小黑杨种子萌发及后萌发时期的表达谱分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小黑杨(Populus simonii×Populus nigra)是杨柳科杨属乔木,是荒山荒地造林绿化的先锋树种,又是著名的抗旱、耐寒、耐瘠薄树种,同时也是北方主推的造林树种。目前,对小黑杨的研究多集中于生态学、造林学和育种学等方面,在小黑杨种子萌发机理方面的研究尚未见报道。
     大多数开花植物通过有性生殖产生的种子来繁衍后代,种子的萌发是从休眠胚时期到产生一个能够进行光合自养的个体植株的一系列转变过程,从浸种到成苗涉及诸多迅速而复杂的生理生化过程。因为在此阶段最易受到各种伤害,萌发被认为是植物一生中最重要的时期。因此,种子萌发等过程对林木的育苗生产具有重要意义。采用分子生物学手段了解和揭示林木种子萌发过程中基因表达的变化规律及生理学变化特征可以为促进种子萌发、提高种子抗性等研究提供理论依据。
     对种子萌发过程的分子机理研究一直是种子生物学研究的重要方向之一,而近年来基因组学的出现为解决这些问题提供了一种更方便有效的手段。但是当前种子萌发的基因组学研究主要集中在拟南芥及农作物等少数测序的模式植物和经济作物上,作为重要的木木模式植物的杨树在此方面的研究还缺少相关报道。开展小黑杨种子萌发的数字基因表达谱分析工作,不仅对探讨小黑杨萌发的机理、完善种子生物学研究、解决林木种子萌发难题具有非常重要的意义,而且对于深入理解复杂基因组植物的分子遗传学特征及指导其育种研究也具有重要价值。
     本研究采用高通量的数字基因表达谱(DGE)技术,测定了干种子期、快速吸水期、缓速吸水期、胚轴伸长期、子叶伸展期、幼苗期等六个时期的表达谱,分别获得了在小黑杨成熟种子中特异/优势表达的基因和小黑杨种了萌发过程不同时期表达变化差异显著的基因,并对这两部分基因进行了分析,结果如下:
     (1)通过对成熟种子与幼苗表达谱的比较,获得了1789个在小黑杨成熟种子中特异/优势表达的基因。对这1789个基因在丰度、家族数量以及GO富集方面的分析发现这些基因主要参与了脂代谢、转运、氧化还原、ATP合成、己糖合成、高尔基体转运以及转录调控等相关过程。
     (2)通过对成熟种子、快速吸水期种子、缓速吸水期种-子、胚轴伸长期种子以及子叶伸展期幼苗的表达谱的比较分析,获得了6496个差异表达基因。这些基因按其表达模式可分为12类,主要参与了细胞骨架重建、细胞多糖类代谢、转运、蛋白质降解、氨基酸代谢以及氧化磷酸化等生物学过程。
     (3)翻译以及氧化磷酸化途径等生物学过程所富集的基因在小黑杨种子萌发的大部分过程中其普遍以较高水平转录。说明这类基因参与了对小黑杨种子萌发过程中大部分阶段的调控作用。
     (4)细胞多糖代谢相关基因、脂代谢相关基因、光合作用相关基因以及单羧酸代谢类相关基因的mRNA仅在1个或2个时期表达量显著提高,说明这类基因参与了对小黑杨种子萌发过程中个别时期的调控作用。
     (5)对种子萌发全过程差异基因进行分析,共发现64个显著性富集的Pathway途径,分属于共21种不同的代谢途径,分别富集于不同时期;对相邻时期差异基因富集情况进一步分析表明,这些显著富集的途径与呼吸作用、贮藏物质分解及细胞原料类物质合成以及核酸代谢有关。
     (6)对种子萌发过程中呼吸强度、蛋白质含量、DNA含量、氨基酸含量以及可溶性多糖含量等的生理指标检测结果分析表明,种子萌发过程中存在着两个种子贮藏物质急速变化期——快速吸水期和胚轴伸长期,同时在这两个时期呼吸速率也显著发生改变。
     (7)对可能影响呼吸强度、蛋白质含量、DNA含量、氨基酸含量以及可溶性多糖含量等的生理指标的限速酶家族进行分析,结果表明,21个基因贮藏物质分解类限速酶在转录水平上与生理指标变化表现为一定的联系。
     本研究通过6个时期的DGE分析,结合呼吸速率、可溶性糖及可溶性蛋白等生理指标的变化分析,从转录组学角度系统地揭示了小黑杨种子从萌发到幼苗阶段6个时期各类基因的表达模式,从而为进一步分析各基因家族在种子萌发过程中的作用提供了宝贵的实验依据。
     本研究中得到了大量参与小黑杨种子萌发过程的基因,这些基因中不仅包含大量已知功能的基因,更重要的是还包括许多未知功能的新基因。这些基因的发现为进一步从遗传学和分子生物学角度揭示小黑杨种子萌发过程的分子机理提供了可靠依据。
Populus simonii×Populus nigra is a lofty arbor, which belongs to Salicaceae and Populus, and it is a vanward species of afforestation in mountain waste and wasteland and a famous industrial timber species. The study of Populus simonii×Populus nigra mainly focuses on ecology, silviculture and breeding. But little is known about the seed germination of Populus simonii×Populus nigra in molecular mechanism.
     Most flowering plants reproduce by seed for multiplication with sexual reproduction. Seed germination is the transition of the quiescent embryo into a new photosynthetically active plant. Germination is a complex physiological and biochemical process during imbibed mature seed to seedlings in a rapid conversion and prepare for seedling growth. Because of its susceptibility to injury, disease and so on, germination is considered to be the most critical phase in the plant life cycle. It is one important issues of plant cell biology to study the molecular mechanisms of seed germination. The emergences of genomics provide a good means for studying the mechanisms of seed germination in recent years. At present, except on model plant Arabidopsis and other minority of model plants and crops, few works have been performed on Populus which is as an important mode of woody plant. The genomics research on Populus simonii×Populus nigra seed germination has very important significant not only for exploring the mechanism of germination and improving seed biology research but also for deeply understanding of molecular genetics of complex genomic plants. It also has great value for guiding breeding work.
     In this study, we identified Populus simonii×Populus nigra seed-specific/preferential genes and differentially expressed genes in Populus simonii×Populus nigra seed during germination via DGE. The main results are listed as follows:
     (1) By comparing the DGE of Populus simonii×Populus nigr mature seed with ten-day-old seedling, we identified1789genes specifically or preferentially expressed in Populus simonii×Populus nigr mature seed. Through our analysis of these1789genes in abundance, family number, and GO enrichment, we found that most of them were involved in lipid metabolic process, transport, redox, ATP synthesis, hexose metabolic process, Golgi vesicle-mediated transport and transcription factors. We speculate that the genes specificially expressed in seed of Populus simonii×Populus nigr might be involved in the regulation of seed germination in early phase.
     (2) Through comparison mature seed, rapid water-uptake phase, slow water-uptake phase, radical elongation phase and postgermination phase expressed genes, we obtained6496differentially expressed genes. These genes were divided into12clusters according to their expression patterns, and most of them were involved in cell skeleton organization, cellular polysaccharide metabolic process, transport and protein degradation, amino acid activation and oxidative phosphorylation. These genes may play important roles during seed germination in Populus simonii×Populus nigr.
     (3) Genes enriched in translation and oxidative phosphorylation pathways and other biological processes in the Populus seed germination is express in high level in most of the germination process, and these genes may play a key role in Populus simonii×Populus nigr seed germination.
     (4) Genes expression related polysaccharide metabolism, lipid metabolism-related genes, photosynthesis, as well as single-carboxylic acid metabolism was significantly increased only in one or two periods, these results show that these genes play a regulation role in thePopulus seed germination in a specific period in the Populus seed germination.
     (5) Analysis of the differentially genes expressed in the whole germination,64pathway were enriched significant and belongs to21different metabolic pathways and respectively occurred in different periods; Futher analysis the enriched differential gene in adjacent period show that these gene involved pathway related respiration, storage the substance decomposes synthesis and cell raw material as well as nucleic acid metabolism.
     (6) To test the respiration rate, protein content, DNA content, amino acid content and soluble polysaccharide content, the results shows that there are two period, rapid water-uptake phase and radical elongation, that seed storage substances changes rapidly during seed germination, while respiration rate in both periods also significantly changed.
     (7) Analysis of the rate-limiting enzyme coded by the gene family that effect respiratory strength, protein content, DNA content, amino acid content and soluble polysaccharide content, the results showed that there are some relevant between21genes belong to storage material decomposition rate-limiting enzyme in transcriptional level and physiological changes.
     In conclusion, a large number of genes involved in seed germination were identified through DGE analysis of six different experimental samples in Populus simonii×Populus nigr. Some of them have been found to function in reproduction. We also found a number of novel candidate genes that may play roles in the process. Our results provide a basis for further analysis of seed germination in Populus simonii xPopulus nigr.
     In the study we got a large numbers gene invoved in the process of seed germination of Populus simonii×Populus nigr, these genes not only contains a large number of known genes, more important is also include many novel genes. These genes will largely contribute to study of the molecular mechanism of seed germination process on genetics and molecular biology.
引文
[1]胡晋.种子生物学.高等教育出版社.2006:1-2
    [2} Rajjou L, Duval M, Gallardo K. Seed germination and vigor [J]. Annu rev plant biol.2012, 63:507-533
    [3]Roberts E H. Seed science and technology.1973, predicting the storage life of seed Zurich
    [4]Ellis R H, Hong T D, Roberts E H. An intermediate category of seed storage behaviour. I. Coffee [J]. J Exp Bot,1990,41(9):1167-1174
    [5]Bewley J D, Black M. Seeds:physiology of development and germination [M]. Springer, 1994
    [6]Bewley J D. Seed germination and dormancy [J]. Plant Cell,1997,9(7):1055
    [7]Nonogaki H, Bassel G W, Bewley J D. Germination—still a mystery [J]. Plant Sci,2010, 179(6):574-581
    [8]Bove J, Jullien M, Grappin P. Functional genomics in the study of seed germination [J]. Genome Biol,2001,3(1):10021-10025
    [9]Bradford K J. Water relations in seed germination [J]. Seed development and germination. 1995,1(13):351-396
    [10]Preston J, Tatematsu K, Kamiya Y, et al. Studies on early events in response to seed imbibition in Arabidopsis. In 2nd Int. Soc. Seed Sci. (ISSS) Workshop on Molecular Aspects of Seed Dormancy and Germination, Salamanca, Spain,2007
    [11]Howell K A, Narsai R, Carroll A. Mapping metabolic and transcript temporal switches during germination in rice highlights specific transcription factors and the role of RNA instability in the germination process [J]. Plant physiol,2009,149(2):961-980
    [12]宋松泉,程红焱,姜孝成.种子生物学.科学出版社,2008:168-199
    [13]Bewley J D, Marcus A. Gene expression in seed development and germination [J]. Prog nucleic acid re,1990,38:165-193
    [14]Kigel J, Galili G. Seed development and germination. New York:Marcel Dekker.853 pp. Seed development and germination [M]. CRC,2005,1995:853
    [15]Crowe J H, Crowe L M. Membrane integrity in anhydrobiotic organisms:toward a mechanism for stabilizing dry cells [J].1992:87-103
    [16]Sandoval J A, Huang Z H, Garrett D C. N-Acylphosphatidy lethanolamine in dry and imbibing cotton seeds [J]. Plant Physiol,1995,109(1):269-275
    [17]Dandoy E, Schnys R, Deltour R. Appearance and repair of apurinic/apyrimidinic sites in DNA during early germination of Zea mays [J]. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis,1987,181(1):57-60
    [18]Cheah K S E, Osborne D J. DNA lesions occur with loss of viability in embryos of ageing rye seed [J]. Nature,1978,272:593-599
    [19]Waterworth W M, Masnavi G, Bhardwaj R M. A plant DNA ligase is an important determinant of seed longevity [J]. Plant J,2010,63(5):848-860
    [20]Macovei A, Balestrazzi A, Confalonieri M. New insights on the barrel medic MtOGGl and MtFPG functions in relation to oxidative stress response in planta and during seed imbibition [J]. Plant Physiol Biochem,2011,49(9):1040-1050
    [21]Hunt L, Holdsworth M J, Gray J E. Nicotinamidase activity is important for germination [J]. Plant J.2007,51(3):341-351
    [22]Botha F C. Potgieter G P, Botha A M. Respiratory metabolism and gene expression during seed germination [J]. Plant growth regulation,1992,11(3):211-224
    [23]Dommes J, Walle C. Polysome formation and incorporation of new ribosomes into poly somes during germination of the embryonic axis of maize [J]. Physiol Plantarum, 1990.79(2):289-296
    [24]Comai L, Harada J J. Transcriptional activities in dry seed nuclei indicate the timing of the transition from embryogeny to germination [J]. P Natl Acad Sci,1990,87(7):2671-2674
    [25]Lane B G. Cellular desiccation and hydration:developmentally regulated proteins, and the maturation and germination of seed embryos [J]. FASEB J,1991,5(14):2893-2901
    [26]Jiang L, Kermode A R. Role of desiccation in the termination of expression of genes for storage proteins [J]. Seed Sci Res,1994,4:149-149
    [27]Han B, Wayne Hughes D, Galau G A. Changes in late-embryogenesis-abundant (LEA) messenger RNAs and dehydrins during maturation and premature drying ofRicinus communis L. seeds [J]. Planta,1997,201(1):27-35
    [28]Beltran-Pena E, Ortiz-Lopez A, Jimenez E S. Synthesis of ribosomal proteins from stored mRNAs early in seed germination [J]. Plant mol Bio,1995,28(2):327-336
    [29]Lane B G. Oxalate, germin, and the extracellular matrix of higher plants [J]. FASEB J, 1994,8(3):294-301
    [30]Nabors M W, Lang A. The growth physics and water relations of red-light-induced germination in lettuce seeds [J]. Planta,1971,101(1):1-25
    [31]Pavlista A D, Haber A H. Embryo expansion without protrusion in lettuce seeds [J]. Plant Physiol,1970,46(4):636
    [32]Arcila J, Mohapatra S C. Development of tobacco seedling.2. Morphogenesis during radicle protrusion [J]. Tobacco Sci,1983,27:35-40
    [33]Welbaum G E, Bradford K J. Water relations of seed development and germination in muskmelon (Cucumis melo L.) IV. Characteristics of the perisperm during seed development [J]. Plant physiol,1990,92(4):1038-1045
    [34]Watkins J T, Cantliffe D J. Mechanical resistance of the seed coat and endosperm during germination of Capsicum annuum at low temperature [J]. Plant Physiol,1983,72(1):146-150
    [35]Groot S P C, Karssen C M. Gibberellins regulate seed germination in tomato by endosperm weakening:a study with gibberellin-deficient mutants [J]. Planta,1987,171(4): 525-531
    [36]Toorop P E, Van Aelst A C, Hilhorst H W M. Endosperm cap weakening and endo-β-mannanase activity during priming of tomato (Lycopersicon esculentum cv. moneymaker) seeds are initiated upon crossing a threshold water potential. Seed Sci Res,1998,8:483-491
    [37]Wu C T, Leubner-Metzger G, Meins J F. Class I β-1,3-glucanase and chitinase are expressed in the micropylar endosperm of tomato seeds prior to radicle emergence [J]. Plant Physiol,2001,126(3):1299-1313
    [38]Chen F, Bradford K J. Expression of an expansin is associated with endosperm weakening during tomato seed germination [J]. Plant Physiol,2000,124(3):1265-1274
    [39]Welbaum G E, Muthui W J, Wilson J H. Weakening of muskmelon perisperm envelope tissue 4 [J]. J Exp Bot,1995,46(4):391-400
    [40]da Silva E A, Toorop P E, Nijsse J. Exogenous gibberellins inhibit coffee (Coffea arabica cv. Rubi) seed germination and cause cell death in the embryo [J]. J Exp Bot,2005, 56(413):1029-1038
    [41]da Silva E A A, Toorop P E, van Aelst A C. Abscisic acid controls embryo growth potential and endosperm cap weakening during coffee (Coffea arabica cv. Rubi) seed germination [J]. Planta,2004,220(2):251-261
    [42]Muller K, Heb B, Leubner-Metzger G. A role for reactive oxygen species in endosperm weakening [J]. Seeds:Biology, Development and Ecology. Wallingford:CAB International,2007:287-295
    [43]Muller K, Tintelnot S, Leubner-Metzger G. Endosperm-limited Brassicaceae seed germination:abscisic acid inhibits embryo-induced endosperm weakening of Lepidium sativum (cress) and endosperm rupture of cress and Arabidopsis thaliana [J]. Plant Cell Physiol,2006,47(7):864-877
    [44]Graeber K, Linkies A, Muller K. Cross-species approaches to seed dormancy and germination:conservation and biodiversity of ABA-regulated mechanisms and the Brassicaceae DOG1 genes [J]. Plant mol Biol,2010,73(1):67-87
    [45]Pinto L V A, Davide A C, De Jesus V A M. Mechanism and control of Solanum lycocarpum seed germination [J]. Ann Bot,2007,100(6):1175-1187
    [46]Anese S, da Silva E A A, Davide A C. Seed priming improves endosperm weakening, germination, and subsequent seedling development of Solanum lycocarpum St. Hil [J]. Seed Sci Technol,2011,39(1):125-139
    [47]Ikuma H, Thimank K V. The role of the seed-coats in germination of photosensitive lettuce seeds [J]. Plant Cell Physiol,1963,4(2):169-185
    [48]Bewley J D. Breaking down the walls—a role for endo-(3-mannanase in release from seed dormancy? [J]. Trends Plant Sci,1997,2(12):464-469
    [49]Finch-Savage W E, Leubner-Metzger G. Seed dormancy and the control of germination [J]. New Phytol, 2006,171(3):501-523
    [50]Leubner-Metzger G. Functions and regulation of beta-1,3-glucanases during seed germination, dormancy release and after-ripening [J]. Seed Sci Res,2003,13:17-34
    [51]Voegele A, Linkies A, Muller K. Members of the gibberellin receptor gene family GID1 (GIBBERELLIN INSENSITIVE DWARF 1) play distinct roles during Lepidium sativum and Arabidopsis thaliana seed germination [J]. J Exp Bot,2011,62(14):5131-5147
    [52]Leviatov S, Shoseyov O, Wolf S. Involvement of endomannanase in the control of tomato seed germination under low temperature conditions [J]. Ann Bot,1995.76(1):1-6
    [53]Ren C, Kermode A R. An increase in pectin methyl esterase activity accompanies dormancy breakage and germination of yellow cedar seeds [J]. Plant Physiol,2000,124(1): 231-242
    [54]Salanenka Y A, Goffinet M C, Taylor A G. Structure and histochemistry of the micropylar and chalazal regions of the Ppperm-endosperm envelope of cucumber seeds associated with solute permeability and germination [J]. J Am Soc Hortic Sci,2009,134(4):479-487
    [55]Sitrit Y, Hadfield K A, Bennett A B. Expression of a polygalacturonase associated with tomato seed germination [J]. Plant Physiol,1999,121(2):419-428
    [56]徐振江,陈兵先,赵晟楠.种子萌发过程中胚乳的突破性研究.植物生理学报,2012,48(9):853-863
    [57]Bewley J D, Leung D W M, Ouellette F B. The cooperative role of endo-β-mannanase, β-mannosidase and a-galactosidase in the mobilization of endosperm cell wall hemicelluloses of germinated lettuce seed [M]. Mobilization of Reserves in Germination, 1983:137-152
    [58]Wu Y, Spollen W G, Sharp R E. Root growth maintenance at low water potentials (increased activity of xyloglucan endotransglycosylase and its possible regulation by abscisic acid) [J]. Plant Physiol,1994,106(2):607-615
    [59]Chen F, Nonogaki H, Bradford K J. A gibberellin-regulated xyloglucan endotransglycosylase gene is expressed in the endosperm cap during tomato seed germination [J]. J Ex Bot,2002,53(367):215-223
    [60]Nonogaki H, Gee O H, Bradford K J. A germination-specific endo-β-mannanase gene is expressed in the micropylar rndosperm cap of tomato seeds. Plant Physiol,2000,123: 1235-1245
    [61]Belotserkovsky H, Berger Y, Shahar R, et al. Specific role of LeMAN2 in the control of seed germination exposed by over-expression of the LeMAN3 gene in tomato plants. Planta,2007,227:199-209
    [62]Morris K, Linkies A, Muller K, et al. Regulation of seed germination in the close Arabidopsis relative Lepidium sativum:a global tissue-specific transcript analysis[J]. Plant Physiol.2011,155(4):1851-1870
    [63]Vogeli-Lange R, Frundt C, Hart C M, et al. Evidence for a role of β-1,3-glucanase in dicot seed germination[J]. Plant J.2002,5(2):273-278
    [64]Leubner-Metzger G, Friindt C, V geli-Lange R, et al. Class I β-1,3-glucanase in the endosperm of tobacco during germination. Plant Physiol,1995,109:751-759
    [65]Leubner-Metzger G, Frundt C, Meins F Jr. Effects of gibberellins, darkness and osmotica on endosperm rupture and class Iβ-1,3-glucanase induction in tobacco seed germination. Planta,1996,199:282-28
    [66]Leubner-Metzger G, Meins F. Antisense-transformation reveals novel roles for class I β-1,3-glucanase in tobacco seed after-ripening and photodormancy[J]. J Exp Bot. 2001,52(362):1753-1759
    [67]Morohashi Y, Matsushima H. Development of P-1,3-glucanase activity in germinated tomato seeds[J]. J Exp Bot.2000,51(349):1381-1387
    [68]Lopez-Molina L, Mongrand S, Chua N H. A postgermination developmental arrest checkpoint is mediated by abscisic acid and requires the ABI5 transcription factor in Arabidopsis[J].P Natl Acad Sci USA.2001,98(8):4782-4787
    [69]Lopez-Molina L, Mongrand S, McLachlin D T, et al. ABI5 acts downstream of ABI3 to execute an ABA-dependent growth arrest during germination[J]. Plant J.2002,32(3): 317-328
    [70]Rajjou L, Gallardo K, Debeaujon I, et al. The effect of a-amanitin on the Arabidopsis seed proteome highlights the distinct roles of stored and neosynthesized mRNAs during germination[J]. Plant Physiol.2004,134(4):1598-1613
    [71]Rajjou L, Belghazi M, Huguet R, et al. Proteomic investigation of the effect of salicylic acid on Arabidopsis seed germination and establishment of early defense mechanisms [J]. Plant physiol.2006,141(3):910-923
    [72]Fincher G B, Stone B A. Some chemical and morphological changes induced by gibberellic acid in embryo-free wheat grain[J]. Funct Plant Biol.1974,1(2):297-311
    [73]Ap Rees T. Pathways of carbohydrate breakdown in higher plants[J]. Int Rev Biochem. 1974,11:89-127
    [74]Mitsuhashi W, Oaks A. Development of endopeptidase activities in maize (Zea mays L.) endosperms[J]. Plant Physiol.1994,104(2):401-407
    [75]Miflin B J, Wallsgrove R M, Lea P J. Glutamine metabolism in higher plants[J]. Curr Top Cell Regul.1981,20:1
    [76]藤伊正·植物的休眠与发芽[M].北京:科学出版社.1980.95
    [77]Ren J, Tao L, Liu X M. Effect of water supply on seed germination of soil seed-bank in desert vegetation[J]. ACTA BOT SIN.2002,44(1):124-126
    [78]苏珮.山仑.水分协迫条件下高粱种了的吸水机制及其可溶性糖代谢的变化[J].西北植物学报.1996,16(003):203-207
    [79]郭秀璞,石晶,郭永新,等.渗透胁迫对小麦萌发生长及某些生理生化特性的影响[J].洛阳农业高等专科学校学报.1998,4:006
    [80]郑光华,史忠礼.赵同芳,等·实用种子生理学[M].北京:农业出版社,1990·
    [81]鱼小军,师尚礼,龙瑞军,等.生态条件对种子萌发影响研究进展[J].草业科学.2006.23(010):44-49
    [82]韩建国.实用牧草种子学[M].中国农业大学出版社.1997
    [83]Yamaguchi S, Kamiya Y. Gibberellins and light-stimulated seed germination [J]. J plant Growth Regul.2001,20(4):369-376
    [84]马成仓,洪法水.pH对油菜种子萌发和幼苗生长代谢的影响[J].作物学报.1998,24(4):509-512
    [85]Tyler L, Thomas S G, Hu J, et al. DELLA proteins and gibberellin-regulated seed germination and floral development in Arabidopsis[J].Plant Physiol.2004,135(2): 1008-1019
    [86]Lefebvre V, North H, Frey A, et al. Functional analysis of Arabidopsis NCED6 and NCED9 genes indicates that ABA synthesized in the endosperm is involved in the induction of seed dormancy[J]. Plant J.2006,45(3):309-319
    [87]Ruggiero B, Koiwa H, Manabe Y, et al. Uncoupling the effects of abscisic acid on plant growth and water relations. Analysis of stol/nced3, an abscisic acid-deficient but salt stress-tolerant mutant in Arabidopsis[J]. Plant Physiol.2004,136(2):3134-3147
    [88]Agrawal G K, Yamazaki M, Kobayashi M, et al. Screening of the Rice Viviparous Mutants Generated by Endogenous Retrotransposon Tos17 Insertion. Tagging of a Zeaxanthin Epoxidase Gene and a Novel OsTATC Gene[J]. Plant Physiol.2001,125(3): 1248-1257
    [89]He Y, Gan S. A novel zinc-finger protein with a proline-rich domain mediates ABA-regulated seed dormancy in Arabidopsis [J]. Plant Mol Biol.2004,54(1):1-9
    [90]Gosti F, Beaudoin N, Serizet C, et al. ABI1 protein phosphatase 2C is a negative regulator of abscisic acid signaling [J]. Plant Cell.1999,11(10):1897-1909
    [91]王伟青,程红焱.拟南芥突变体种子休眠与萌发的研究进展[J].植物学.2006,23(6):625-633
    [92]Finkelstein R R, Lynch T J. The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor [J]. The Plant Cell Online.2000,12(4):599-609
    [92]Xin Z, Zhao Y, Zheng Z L. Transcriptome analysis reveals specific modulation of abscisic acid signaling by ROP10 small GTPase in Arabidopsis [J]. Plant Physiol.2005,139(3): 1350-1365
    [94]Ward J M, Smith A M, Shah P K, et al. A new role for the Arabidopsis AP2 transcription factor, LEAFY PETIOLE, in gibberellin-induced germination is revealed by the misexpression of a homologous gene, SOB2/DRN-like [J]. Plant Cell.2006,18(1):29-39
    [95]Koornneef M, Van Eden J, Hanhart C J, et al. Genetic fine-structure of the GA-1 locus in the higher plant Arabidopsis thaliana (L.) Heynh [J]. Genet Res Camb.1983,41:57-68
    [96]Sun T P, Goodman H M, Ausubel F M. Cloning the Arabidopsis GA1 locus by genomic subtraction[J]. Plant Cell.1992,4(2):119-128
    [97]Chen F, Dahal P, Bradford K J. Two tomato expansin genes show divergent expression and localization in embryos during seed development and germination [J]. Plant Physiol. 2001,127(3):928-936
    [98]Lee S, Cheng H, King K E, et al. Gibberellin regulates Arabidopsis seed germination via RGL2, a GAI/RGA-like gene whose expression is up-regulated following imbibition[J]. Genes & development.2002,16(5):646-658
    [99]Swain S M, Tseng T, Olszewski N E. Altered expression of SPINDLY affects gibberellin response and plant development [J]. Plant Physiol.2001.126(3):1174-1185
    [100]Dill A, Thomas S G, Hu J, et al. The Arabidopsis F-box protein SLEEPY 1 targets gibberellin signaling repessors for gibberellin-induced degradation [J]. Plant Cell.2004, 16(6):1392-1405
    [101]Beaudoin N, Serizet C, Gosti F, et al. Interactions between abscisic acid and ethylene signaling cascades[J]. Science Signalling.2000,12(7):1103
    [102]Ghassemian M, Nambara E, Cutler S, et al. Regulation of abscisic acid signaling by the ethylene response pathway in Arabidopsis[J]. Science Signalling.2000,12(7):1117
    [103]Steber C M, McCourt P. A role for brassinosteroids in germination in Arabidopsis[J]. Plant Physiol.2001,125(2):763-769
    [104]Liu Y, Ye N, Liu R, et al. H2O2 mediates the regulation of ABA catabolism and GA biosynthesis in Arabidopsis seed dormancy and germination [J]. J EXP BOT.2010, 61(11):2979-2990
    [105]Sanger F, Nicklen S, Coulson A R. DNA sequencing with chain-terminating inhibitors[J]. Pnatl Acad Sci USA.1977,74(12):5463-5467
    [106]孙海汐,王秀杰.DNA测序技术发展及其展望[J]e-Science技术.2009,6:24-26
    [107]Aksyonov S A, Bittner M, Bloom L B, et al. Multiplexed DNA sequencing-by-synthesis[J]. Analytical biochemistry.2006,348(1):127-138.
    [108]Mardis E R. The impact of next-generation sequencing technology on genetics[J]. Trends Genet.2008,24(3):133
    [109]Margulies M, Egholm M, Altman W E, et al. Genome sequencing in microfabricated high-density picolitre reactors[J]. Nature.2005,437(7057):376-380.
    [110]http://www.illumina.com/index.ilmn
    [111]Ronaghi M, Uhlen M, Nyren P. A sequencing method based on real-time pyrophosphate[J]. Science (New York, NY).1998,281(5375):363,365
    [112]于亮,吴青.新一代测序技术之三国时代(下):ABI[J].生物通.2009,68:11-14
    [113]工升跃.新一代高通量测序技术及其临床应用前景[J].广东医学,.2010,31(003):269-272
    [114]http://solid.appliedbiosystems.com/
    [115]李建军,王瑞.现代测序技术及其在海洋生物研究中的应用[J].海洋通报.2011,30(1):104-107
    [116]张勇,张守攻,齐力旺,等.杨树——林木基因组学研究的模式物种[J].植物学通报.2006,23(3):286-293
    [117]Eckenwalder J E. Systematics and evolution of Populus[J]. Biology of Populus and its implications for management and conservation.1996,7:32
    [118]周以良,董世林,聂绍荃.黑龙江树木志.黑龙江:科学技术出版社.1986:118
    [119]杨传平,刘桂丰,梁宏伟等.耐盐基因Bet2A转化小黑杨的研究.林业科学.林业科学.2001,37(6):34-38
    [120]International Seed Testing Association. International rules for seed testing:rules 1999: adopted at the Twenty-fifth International Seed Testing Congress, South Africa 1998, to become effective in 1 July 1999[C]. International Seed Testing Association.1999
    [121]WOODSTOCK L W. Physiological and biochemical tests for seed vigor [J]. Seed Sci Technol.1973,1(1):127-157
    [122]Nakabayashi K, Okamoto M, Koshiba T, et al. Genome-wide profiling of stored mRNA in Arabidopsis thaliana seed germination:epigenetic and genetic regulation of transcription in seed[J]. Plant J.2005,41(5):697-709
    [123]Ishimaru T, Hirose T, Matsuda T, et al. Expression patterns of genes encoding carbohydrate-metabolizing enzymes and their relationship to grain filling in rice (Oryza sativa L.):comparsion of caryopses located at different positions in a panicle. Plant Cell Physiol 2005,46:620-628
    [124]Mallona I, Weiss J, Egea-Cortines M. pcrEfficiency:a Web tool for PCR amplification efficiency prediction[J]. BMC Bioinformatics.2011,12(1):404
    [125]AC't Hoen P, Ariyurek Y; Thygesen H H, et al. Deep sequencing-based expression analysis shows major advances in robustness, resolution and inter-lab portability over five microarray platforms[J]. Nucleic Acids Res.2008,36(21):el41-e141
    [126]Morrissy A S, Morin R D, Delaney A, et al. Next-generation tag sequencing for cancer gene expression profiling[J]. Genome Res.2009,19(10):1825-1835
    [127]Benjamini Y, Yekutieli D. The control of the false discovery rate in multiple testing under dependency[J]. Ann Stat.2001:1165-1188
    [128]Du Z, Zhou X, Ling Y, et al. agriGO. a GO analysis toolkit for the agricultural community [J]. Nucleic Acids Res.2010,38(suppl 2):W64-W70
    [129]Kanehisa M, Araki M, Goto S, et al. KEGG for linking genomes to life and the environment[J]. Nucleic Acids Res.2008,36(suppl 1):D480-D484
    [130]Audic S, Claverie J M. The significance of digital gene expression profiles[J]. Genome Res.1997,7(10):986-995
    [131]Kim D H, Yamaguchi S, Lim S, et al. SOMNUS, a CCCH-type zinc finger protein in Arabidopsis, negatively regulates light-dependent seed germination downstream of PIL5[J]. Plant Cell.2008,20(5):1260-1277
    [132]Sagasser M, Lu G H, Hahlbrock K, et al. A. thaliana TRANSPARENT TESTA 1 is involved in seed coat development and defines the WIP subfamily of plant zinc finger proteins[J]. Gene Dev.2002,16(1):138-149
    [133]Oh E, Kim J, Park E, et al. PIL5, a phytochrome-interacting basic helix-loop-helix protein, is a key negative regulator of seed germination in Arabidopsis thaliana[J]. Plant Cell.2004,16(11):3045-3058
    [134]Rubio-Somoza I, Martinez M, Diaz I, et al. HvMCB1, a R1MYB transcription factor from barley with antagonistic regulatory functions during seed development and germination[J]. Plant J,2005,45(1):17-30
    [135]Dubos C, Stracke R, Grotewold E, et al. MYB transcription factors in Arabidopsis [J]. Trends Plant Sci.2010,15(10):573-581
    [136]Liu P P, Koizuka N, Martin R C, et al. The BME3 (Blue Micropylar End 3) GATA zinc finger transcription factor is a positive regulator of Arabidopsis seed germination[J]. Plant J.2005,44(6):960-971
    [137]Rushton D L, Tripathi P, Rabara R C, et al. WRKY transcription factors:key components in abscisic acid signalling[J]. Plant Biotechnol J.2011,10(1):2-11
    [138]Okamoto M, Kuwahara A, Seo M, et al. CYP707A1 and CYP707A2, which encode abscisic acid 8'-hydroxylases, are indispensable for proper control of seed dormancy and germination in Arabidopsis[J]. Plant Physiol.2006,141(1):97-107
    [139]Cadman C S C, Toorop P E, Hilhorst H W M, et al. Gene expression profiles of Arabidopsis Cvi seeds during dormancy cycling indicate a common underlying dormancy control mechanism[J]. Plant J.2006,46(5):805-822
    [140]Millar A A, Jacobsen J V, Ross J J, et al. Seed dormancy and ABA metabolism in Arabidopsis and barley:the role of ABA 8'-hydroxylase[J]. Plant J.2006,45(6):942-954
    [141]Wang M, Liu M. Li D, et al. Overexpression of FAD2 promotes seed germination and hypocotyl elongation in Brassica napus[J]. Plant Cell Tiss Org 2010,102(2):205-211
    [142]布坎南,格鲁依森姆,琼斯,&瞿礼嘉.(2004).植物生物化学与分子生物学.科学出版社
    [143]Brittle E E, Waters M G. ER-to-Golgi Traffic--This Bud's for You[J]. Science.2000. 289(5478):403-404
    [144]Scales S J, Gomez M, Kreis T E. Coat proteins regulating membrane traffic[J]. Int Rev Cytol.1999,195:67-144
    [145]Moore S, Stein W H. A modified ninhydrin reagent for the photometric determination of amino acids and related compounds[J]. J Biol Chem.1954,211(2):907-913
    [146]Rosen H. A modified ninhydrin colorimetric analysis for amino acids[J]. Arch Biochem Biophys.1957,67:10-15
    [147]BradfordMM A. rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Anal Biochem,1976,72(7): 248-254
    [148]赵曦阳,马开峰,张明等.3年生毛白杨无性系光合特性的比较研究.林业科学研究.2011,24(3):370-378
    [149]张志良,瞿伟菁,李小方.植物生理学实验指导[M].高等教育出版社.1990:232-233
    [150]中国科学院上海植物生理研究所,上海是植物生理学会.1999.现代植物生理学实验指南.北京:科学出版社,127
    [151]Fairbairn N J. A modified anthrone reagent[J]. Chem. Ind.1953,72:86
    [152]Nicolas G, Aldasoro J J. Activity of the Pentose Phosphate Pathway and Changes in Nicotinamide Nucleotide Content during Germination of Seeds of Cicer arietinum L[J]. Journal of Experimental Botany.1979,30(6):1163-1170
    [153]Salon C, Raymond P, Pradet A. Quantification of carbon fluxes through the tricarboxylic acid cycle in early germinating lettuce embryos[J]. J Biol Chem.1988,263(25):12278-12287
    [154]Morohashi Y, Shimokoriyama M. Physiological Studies on Germination of Phaseolus mungo Seeds Ⅱ. GLUCOSE AND ORGANIC-ACID METABOLISMS IN THE EARLY PHASES OF GERMINATION[J]. J Exp Bot.1972,23(1):54-61
    [155]Rose J K C, Braam J, Fry S C, et al. The XTH family of enzymes involved in xyloglucan endotransglucosylation and endohydrolysis:current perspectives and a new unifying nomenclature[J]. Plant Cell Physiol.2002,43(12):1421-1435.
    [156]Spiegel S, Marcus A. Polyribosome formation in early wheat embryo germination independent of either transcription or polyadenylation[J].1975
    [157]Kermode A R. Approaches to elucidate the basis of desiccation-tolerance in seeds[J]. Seed Sci Res.1997,7(2):75-96

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700