plants. PLoS Biology,2004,2:e104.
    Xue LJ, Zhang JJ, Xue HW. Characterization and expression profiles of miRNAs in rice seeds. Nucleic Acids Research,2008,37:916-930.
    Yamagata H,Tanaka K.The site of synhtesis and accunmlation of rice storgae proteins.Plant Cell Physiology,1986,27:135—145
    Yamamoto MP, Onodera Y, Touno SM, et al. Synergism between RPBF Dof and RISBZ1 bZIP activators in the regulation of rice seed expression genes. Plant Physiology,2006,141:1694-1707.
    Yang JH, Han SJ, Yoon EK, et al.'Evidence of an auxin signal pathway, microRNA167-ARF8-GH3, and its response to exogenous auxin in cultured rice cells'. Nucleic Acids Res,2006,34:1892-1899.
    Yano M, Okuno K, Kawakami J, Satoh H, Omura T. High amylose mutants of rice, Oryza sativa L. Theoretical and Applied Genetics,1985,69:253-257
    Yao Y, Guo G, Ni Z, et al. Cloning and characterization of microRNAs from wheat (Triticum aestivum L.). Genome Biology,2007,8:R96.
    Yu B, Yang Z, Li J, et al. Methylation as a crucial step in plant microRNA biogenesis. Science,2005, 307:932-935.
    Zhang B, Wang Q, Pan X. MicroRNAs and their regulatory roles in animals and plants. Journal of Cellular Physiology,2007,210:279-289.
    Zhang B, Pan X, Cannon CH, et al. Conservation and divergence of plant microRNA genes. The Plant Journal,2006,46:243-259.
    Zhang Y. miRU:an automated plant miRNA target prediction server. Nucleic Acids Research,2005, 33:W701-W704.
    Zhao T, Li G, Mi S, et al. A complex system of small RNAs in the unicellular green alga Chlamydomonas reinhardtii. Genes& Development,2007,21:1190-1203.
    Zhu Q-H, Upadhyaya NM, Gubler F, et al. Over-expression of miR172 causes loss of spikelet determinacy and floral organ abnormalities in rice (Oryza sativa). BMC Plant Biology,2009,9:149.
    Zhu QH, Spriggs A, Matthew L, et al. A diverse set of microRNAs and microRNA-like small RNAs in developing rice grains. Genome Research,2008,18:1456-1465.
    Zhu T, Budworth P, Chen W, et al. Transcriptional control of nutrient partitioning during rice grain filling. Plant Biotechnol Journal,2003,1:59-70.
    符文英,向远鸿等.食用优质稻米胚乳显微结构研究.湖南农业大学学报,1997,23(5):411一418.
    金正勋,等.氮肥对稻米奎白及蒸煮食味品质特性的影响.植物营养与肥料学报,2001,7(:1)31—35
    韦存虚,蓝盛银,徐珍秀.水稻胚乳细胞质膜内陷的超微结构和磷酸酶的细胞化学定位.植物生理与分子生物学学报,2002,28(3):221—226
    杨弘远水稻生殖生物学第九章颖果形成2005:146-147
    杨建昌,彭少兵,顾世梁,R.M.Visperas,朱庆森.水稻灌浆期籽粒中3个与淀粉合成有关的酶活性变化.作物学报,2007,27:157-164

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700