对虾中食源性弧菌预测模型建立及风险评估
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
创伤弧菌(Vibrio vulnificus)和副溶血性弧菌(Vibrio parahaemolyticus),革兰氏阴性嗜盐菌,天然存在于世界各地温暖的河口与海洋环境中,是两种重要的食源性致病菌,人类感染往往与食用受污染的海产品有关。食源性创伤弧菌感染最常见的临床症状是原发性败血症,病死率超过50%。食源性副溶血性弧菌感染主要的临床症状是胃肠炎。国家食源性疾病监测网的数据显示,副溶血性弧菌是我国上报食源性疾病暴发事件的首要致病因素。本文建立肉汤和海产对虾中创伤弧菌和副溶血性弧菌的生长模型,研究低温条件下创伤弧菌和副溶血性弧菌的失活模型、超高压作用下副溶血性弧菌的致死模型。研究我国零售对虾中创伤弧菌的污染状况,对创伤弧菌分离株进行了毒力分型和耐药试验。利用创伤弧菌的预测模型和监测数据,建立高温季节对虾中创伤弧菌的定量风险评估模型。本文提出控制创伤弧菌和副溶血性弧菌的措施。
     首先通过单因素实验得到适宜创伤弧菌VvFJ04在胰蛋白胨大豆肉汤中生长的pH值、温度和盐度。运用响应面分析法优化VvFJ04的培养条件,获得创伤弧菌VvFJ04二级响应面生长模型:Y=0.42+0.00451x_1+0.03x_2+0.005671x_3+0.026x_1x_2+0.004875x_1x_3-0.002875x_2x_3+0.001078x_1~2-0.051x_2~2-0.013x_3~2。VvFJ04的最优培养条件为pH值8.29、温度32℃和盐度2.38%。VvFJ04二级响应面生长模型适用于分析和预测不同试验条件下VvFJ04的生长情况。
     再次利用单因素实验,确定适宜副溶血性弧菌ATCC 17802生长的温度、盐度、pH值。在此基础上,应用响应面分析法研究不同温度(28.59℃~45.41℃)、盐度(1.32%~4.68%)、pH值(5.32~8.68)对副溶血性弧菌生长速率的影响。Baranyi一级生长模型拟合不同试验条件下副溶血性弧菌的生长曲线,利用响应面法构建副溶血性弧菌生长速率的预测模型,对构建的模型进行验证,并利用计算预测标准差(SEP)、平方根误差(RMSE)、准确性因子(A_f)和偏差因子(B_f)对响应面模型进行数学检验,验证指标均在合理范围内。
     为了进一步了解创伤弧菌VvFJ04、VvHB09、VvSH09和副溶血性弧菌ATCC 17802在2% NaCl胰蛋白胨大豆肉汤和南美白对虾中的生长特点,运用修正Gompertz方程、修正Logistic方程、Baranyi方程拟合15℃~40℃条件下创伤弧菌和副溶血性弧菌的一级生长模型。结果表明,三种方程均能很好地拟合4株弧菌的生长,决定系数(R~2)值均大于0.91,并计算4株弧菌的生长速率、迟滞期和最大细菌浓度。在15℃条件下,副溶血性弧菌ATCC 17802和创伤弧菌VvFJ04均能在2% NaCl胰蛋白胨大豆肉汤中缓慢生长,而创伤弧菌VvHB09和VvSH09均不能在肉汤中生长;在15℃条件下,副溶血性弧菌ATCC 17802能在对虾中生长,而3株创伤弧菌均不能在对虾中生长。35℃~40℃条件下,两种弧菌的生长速率最大。结合修正Gompertz方程、Ratkowsky方程和Davey方程构建了不同温度条件下创伤弧菌和副溶血性弧菌的生长速率、迟滞期的二级模型。
     为了掌握对虾中创伤弧菌和副溶血性弧菌在5℃和–18℃低温贮藏条件下的失活动力学特征。分别采用线性模型、Weibull模型、Logistic模型对创伤弧菌和副溶血性弧菌的失活曲线进行拟合。研究结果表明在5℃条件下,创伤弧菌VvHB09的耐冷力较强;–18℃条件下,副溶血性弧菌ATCC 17802和创伤弧菌VvSH09的耐冷力较强。线性模型比Weibull模型、Logistic模型更适合拟合创伤弧菌和副溶血性弧菌的失活特征。
     为了研究超高压对副溶血性弧菌ATCC 17802的杀灭效果,利用Design Ex_pert软件,借助Box_-Behnken试验设计方法,考察压力、温度和保压时间协同超高压对副溶血性弧菌的杀菌作用,建立了副溶血性弧菌致死模型: Y = 4 .34+0.69x_1 +2.48x_2+0.97x_3+0.6x_1x_2+0.22x_1x_3+0.39x_2x_3- 0 .27x_1 2 + 0.18x_2~2+0.29x_3,通过模型计算超高压杀灭6个数量级副溶血性弧菌的工艺参数:温度为25.2℃,压力为230.3 MPa,保压时间为13.6 min。研究超高压处理对副溶血性弧菌超微结构的影响,利用透射电子显微镜观察,超高压处理后副溶血性弧菌细胞断裂、出现缺口,胞浆泄露。
     为了确定零售对虾中创伤弧菌的污染率和污染浓度,从中国10个省份采集零售对虾样品,结合最可能数(MPN)法和PCR技术检测创伤弧菌溶血素A基因。研究结果表明,239份对虾样品中有140份对虾检出创伤弧菌,创伤弧菌的几何平均浓度为153.3 MPN/g。不同地区零售对虾中创伤弧菌的污染状况存在统计学差异(P<0.05),南方样品的污染浓度(179.6 MPN/g)明显高于北方样品的污染浓度(7.6 MPN/g)。128份检出创伤弧菌的对虾样品中,79份对虾样品携带临床株,8份携带环境株,7份对虾样品分离的创伤弧菌无法分型,34份对虾样品既携带临床株又携带环境株。耐药试验发现,对于169株创伤弧菌分离株,绝大多数菌株对测试的12种抗生素都敏感,部分菌株对阿米卡星、氨苄西林、庆大霉素和四环素的敏感性降低。研究结果表明,中国零售海产对虾中创伤弧菌的污染很普遍,大多数对虾样品携带临床型创伤弧菌,极有可能对人群健康构成威胁。
     微生物风险评估主要评估食品中的病原微生物可能对人群引起的潜在危害,以指导风险管理者制定相应的管理措施。本文开展对虾中创伤弧菌的定量风险评估。评估遵循广泛认可的风险评估程序,涉及危害识别、危害特征描述、暴露评估和风险特征描述。使用零售对虾中创伤弧菌的污染率和污染浓度数据、人群对虾的消费频率和消费量数据、预测微生物学模型,建立暴露评估模块。结合暴露评估模块的结果与贝塔-泊松剂量反应模型,推测消费者因食用对虾而发生创伤弧菌感染的概率为1.977×10~(-5),并提出减少创伤弧菌危害的风险管理措施。
     本文的研究结果可以为海产品生产和消费过程中有效降低这两种弧菌的危害提供技术支持,为制定旨在预防和控制由这两种弧菌引起的食源性疾病的风险管理措施提供基础数据。
Vibrio vulnificus and Vibrio parahaemolyticus are gram-negative halophilic bacteria that naturally occur in warm estuarine water and marine environment worldwide. They are recognized as the important cause of human foodborne disease associated with the consumption of contaminated seafood. The most common clinical presentation of foodborne V. vulnificus infection is primary septicemia, with an average mortality rate exceeding 50%. V. parahaemolyticus accounted for the largest number of outbreaks and cases in China, and the most common clinical presentation of V. parahaemolyticus infection is gastroenteritis. We also studied the growth kinetics model of V. vulnificus and V. parahaemolyticus in broth and shrimp. The survival rates of V. vulnificus and V. parahaemolyticus inoculated into shrimp samples were measured at low temperature, their survival curves were plotted respectively. The model of V. parahaemolyticus was inactivated by the Ultra High Pressure (UHP) was studied. In the present study, we determined not only the prevalence and levels of V. vulnificus in retail shrimps collected in warmer months, but also the virulence characteristics and antibiotic sensitivity of V. vulnificus isolated from the shrimps. Using data of V. vulnificus predictive model and surveillance, we carried out the quantitative risk assessment of V. vulnificus in shrimp in warmer season. This paper suggests measures to control V. vulnificus and V. parahaemolyticus.
     At first, the optimum pH, temperature and salinity for V. vulnificus VvFJ04 growth in tryptic soy broth (TSB) were determined by single-factor analysis respectively. The response surface model was applied to study optimization of the growth parameters for VvFJ04, Y=0.42+0.00451x_1+0.03x_2+0.005671x_3+0.026x_1x_2 +0.004875x_1x_3-0.002875x_2x_3+0.001078x_1~2-0.051x_2~2-0.013x_3~2. The results showed that the optimum conditions for germination as follows: pH was 8.29, temperature was 32°C and salinity was 2.38%. The experimental results indicated that the proposed model can be used for describing and predicting the growth feature of VvFJ04 at different environmental factors.
     The optimum temperature, salinity, and pH for V. parahaemolyticus ATCC 17802 growth were determined by single-factor analysis respectively. The effects of different temperatures (28.59°C–45.41°C), concentrations of sodium chloride (NaCl, 1.32%–4.68%) and pH values (5.32–8.68) on the growth rates of V. parahaemolyticus were studied. The primary growth curves were fitted using the Baranyi equation. A response surface model (RSM) was prepared, predictions of V. parahaemolyticus growth rates could be obtained from growth curves. Mathematical evaluation demonstrated that the standard error of prediction (%SEP), the root-mean-squares error (RMSE), accuracy factor (Af) and bias factor (Bf) were within acceptable range.
     The future study was to understand the growth kinetics characteristics of V. vulnificus strains VvFJ04, VvHB09, VvSH09 and V. parahaemolyticus ATCC 17802 in 2% NaCl TSB and Pacific white shrimp. The primary growth models of V. vulnificus and V. parahaemolyticus were fitted well by the modified Gompertz equation, modified Logistic equation, Baranyi equation at from 15°C to 40°C. The determination coefficient R~2 values were greater than 0.91. The lag time, growth rate, and maximum population density of each primary model were compared. At 15°C, V. parahaemolyticus and V. vulnificus VvFJ04 grew very slowly in 2% NaCl TSB broth, VvHB09 and VvSH09 did not grow in TSB. Three V. vulnificus did not grow in shrimp at 15°C, only V. parahaemolyticus grew slowly in shrimp at 15°C. The growth rates of V. vulnificus and V. parahaemolyticus were maximum at 35°C and 40°C. The Gompertz equation, Ratkowsky equation and Davey equation were used to predict the secondary models of the growth rate and lag time for V. vulnificus and V. parahaemolyticus.
     In order to study the variation of inactive V. vulnificus and V. parahaemolyticus in shrimp under 5°C and–18°C. Then Linear, Weibull and Logistic models were applied to predict curves of inactive V. vulnificus and V. parahaemolyticus, respectively. At 5°C, VvHB09 showed more resistance to cool pressure. At–18°C, V. parahaemolyticus strain ATCC 17802 and VvSH09 showed more resistance to cold pressure. Moreover, Linear model was proved to be more accurate and useful in fitting V. vulnificus and V. parahaemolyticus inactivation curves based on mathematical evaluation than nonlinear models, Weibull and Logistic model.
     In order to study the effect of inactive V. parahaemolyticus ATCC 17802 by the Ultra High Pressure, recurring to Design Expert and the Box-Behnken experiment method to design and study the effect of the UHP cooperated with different temperature and time on the deadly ratio of V. parahaemolyticus, the response surface model of V. parahaemolyticus sterilized by the UHP was built, Y=4.34+0.69x_1+2.48x_2 +0.97x_3+0.6x_1x_2+0.22x_1x_3+0.39x_2x_3–0.27x_1~2+0.18x_2~2+0.29x_3~2. The optimum process parameters for inactivation of six logarithms V. parahaemolyticus were obtained as: temperature was 25.2°C, pressure was 230.3 MPa, and pressure holding time was 13.6 min. The effect of UHP on the microstructure of V. parahaemolyticus ATCC17802 was investigated by Transmission Electron Microscope (TEM). The results showed that the cell wall of V. parahaemolyticus was fractured, breached and leaked out cytoplasm.
     To quantify the prevalence and the levels of V. vulnificus in shrimps, the shrimp samples were collected from ten cities in China. The most probable number (MPN) method was used combining with the polymerase chain reaction (PCR) which was used to classify the isolates by detecting V. vulnificus hemolysin gene (vvhA). One hundred and forty out of 239 samples were positive for V. vulnificus, with the geometric mean level at 153.3 MPN/g. The prevalence and levels of V. vulnificus in shrimps varied in different geographic areas (P<0.05), with the level values for the samples in the South cities (179.6 MPN/g) remarkably higher than that in the North cities (7.6 MPN/g). In addition, we found that 79 of 128 V. vulnificus positive samples contained C-type (Clinical) strains and 8 contained E-type (Environmental) strains. Seven shrimp samples contained untypeable V. vulnificus and 34 samples had both C-type and E-type strains. The antimicrobial susceptibility of the isolates to 12 antibiotics was tested as well. Most of the 169 isolates remained susceptible to the majority of antimicrobials tested, whereas some strains tend to be less sensitive to amikacin, ampicillin, gentamicin and tetracycline. In conclusion, V. vulnificus is commonly found in retail marine shrimp in Chinese seafood market, and most of the shrimp samples contained C-type strains, which may pose a potential threat to human health.
     A microbiological risk assessment is to assess the potential hazard caused by pathogens in food which may affect public health, in order to guide risk managers to establish related measures. A quantitative microbial risk assessment of V. vulnificus in shrimp was undertaken. The assessment was conducted in accordance with the widely accepted procedures for risk assessment, which involoves hazard identification, hazard characterization, exposure assessment, and risk characterization. Using the data on the prevalence and levels of V. vulnificus in shrimp, the frequency and quantity of shrimp consumption and predictive model, exposure assessment model was established. The outcome of the exposure assessment model was combined with a beta-poisson dose-response model to estimate the probability of disease. Simulation results showed that the probability of V. vulnificus infection was 1.977×10~(-5). It provided measure to reduce the risk of V. vulnificus.
     The results of this paper provide technical support to reduce the risk of two bacteria at seafood harvest and consumption period. The basic data of this research build the risk management to prevent and control foodborne illness causing by V. vulnificus and V. parahaemolyticus.
引文
1. Blake P A, Weaver R E, Hollis D G. Diseases of human (other than cholera) caused by vibrios. Annu Rev Microbiol, 1980, 34: 341-367.
    2.姜红.原发性创伤弧菌败血症一例[J].中华内科杂志,1991,(30):645-646.
    3.陈艳,付萍.创伤弧菌检测方法的研究进展[J].国外医学卫生学分册,2008,35(2):91-96.
    4. Cook D W. Effect of time and temperature on multiplication of Vibrio vulnificus in postharvest Gulf Coast shellstock oysters. Appl Environ Microbiol, 1994, 60(9): 3483-3484.
    5. DePaola A, Capers G M , Alexander D. Densities of Vibrio vulnificus in the intestines of fish from the U.S. Gulf Coast. Appl Environ Microbiol, 1994, 60(3): 984-988.
    6. Motes M L, DePaola A, Cook D W, et al. Influence of water temperature and salinity on Vibrio vulnificus in Northern Gulf and Atlantic Coast oysters (Crassostrea virginica). Appl Environ Microbiol, 1998, 64(4): 1459-1465.
    7. O'Neill K R, Jones S H, Grimes D J. Seasonal incidence of Vibrio vulnificus in the Great Bay estuary of New Hampshire and Maine. Appl Environ Microbiol, 1992, 58(10): 3257-3262.
    8. Kelly M T. Effect of temperature and salinity on Vibrio (Beneckea) vulnificus occurrence in a Gulf Coast environment. Appl Environ Microbiol, 1982, 44(4): 820-824.
    9. Kaysner C A, Abeyta C, Wekell M M, et al. Virulent strains of Vibrio vulnificus isolated from estuaries of the United States West Coast. Appl Environ Microbiol, 1987, 53(6): 1349-1351.
    10. Tamplin M, Rodrick G E, Blake N J, et al. Isolation and characterization of Vibrio vulnificus from two Florida estuaries. Appl Environ Microbiol, 1982, 44(6): 1466-1470.
    11. Wang Y, Gu J D. Influence of temperature, salinity and pH on the growth of environmental Aeromonasand Vibrio species isolated from Mai Po and the Inner Deep Bay Nature Reserve Ramsar Site of Hong Kong. J Basic Microbiol, 2005, 45(1): 83-93.
    12. Kaspar C W, Tamplin M L. Effects of temperature and salinity on the survival of Vibrio vulnificus in seawater and shellfish. Appl Environ Microbiol, 1993, 59(8): 2425-2429.
    13. Simonson J, Siebeling R J. Rapid serological identification of Vibrio vulnificus by anti-H coagglutination. Appl Environ Microbiol, 1986, 52(6): 1299-1304.
    14. Brenton C E, Flick G J Jr, Pierson M D, et al. Microbiological quality and safety of quahog clams, Mercenaria mercenaria, during refrigeration and at elevated storage temperatures. J Food Prot, 2001, 64(3): 343-347.
    15. O'Neill K R, Jones S H, Grimes D J. Seasonal incidence of Vibrio vulnificus in the Great Bay estuary of New Hampshire and Maine. Appl Environ Microbiol. 1992, 58(10): 3257-3262.
    16. Strom M S, Paranjpye R N. Epidemiology and pathogenesis of Vibrio vulnificus. Microb Infect, 2000, 2(2): 177-188.
    17. Watanabe H, Miyoshi S, Kawase T, et al. High growing ability of Vibrio vulnificus biotype 1 is essential for production of a toxic metalloprotease causing systemic diseases in humans. Microb Pathog, 2004, 36(3): 117-123.
    18. Biosca E G, Amaro C, Marco-Noales E, et al. Effect of low temperature on starvation-survival of the eel pathogen Vibrio vulnificus biotype 2. Appl Environ Microbiol, 1996, 62(2): 450-455.
    19. Dombroski C S, Jaykus L A, Green D P, et al. Use of mutant strain for evaluating processing strategies to inactivate Vibrio vulnificus in oysters. J Food Prot, 1999, 62(6): 592-600.
    20. Kim C M, Jeong K C, Rhee J H, et al. Thermal-death times of opaque and translucent morphotypes of Vibrio vulnificus. Appl Environ Microbiol, 1997, 63(8): 3308-3310.
    21. Johnston M D, Brown M H. An investigation into the changed physiological state of Vibrio bacteria as a survival mechanism in response to cold temperatures and studies on their sensitivity to heating and freezing. J Appl Microbiol, 2002, 92(6): 1066-1077.
    22. Cook D W, Ruple A D. Cold storage and mild heat treatment as processing aids to reduce the numbers of Vibrio vulnificus in raw oysters. J Food Prot, 1992, 55(12): 985-989.
    23. Andrews L S, Park D L, Chen Y P. Low temperature pasteurization to reduce the risk of vibrio infections from raw shell-stock oysters. Food Addit Contam, 2000, 17(9): 787-791.
    24. Hesselman D M, Motes M L, Lewis J P. Effects of a commercial heat-shock process on Vibrio vulnificus in the American oyster, Crassostrea virginica, harvested from the Gulf Coast. J Food Prot, 1999, 62(11): 1266-1269.
    25. Ama A A, Hamdy M K, Toledo R T. Effects of heating, pH and thermoradiation on inactivation of Vibrio vulnificus. Food Microbiol, 1994, 11(3): 215-227.
    26.Ruple A D, Cook D W. Vibrio vulnificus and indicator bacteria in shellstock and commercially processed oysters from the Gulf Coast. J Food Prot, 1992, 55(9): 667-671.
    27. Kaysner C A, Tamplin M L, Wekell M M, et al. Survival of Vibrio vulnificus in shellstock and shucked oysters (Crassostreagigas and Crassostrea virginica) and effects of isolation medium on recovery. Appl Environ Microbiol, 1989, 55(12): 3072-3079.
    28. Bryan P J, Steffan R J, DePaola A, et al. Adaptive response to cold temperatures in Vibrio vulnificus. Curr Microbiol, 1999, 38(3): 168-175.
    29. Bang W, Drake M A, Jaykus L A. Recovery and detection of Vibrio vulnificus during cold storage. Food Microbiol, 2007, 24(6): 664-670.
    30. Bang W, Drake M A. Resistance of cold- and starvation-stressed Vibrio vulnificus to heat and freeze-thaw exposure. J Food Prot, 2002, 65(6): 975-980.
    31. Marco-Noales E, Biosca E G, Amaro C. Effects of salinity and temperature on long-term survival of the eel pathogen Vibrio vulnificus biotype 2 (serovar E). Appl Environ Microbiol, 1999, 65(3): 1117-1126.
    32. Berlin D L, Herson D S, Hicks D T, et al. Response of pathogenic Vibrio species to high hydrostatic pressure. Appl Environ Microbiol, 1999, 65(6): 2776-2780.
    33. Cook D W. Sensitivity of Vibrio species in phosphate-buffered saline and in oysters to High-Pressure Processing. J Food Prot, 2003, 66(12): 2276-2282.
    34. Hu X, Mallikarjunan P, Koo J, et al. Comparison of kinetic models to describe high pressure and gamma irradiation used to inactivate Vibrio vulnificus and Vibrio parahaemolyticus prepared in buffer solution and in whole oyster. J Food Prot, 2005, 68(2): 292-295.
    35. Mallett J C, Beghian L E, Metcalf T. Potential of irradiation technology for improved shellfish sanitation. J Food Saf, 1991, 11(4): 231-245.
    36. Novak A F, Liuzzo J A, Grodner R M, et al. Radiation pasteurization Gulf oysters. Food Technol, 1966, 20: 103-104.
    37. Andrews L, Jahncke M, Mallikarjunan K. Low dose gamma irradiation to reduce pathogenic Vibrios in live oysters. J of Aquatic Food Prod Technol, 2003, 12(3): 71-82.
    38. Pelon W, Luftig R B, Johnston K H. Vibrio vulnificus load reduction in oysters after combined exposure to Vibrio vulnificus-specific bacteriophage and to an oyster extract component. J Food Prot, 2005, 68(6): 1188-1191.
    39. Koo J, DePaola A, Marshall D L. Effect of simulated gastric fluid and bile on survival of Vibrio vulnificus and Vibrio vulnificus phage. J Food Prot, 2000, 63(12): 1665-1669.
    40. Wong H C, Liu S H. Susceptibility of the heat-, acid-, and bile-adapted Vibrio vulnificus to lethal low-salinity stress. J Food Prot, 2006, 69(12): 2924-2928.
    41. Paludan-Muller C, Weichart D, McDougald D, et al. Analysis of starvation conditions that allow for prolonged culturability of Vibrio vulnificus at low temperature. Microbiology, 1996, 142 (7): 1675-1684.
    42. Chhabra P, Huang Y W, Frank J F, et al. Fate of Staphylococcus aureus, Salmonella enterica serovar typhimurium, and Vibrio vulnificus in raw oysters treated with chitosan. J Food Prot, 2006, 69(7): 1600-1604.
    43. Sagripanti J L, Eklund C A, Trost P A, et al. Comparative sensitivity of 13 species of pathogenic bacteria to seven chemical germicides. Am J Infect Control, 1997, 25(4): 335-339.
    44. Sunen E. Minimum inhibitory concentration of smoke wood extracts against spoilage and pathogenic microorganisms associated with foods. Lett Appl Microbiol, 1998, 27(1): 45-48.
    45. Sun Y, Oliver J D. Antimicrobial action of some GRAS compounds against Vibrio vulnificus. Food Addit Contam, 1994, 11(5): 549-558.
    46. Johnson R W, Arnett F C. A fatal case of Vibrio vulnificus presenting as septic arthritis. Arch Intern Med, 2001, 161(21): 2616-2618.
    47. Tamplin M L, Capers G M. Persistence of Vibrio vulnificus in tissues of Gulf Coast oysters, Crassostrea virginica, exposed to seawater disinfected with UV light. Appl Environ Microbiol, 1992, 58(5): 1506-1510.
    48. Groubert T N, Oliver J D. Interaction of Vibrio vulnificus and the eastern oyster, Crassostrea virginica. J Food Prot, 1994, 57(3): 224-228.
    49. Motes M L, DePaola A. Offshore suspension relaying to reduce levels of Vibrio vulnificus in oysters (Crassostrea virginica). Appl Environ Microbiol, 1996, 62(10): 3875-3877.
    50. Ren T, Su Y C. Effects of electrolyzed oxidizing water treatment on reducing Vibrio parahaemolyticus and Vibrio vulnificus in raw oysters. J Food Prot, 2006, 69(8): 1829-1834.
    51. CAC [Codex Alimentarius Commission]. 2000. Report of the 33rd Session of the Codex Committee on Food Hygiene. Washington, DC.
    52. McCoubrey D J. Risk of Vibrio vulnificus infection following comsumption of raw commercially harvested North Island oyster. MPH Thesis. 1996, the University of Auckland. New Zealand. 86.
    53. Scientific Committee on Veterinary Measures relating to Public Health. Opinion of the Scientific Committee on Veterinary Measures Relating to Public Health on Vibrio vulnificus and Vibrio parahaemolyticus (in raw and undercooked seafood) (adopted on 19-20 September 2001). European Commission. Health &Consumer Protection Directorate-General. Directorate C-Scientific Opinions. 2001, 64.
    54. (FAO-WHO) Food and Agriculture Organization-World Health Organization. Risk assessment of Vibrio vulnificus in raw oysters. Microbiological Risk Assess. Series 8. 2005. http://www.who.int/foodsafety/ publications/micro/mra8/en/index.html.
    55. Miyamoto Y, Kato T, Obara Y, et al. In vitro hemolytic characteristic of vibrio parahaemolyticus: its close correlation with human pathogenicity. J Bacteriol, 1969, 100(2): 1147-1149.
    56. Akeda Y, Nagayama K, Yamamoto K, et al. Incasive phenotype of vibrio parahaemolyticus. J Infect Dis, 1997, 176(3): 822-824.
    57.上海市地方志办公室[EB/OL].http://www.shtong.gov.cn/node2/node2245/node4454/ node60360/ node60431/node60437/ userobject1ai55229. html.
    58.刘秀梅.食源性疾病监控技术的研究[J].中国食品卫生杂志,2004,16(1):3-9.
    59.何晖,邓庆丽,李秀珍,等.检测水产品食物中副溶血性弧菌基因分型方法的建立[J].热带医学杂志,2007,7(11):1085-1087.
    60.卢晓凤.蛤肉中副溶血性弧菌风险评估体系初探[D]:[硕士学位论文].泰安:山东农业大学食品科学与工程学院,2007.
    61. Iida T, Park K S, Suthienkul O, et al. Close proximity of tdh, trh and une genes on the chromosome of Vibrio parahaemolyticus. Microbiology, 1998, 144(9): 2517-2523.
    62. Bej A K, Partyerson D P, Brasher C W, et al. Detection of total and hemolysion-producing Vibrio parahaemolyticus in shellfish using multiplex PCR amplication of tl. tdh and trh. J Microbiol Methods, 1999, 36(3): 215-225.
    63. McMeekin T A , Ross T. Predictive microbiology: providing a knowledge-based framework for change management. Int J Food Microbiol, 2002, 78(1-2): 133-153.
    64.李柏林,郭剑飞,欧杰.预测微生物学数学建模的方法构建[J].食品科学,2004,25(11):52-57.
    65.卢晓凤,张培正,李远钊,等.2% NaCl TSB及单冻煮蛤肉中副溶血性弧菌生长模型的建立及应用[J].中国食物与营养,2006,9:24-27.
    66.杨振泉,焦新安.不同副溶血性弧菌的分子鉴别与生长动力学模型比较[J].中国人兽共患病学报,2008,24(3):210-215.
    67. Fujikawa H, Yano K, Morozumi S, et al. Development of a predictive program for microbial growth under various temperature conditions. Shokuhin Eiseigaku Zasshi, 2006, 47(6): 288-292.
    68. Miles D W, Ross T, Olley J, et al. Development and evaluation of a predictive model for the effect of temperature and water activity on the growth rate of Vibrio parahaemolyticus. Int J Food Microbiol, 1997, 16, 38(2-3): 133-142.
    69. Gooch J A, DePaola A, Bowers J, et al. Growth and survival of Vibrio parahaemolyticus in postharvest American oysters. J Food Prot, 2002, 65(6): 970-974.
    70. Soon K S, Min K J, Jung Y J, et al. A model of the effect of temperature on the growth of pathogenic and nonpathogenic Vibrio parahaemolyticus isolated from oysters in Korea. Food microbiol, 2008, 25(5): 635-641.
    71. Dong Q L, Tu K, Guo L Y, et al. Response surface model for prediction of growth parameters from spores of Clostridium sporogenes under different experimental conditions. Food Microbiol, 2007, 24(6): 624-632.
    72. Garcia-Gimeno R M, Barco E, Rincon F, et al. Response surface model for estimation for Escherichia coil O157:H7 growth under different experimental conditions. J Food Sci, 2005, 70(1): 30-36.
    73. Nishina T, Wada M, Ozawa H, et al. Growth kinetics of Vibrio parahaemolyticus O3:K6 under varying conditions of pH, NaCl concentration and temperature. Shokuhin Eiseigaku Zasshi, 2004, 45(1): 35-37.
    74.刘代新,宁喜斌,张继伦.响应面分析法优化副溶血性弧菌生长条件[J].微生物学通报,2008,35(2):306-310.
    75. Buchanan R L, Stahl H G, Whiting R C. Effect and interactions of temperature pH atmosphere, sodium chloride and sodium nitrite on the growth of Listeria monocytogenes. J Food Prot, 1989, 52(12): 844-851.
    76. Vasudevan P, Marek P, Daigle S, et al. Effect of chilling and freezing on survival of Vibrio parahaemolyticus on fish fillets. J Food Saf, 2002, 22(4): 209-217.
    77. Maruyama Y, Kimura B, Fujii T, et al. Growth inhibition of Vibrio parahaemolyticus in seafood by tabletop dry ice cooler. Shokuhin Eiseigaku Zasshi, 2005, 46(5): 213-217.
    78. Michelle F, Styles D G, Hoover D F. Response of Listeria monocytogenes and Vibrio parahaemolyticus to high hydrostatic pressure. J Food Sci, 1991, 56 (5): 1404-1407.
    79. Calik H, Morrissey M T, Reno P W, et al. Effect of High-Pressure Processing on Vibrio parahaemolyticus strains in pure culture and pacific oysters. J Food Sci, 2002, 67 (4): 1506-1510.
    80. Chen H. Use of linear, Weibull and log-logistic functions to model pressure inactivation of seven foodborne pathogens in milk. Food Microbiol, 2007, 24(3):197-204.
    81. Jakabi M, Gelli D S, Torre J C M D, et al. Inactivation by ionizing radiation of Salmonella enteritidis, Salmonella infantis, and Vibrio parahaemolyticus in oysters (Crassostrea brasiliana). J Food Prot, 2003, 66(6): 1025-1029.
    82. Hajime Toyofuku. Harmonization of international risk assessment protocol. Marine Pollution Bulletin, 2006, 53(10-12): 579-590.
    83. Peggy M F. Driving predictive modelling on a risk assessment path for enhanced food safety. Int J Food Microbiol, 1997, 36(2-3): 87-95.
    84. Sumner J, Ross T. A semi-quantitative seafood safety risk assessment. Int J Food Microbiol, 2000, 77(1-2): 55-59.
    85. US Food and Drug Administration (FDA), 2000. Draft risk assessment on the Public health impact of Vibiro parahaemolyticus rawmolluscan shellfish. http://www.cfsan.fda.gov/-dms/Vprisk.html.
    86. US Food and Drug Administration (FDA), 2005. Quantitative risk assessment on the public health impact of pathogenic Vibrio parahaemolyticus in raw oysters. http://www.cfsan.fda.gov/dms/Vpra-toc.html.
    87. Patil S R, Frey H C. Comparison of sensitivity analysis methods based on applications to a food safety risk assessment model. Risk Anal, 2004, 24(3): 573-585.
    88. Phillips A M, Depaola A, Bowers J, et al. An evaluation of the use of remotely sensed parameters for prediction of incidence and risk associated with Vibrio parahaemolyticus in Gulf Coast oysters (Crassostrea virginica). J Food Prot, 2007, 70(4): 879-884.
    89. Yamamoto A, Iwahori J, Vuddhakul V, et al. Quantitative modeling for risk assessment of Vibrio parahaemolyticus in bloody clams in southern Thailand. Int J Food Microbiol, 2008, 124(1): 70-78.
    90.陈艳,刘秀梅.福建省零售生食牡蛎中副溶血性弧菌的定量危险性评估[J].中国食品卫生杂志,2006,18(2):103-108.
    91.俞莺.对虾副溶血性弧菌的风险评估[D]:[硕士学位论文].上海:上海水产大学食品学院,2006.
    92. McMeekin T A. Predictive Microbiology. Chichester, UK: John Wiley & Sons Ltd, 1993.
    93. Elliott P H. Predictive microbiology and HACCP. J Food Prot, 1996, supplement: 48-53.
    94. Buchanan R L, Whiting R C. Risk assessment: a means for linking HACCP plans and public health. J Food Prot, 1998, 61(11): 1531-1534.
    95.周德庆.微生物学教程[M].北京:高等教育出版社,2002,153.
    96. Whiting R C, Buchanan R L. A classification of models for predictive microbiology. Food Microbiol, 1993, 10: 175-177.
    97. Buchanan R L. Predictive food microbiology. Trends Food Sci Tech, 1993, 4: 6-11.
    98.刘芳.低温改良气调包装半加工菜贮藏特性研究[D]:[博士学位论文].上海:上海交通大学食品科学技术系,2007.
    99. McDonald K, Sun D W. Predictive food microbiology for the meat industry: a review. Int J Food Microbiol, 1999, 52:1-27.
    100.傅鹏.冷却猪肉主要腐败微生物生长预测模型的建立[M]:[硕士学位论文].北京:中国农业大学食品科学与营养工程学院,2006.
    101. Zwietering M H, Jongenburger L, Rombouts F M, et al. Modeling of the bacterial growth curve. Appl Environ Microbiol, 1990, 56(6): 1875-1881.
    102. Ratkowsky D A, Olley J, McMeekin T A, et al. A relationship between temperature and growth rate of bacterial cultures. J Bacteriol, 1982, 149(1): 1-5.
    103. Ratkowsky D A, Lowry R K, McMeekin T A, et al. Model for bacterial culture growth rate throught out the entire biokinetic temperature range. J Bacteriol, 1983, 154(3): 1222-1226.
    104.刘秀梅.食源性微生物危险性评估[J].中华流行病学杂志,2003,24(8):665-669.
    105. WTO. Agreement on the application of sanitary and phytosanitary measures. The Final Act of the 1986-1994 Uruguay Round of Trade Negotiations. 1994.
    106. FAO/WHO. Application of risk analysis to food standard issues. Report of the Joint FAO/WHO Expert Consultation. Geneva, Switzerland, 1995. WHO: Geneva.
    107. FAO/WHO. Risk management and food safety. Report of the Joint FAO/WHO Expert Consultation. Rome, Italy, 1997. Rome: FAO.
    108. ICMSF. Principles for the establishment of microbiological food safety objectives and related control measures. Food Control, 1998, 9(6): 379-384.
    109. Voysey P A, Brown M. Microbiological risk assessment: a new approach to food safty control. Int J Food Microbiol, 2000, 58(3):173-179.
    110.赵志晶.EHEC O157:H7检测方法及定量微生物危险性评估模型的初步研究[D]:[博士学位论文].北京:中国疾病预防控制中心营养与食品安全所,2002.
    111. CAC. Principles and guidelines for the conduct of microbiological risk assessment. CAC/GL-30. Codex Allimentarius Commission. FAO, Rome, 1999.
    112. Buchanan R L. The role of quantitative microbiological risk assessment in risk management options assessment. http://www.foodrisk.org/Doc/qmra.pdf.
    113. FAO/WHO. Principles and guidelines for incorporating microbiological risk assessment in the development of food safety standards, guidelines and related texts. Report of the Joint FAO/WHO Expert Consultation. Kiel, Germany, 2002.
    114.田静.熟肉制品单核细胞增生性李斯特氏菌的风险评估及风险管理措施的研究[D]:[博士学位论文].北京:中国疾病预防控制中心营养与食品安全所,2010.
    115. Vose D J. The application of quantitative risk assessment to microbial food safety. J Food Prot, 1998, 61(5): 640-648.
    116. Palisade corporation. Guide to using @RISK. 2001.
    117.刘秀梅.食品微生物风险评估培训班资料[Z].2011年北京国际食品安全论坛.
    118.赵志晶,刘秀梅.由苍蝇传播引起E.coli O157:H7感染爆发的评估模型的建立[J].疾病控制杂志,2005,9(1):23-28.
    119.赵志晶,刘秀梅.中国带壳鸡蛋中沙门氏菌定量危险性评估的初步研究——I.危害识别与暴露评估[J].中国食品卫生杂志,2004,16(3):201-206.
    120.赵志晶,刘秀梅.中国带壳鸡蛋中沙门氏菌定量危险性评估的初步研究——Ⅱ.危害特征的描述与危险性特征的描述[J].中国食品卫生杂志,2004,16(4):295-300.
    121.陈艳.微生物危险性评估及实践[D]:[博士后论文].北京:中国疾病预防控制中心营养与食品安全所,2004.
    122.黄驰云.冻生虾仁中大肠杆菌和金黄色葡萄球菌的风险评估及对产品货架期的预测[D]:[硕士学位论文].湛江:广东海洋大学食品科技学院,2010.
    123.闫军.原料乳中金黄色葡萄球菌的风险评估[D]:[硕士学位论文].哈尔滨:东北农业大学食品学院,2008.
    124.李敏.杀菌奶中优势微生物预测模型的建立及风险评估[D]:[硕士学位论文].北京:中国农业大学食品科学与营养工程学院,2006.
    125.褚小菊,冯力更,张筠,等.巴氏牛奶中蜡样芽孢杆菌的风险评估[J].中国乳品工业,2006,34(6):23-26.
    126.王军.猪肉产品中致病微生物的污染及风险评估研究[D]:[硕士学位论文].西安:西北农林科技大学食品科学与工程学院,2007.
    127.田霞.出口菜卷中单核细胞增生性李斯特氏菌的风险分析研究[D]:[硕士学位论文].泰安:山东农业大学食品科学与工程学院,2005.
    128.李振.青岛地区贝类中诺瓦克样病毒污染状况调查与风险评估初探[D]: [硕士学位论文].青岛:中国海洋大学食品科学与工程学院,2007.
    129.吴英娇.杂色蛤中副溶血性弧菌的定量风险评估[D]:[硕士学位论文].福州:福建农林大学食品科学学院,2011.
    130.邵玉芳,汪雯,章荣华,等.浙江省生食牡蛎中副溶血性弧菌的风险评估[J].中国食品学报,2010,10(3):193-198.
    131.孟娣.水产品中副溶血性弧菌快速检测技术及风险评估研究[D]:[硕士学位论文].青岛:中国海洋大学食品科学与工程学院,2007.
    132. Coleman M, Marks H. Qualitative and quantitative risk assessment. Food Control, 1999, 10: 289-297.
    133.于维军.水产外贸技术性壁垒概述[EB/OL].http://www.ryagri.gov.cn/shownew0.asp? showid=1759.
    1. Strom M S, Paranjpye R N. Epidemiology and pathogenesis of Vibrio vulnificus. Microbes Infect, 2000, 2(2): 177-188.
    2. Gulig P A, Bourdage K L, Starks A M. Molecular pathogenesis of Vibrio vulnificus. J Microbiol, 2005, 43: 118-131.
    3.卢中秋,李秉熙,黄唯佳,等.创伤弧菌败血症的临床和流行病学特点[J].中国急救医学,2003,23(7):470-471.
    4. Chiang S R, Chuang Y C. Vibrio vulnificus infection: clinical manifestations, pathogenesis, and antimicrobial therapy. Microbiol Immunol Infect, 2003, 36(2): 81-88.
    5.陈向敏,董海艳,林巧爱,等.创伤弧菌优化培养条件的研究[J].温州医学院学报,2003,33(2):92-93.
    6.王贵明,陈清,申洪.创伤弧菌紫外线抗性观察[J].中国医学物理学杂志,2009,26(3):1228-1231.
    7. Hu X, Mallikarjunan P, Koo J, et al. Comparison of kinetic models to describe high pressure and gamma irradiation used to inactivate Vibrio vulnificus and Vibrio parahaemolyticus prepared in buffer solution and in whole oyster. J Food Prot, 2005, 68(2): 292-295.
    8.刘秀梅.食源性疾病监控技术的研究[J].中国食品卫生杂志,2004,16(1):3-9.
    9. Miles D W, Ross T, Olley J, et al. Development and evaluation of a predictive model for the effect of temperature and water activity on the growth rate of Vibrio parahaemolyticus. Int J Food Microbiol, 1997, 16, 38(2-3): 133-42.
    10. Gooch J A, DePaola A, Bowers J, et al. Growth and survival of Vibrio parahaemolyticus in postharvest American oysters. J Food Prot, 2002, 65(6): 970-974.
    11. Soon K S, Min K J, Jung Y J, et al. A model of the effect of temperature on the growth of pathogenic and nonpathogenic Vibrio parahaemolyticus isolated from oysters in Korea. Food microbiol, 2008, 25(5): 635-641.
    12. Baranyi J, Roberts T A. Mathematics of predictive food microbiology. Int J Food Microbiol, 1995, 26(2): 199-218.
    13. Hervás C, Zurera G, García R M, et al. Optimization of computational neural network for its application to the prediction of microbial growth in foods. Food Sci Tech Int, 2001, 7 (2): 159-163.
    14. Ross T. Indices for performance evaluation of predictive models in food microbiology. J Appl Bacteriol, 1996, 81(5): 501-508.
    15. Kaspar C W, Tamplin M L. Effects of temperature and salinity on the survival of Vibrio vulnificus in seawater and shellfish. Appl Environ Microbiol, 1993, 59(8): 2425-2429.
    16.刘代新,宁喜斌,张继伦.响应面分析法优化副溶血性弧菌生长条件[J].微生物学通报,2008,35(2):306-310.
    17. Neumeyer K, Ross T, McMeekin T A. Development of a predictive model to describe the effects of temperature and water activity on the growth of spoilage pseudomonads. Int J Food Microbiol, 1997, 38(1): 45-54.
    18. Park S Y, Seo K Y, Ha S D. A response surface model based on absorbance data for the growth rates of Salmonella enterica serovar typhimurium as a function of temperature, NaCl, and pH. J Microbiol Biotechnol, 2007, 17(4): 644-649.
    19. Seo K Y, Heo S K, Lee C, et al. Development of predictive mathematical model for the growth kinetics of Staphylococcus aureus by response surface model. J Microbiol Biotechnol, 2007, 17(9): 1437-1444.
    20. Heo S K, Lee J Y, Baek S B, et al. A response surface model to describe the effect of temperature and pH on the growth of Bacillus cereus in cooked rice. J Food Prot, 2009, 72(6): 1296-1300.
    21. Ross T. Meat and Livestock, Predictive food microbiology models in the meat industry. Sydney, Australia. 1999.
    22. Lebert I, Robles-Olvera V, Lebert A. Application of polynomial models to predict growth of mixed cultures of Pseudomonas spp. and Listeria in meat. Int J Food Microbiol, 2000, 61(1): 27-39.
    23. Yamamoto A, Iwahori J, Vuddhakul V, et al. Quantitative modeling for risk assessment of Vibrio parahaemolyticus in bloody clams in southern Thailand. Int J Food Microbiol, 2008, 124(1): 70-78.
    24. US Food and Drug Administration (FDA), 2000. Draft risk assessment on the Public health impact of Vibiro parahaemolyticus rawmolluscan shellfish. http://www.cfsan.fda.gov/-dms/Vprisk.html.
    1. Yano Y, Yokoyama M, Satomi M, et al. Occurrence of Vibrio vulnificus in fish and shellfish available from markets in China. J Food Prot, 2004, 67(8): 1617-1623.
    2. do Nascimento S M, dos Fernandes Vieira R H, Theophilo G N, et al. Vibrio vulnificus as a health hazard for shrimp consumers. Rev Inst Med Trop Sao Paulo, 2001, 43(5): 263-266.
    3. Wong H C, Chen M C, Liu S H, et al. Incidence of highly genetically diversified Vibrio parahaemolyticus in seafood imported from Asian countries. Int J Food Microbiol, 1999, 52(3): 181-188.
    4. Yano Y, Kaneniwa M, Satomi M, et al. Occurrence and density of Vibrio parahaemolyticus in live edible crustaceans from markets in China. J Food Prot, 2006, 69(11): 2742-2746.
    5. Bauer A, ?stensvik ?, Florv?g M, et al. Occurrence of Vibrio parahaemolyticus, V. cholerae, and V. vulnificus in Norwegian blue mussels (Mytilus edulis). Appl Environ Microbiol, 2006, 72(4): 3058-3061.
    6. DePaola A, Capers G M, Alexander D. Densities of Vibrio vulnificus in the intestines of fish from the U.S. Gulf Coast. Appl Environ Microbiol, 1994, 60(3): 984-988.
    7. Cook D W, O’Leary P, Hunsucker J C, et al. Vibrio vulnificus and Vibrio parahaemolyticus in U.S. retail shell oysters: a national survey from June 1998 to July 1999. J Food Prot, 2002, 65(1): 79-87.
    8. Thampuran N, Surendran P K. Occurrence and distribution of Vibrio vulnificus in tropical fish and shellfish from Cochin (India). Lett Appl Microbiol, 1998, 26(2): 110-112.
    9. Wang Y, Gu J D. Influence of temperature, salinity and pH on the growth of environmental Aeromonas and Vibrio species isolated from Mai Po and the Inner Deep Bay Nature Reserve Ramsar Site of Hong Kong. J Basic Microbiol, 2005, 45(1): 83-93.
    10. (FAO-WHO) Food and Agriculture Organization-World Health Organization. 2005. Risk assessment of Vibrio vulnificus in raw oysters. Microbiological Risk Assess. Series 8. Available from: http://www.who.int/foodsafety/publications/micro/mra8/en/index.html.
    11. Rosche T M, Yano Y, Oliver J D. A rapid and simple PCR analysis indicates there are two subgroups of Vibrio vulnificus which correlate with clinical or environmental isolation. Microbiol Immunol, 2005, 49(4): 381-389.
    12. Huang L H. Estimation of growth of Clostridium perfringens in cooked beef under fluctuating temperature conditions. Food Microbiol, 2003, 20(5): 549-559.
    13.中华人民共和国卫生部中国国家标准化管理委员会.GB/T 4789.2-2010食品卫生微生物学检验-菌落总数测定[S].北京:中国标准出版社,2010.
    14. Gibson A M, Bratchell N, Roberts T A. The effect of sodium chloride and temperature on the rate and extent of growth of Clostridium botulinum type A in pasteurized pork slurry. J Appl Bacteriol, 1987, 62(6): 479-490.
    15. Gibson A M, Bratchell N, Roberts T A. Predicting microbial growth: growth reponses of salmonellae in a laboratory medium as affected by pH, sodium chloride and storage temperature. Int J Food Microbiol, 1988, 6 (2): 155-178.
    16. Baranyi J, Roberts T A. Mathematics of predictive food microbiology. Int J Food Microbiol, 1995, 26(2): 199-218.
    17. Ratkowsky D A, Olley J, McMeekin T A, et al. Relationship between temperature and growth rate ofbacteria cultures. J Bacteriol, 1982, 149(1): 1-5.
    18. Davey K R. A predictive model for combined temperature and water activity on microbial growth during the growth phase. J Appl Bacteriol, 1989, 67(5): 483-488.
    19.王璐华.水产品副溶血性弧菌预警模型的研究[M].[硕士学位论文].上海:上海海洋大学食品学院,2008.
    20. Kaspar C W, Tamplin M L. Effects of temperature and salinity on the survival of Vibrio vulnificus in seawater and shellfish. Appl Environ Microbiol, 1993, 59(8): 2425-2429.
    21. Kelly M T. Effect of temperature and salinity on Vibrio (Beneckea) vulnificus occurrence in a Gulf Coast environment. Appl Environ Microbiol, 1982, 44(4): 820-824.
    22. Soon K S, Min K J, Jung Y J, et al. A model of the effect of temperature on the growth of pathogenic and nonpathogenic Vibrio parahaemolyticus isolated from oysters in Korea. Food microbiol, 2008, 25(5): 635-641.
    23. Rosche T M, Binder E A, Oliver J D. Vibrio vulnificus genome suggests two distinct ecotypes. Env Microbiol Rep, 2010, 2(1): 128-132.
    1. MembréJ M , Lambert R J W. Application of predictive modelling techniques in industry: From food design up to risk assessment. Int J Food Microbiol, 2008, 128(1): 10-15.
    2. Burnham V E, Janes M E, Jakus L A, et al. Growth and survival difference of Vibrio vulnificus and Vibrio parahaemolyticus strains during cold storage. J Food Sci, 2009, 74(6): 314-318.
    3.杨振泉,焦新安.副溶血弧菌在低温贮藏过程中失活动力学特征[J].食品科学,2008,29(7):47-51.
    4.中华人民共和国卫生部中国国家标准化管理委员会.GB/T 4789.2-2010食品卫生微生物学检验-菌落总数测定[S].北京:中国标准出版社,2010.
    5. Schaffner D W, Labuza T P. Predictive microbiology: Where are we, and where are we going. Food Technol, 1997, 51(4): 95-99.
    6. Van Boekel M A J S. On the use of the Weibull model to describe thermal inactivation of microbial vegetative cells. Int J Food Microbiol, 2002, 74(3): 139-159.
    7. Peleg M, Cole M B. Reinterpretation of microbial survival curves. Crit Rev Food Sci Nutr, 1998, 38(5): 353-380.
    8. Kaysner C A, Tamplin M L, Wekell M M, et al. Survival of Vibrio vulnificus in shellstock and shucked oysters (Crassostreagigas and Crassostrea virginica) and effects of isolation medium on recovery. Appl Environ Microbiol, 1989, 55(12): 3072-3079.
    9. Vasudevan P, Marek P, Daigle S, et al. Effect of chilling and freezing on survival of Vibrio parahaemolyticus on fish fillets. J Food Saf, 2002, 22(4): 209-217.
    10. Vanderzant C, Nikelson R. Survival of Vibrio parahaemolyticus in shrimp tissue under various environmental conditions. Appl Microbiol, 1972, 23(1): 34-37.
    11. Johnson W G, Salinger J A C, King W C. Survival of Vibrio parahaemolyticus on oysters shellstock at two different storage temperatures. Appl Microbiol, 1973, 26(1): 34-37.
    12. Liu C C, Lu J Z, Su Y C. Effects of flash freezing, followed by frozen storage, on reducing Vibrio parahaemolyticus in Pacific raw oysters (Crassostrea virginica). J Food Prot, 2009, 72(1): 174-177.
    13. Cook D W, Ruple A D. Cold storage and mild heat treatment as processing aids to reduce the numbers of Vibrio vulnificus in raw oysters. J Food Prot, 1992, 55(12): 985-989.
    14.李博.GDL豆腐中的主要腐败菌的研究及HACCP的建立[D]:[博士学位论文].北京:中国农业大学食品科学与营养工程学院,2001.
    15. Chen M J, Cheney D, Su Y C. Temperature effects on the depuration of Vibrio parahaemolyticus and Vibrio vulnificus from the American oyster (Crassostrea virginica). J Food Sci, 2009, 74(2): 62-66.
    16.张宜凤,汪家琦,顾瑞霞,等.耐热乳酸菌热致死动力学模型研究[J].中国乳品工业,2009,37(3):12-15.
    17. Maruyama Y, Kimura B, Fujii T, et al. Growth inhibition of Vibrio parahaemolyticus in seafood by tabletop dry ice cooler. Shokuhin Eiseigaku Zasshi, 2005, 46(5): 213-217.
    1.潘见,张文成,成从贵.超高压液体饮料实用性灭菌工艺及设备设计[J].食品科学,1999,73(5):30-32.
    2. Trujillo A J, Capellas M, Saldo J, et al. Applications of hydrostatic pressure on milk and dairy products: a review. Innov Food Sci Emerg, 2002, 3(4): 295- 307.
    3. Butz P, Edenharder R, Garcia A F, et al. Changes in functional properties of vegetables induced by high pressure treatment. Food Res Int, 2002, 35(2-3): 295-300.
    4. Murchie L W, Cruz-Romero M, Kerry J P, et al. High pressure processing of shellfish: A review of microbiological and other quality aspects. Innov Food Sci Emerg, 2005, 6 (3): 257-270.
    5. Calik H, Morrissey M T, Reno P W, et al. Effect of High-Pressure Processing on Vibrio parahaemolyticus strains in pure culture and pacific oysters. J Food Sci, 2002, 67(4): 1506-1510.
    6. Hu X, Mallikarjunan P, Koo J, et al. Comparison of kinetic models to describe high pressure and gamma irradiation used to inactivate Vibrio vulnificus and Vibrio parahaemolyticus prepared in buffer solution and in whole oyster. J Food Prot, 2005, 68(2): 292-295.
    7. Harrigan W F著,李卫华译.食品微生物实验室手册(第三版)[M].北京:中国轻工业出版社,2004,35-38.
    8. Chen H Q. Use of linear, Weibull, and log-logistic functions to model pressure inactivation of seven foodborne pathogens in milk. Food Microbiol, 2007, 24(3): 197-204.
    9.黄训端,潘见,谢慧明,等.高静压对蜡样芽孢杆菌的致死与损伤效应[J].核农学报,2006,20(6):511-515.
    10.曾庆梅,谢慧明,潘见,等.超高压处理对枯草芽孢杆菌超微结构的影响[J].高压物理学报,2006,20(1):83-87.
    1.国家统计局.中国统计年鉴[S].北京:国家统计局,2009.
    2. Yano Y, Yokoyama M, Satomi M, et al. Occurrence of Vibrio vulnificus in fish and shellfish available from markets in China. J Food Prot, 2004, 67(8): 1617-1623.
    3. Strom M S, Paranjpye R N. Epidemiology and pathogenesis of Vibrio vulnificus. Microbes Infect, 2000, 2(2): 177-188.
    4. Cook D W, Oleary P, Hunsucker J C, et al. Vibrio vulnificus and Vibrio parahaemolyticus in U.S. retail shell oysters: a national survey from June 1998 to July 1999. J Food Prot, 2002, 65(1): 79-87.
    5. Kaspar C W, Tamplin M L. Effects of temperature and salinity on the survival of Vibrio vulnificus in seawater and shellfish. Appl Environ Microbiol, 1993, 59(8): 2425-2429.
    6. Motes M L, DePaola A, Cook D W, et al. Influence of water temperature and salinity on Vibrio vulnificus in Northern Gulf and Atlantic Coast oysters (Crassostrea virginica). Appl Environ Microbiol, 1998, 64(4): 1459-1465.
    7. Baffone W, Pianetti A, Bruscolini F, et al. Occurrence and expression of virulence-related properties of Vibrio species isolated from widely consumed seafood products. Int J Food Microbiol, 2000, 54 (1-2): 9-18.
    8. Normanno G, Parisi A, Addante N, et al. Vibrio parahaemolyticus, Vibrio vulnificus and microorganisms of fecal origin in mussels (Mytilus galloprovincialis) sold in the Puglia region (Italy). Int J Food Microbiol, 2006, 106(2): 219-222.
    9. Clinical and Laboratory Standards Institute. (2006a). Methods for antimicrobial dilution and disk susceptibility testing of infrequently isolated or fastidious bacteria. Approved standard (M45-A). Clinical and Laboratory Standards Institute. Wayne, PA.
    10. Clinical and Laboratory Standards Institute. (2006b). Performance standards for antimicrobial susceptibility testing. Sixteenth informational supplement (M100-S16). Clinical and Laboratory Standards Institute. Wayne, PA.
    11. Kaysner C A, DePaola A. Vibrio cholerae, V. parahaemolyticus, V. vulnificus, and other Vibrio spp. U.S. Food and Drug Administration Bacteriological Analytical Manual Online. U.S. Food and Drug Administration, Washington, DC. 2004. http://www.cfsan.fda.gov/~ebam/bam-9.html.
    12. Hill W E, Keasler S P, Trucksess M W, et al. Polymerase chain reaction identification of Vibrio vulnificus in artificially contaminated oysters. Appl Environ Microbiol, 1991, 57(3): 707-711.
    13. Rosche T M, Yano Y, Oliver J D. A rapid and simple PCR analysis indicates there are two subgroups of Vibrio vulnificus which correlate with clinical or environmental isolation. Microbiol Immunol, 2005, 49(4): 381-389.
    14. Stein E D, Tiefenthaler L L. Dry-weather metals and bacteria loading in an arid, urban watershed: Ballona Creek, California. Water, Air, and Soil Pollution, 2005, 164(1-4): 367-382.
    15. DePaola A, McLeroy S, McManus G. Distribution of Vibrio vulnificus phage in oyster tissues and other estuarine habitats. Appl Environ Microbiol, 1997, 63(6): 2464-2467.
    16. Chen Y, Liu X M, Yan J W, et al. Foodborne pathogens in retail oysters in South China. Biomed Environ Sci, 2010, 23(1): 32-36.
    17. Levin R E. Vibrio vulnificus, a notably lethal human pathogen derived from seafood: a review of its pathogenicity, subspecies characterization, and molecular methods of detection. Food Biotechnol, 2005, 19: 69–94.
    18. DePaola A, Capers G M, Alexander D. Densities of Vibrio vulnificus in the intestines of fish from the U.S. Gulf Coast. Appl Environ Microbiol, 1994, 60(3): 984-988.
    19. Cook D W. Effect of time and temperature on multiplication of Vibrio vulnificus in postharvest Gulf Coast shellstock oysters. Appl Environ Microbiol, 1994, 60(9): 3483-3484.
    20. Kaspar C W, Tamplin M L. Effects of temperature and salinity on the survival of Vibrio vulnificus in seawater and shellfish. Appl Environ Microbiol, 1993, 59(8): 2425-2429.
    21. Jackson J K, Murphree R L, Tamplin M L. Evidence that mortality from Vibrio vulnificus infection results from single strains among heterogeneous populations in shellfish. J Clin Microbiol, 1997, 35(8): 2098-2101.
    22. Rosche T M, Binder E A, Oliver J D. Vibrio vulnificus genome suggests two distinct ecotypes. Env Microbiol Rep, 2010, 2(1): 128-132.
    23. DePaola A, Nordstrom J L, Dalsgaard A, et al. Analysis of Vibrio vulnificus from market oysters and septicemia cases for virulence markers. Appl Environ Microbiol, 2003, 69(7): 4006-4011.
    24. Oliver J D. Wound infections caused by Vibrio vulnificus and other marine bacteria. Epidemiol Infect, 2005, 133(3): 383-391.
    25. Chatzidaki-Livanis M, Hubbard M A, Gordon K, et al. Genetic distinctions among clinical and environmental strains of Vibrio vulnificus. Appl Environ Microbiol, 2006, 72(9): 6136-6141.
    26. Chen C Y, Wu K M, Chang Y C, et al. Comparative genome analysis of Vibrio vulnificus, a marine pathogen. Genome Res, 2003, 13: 2577-2587.
    27. Radu S, Yuherman, Rusul G, et al. Detection and molecular characterization of Vibrio vulnificus from coastal waters of Malaysia. Southeast Asian J Trop Med Public Health, 2000, 31(4): 668-673.
    28. Warner E, Oliver J D. Population structures of two genotypes of Vibrio vulnificus in oysters (Crassostrea virginica) and seawater. Appl Environ Microbiol, 2008, 74(1): 80-85.
    29. Warner J M, Oliver J D. Randomly amplified polymorphic DNA analysis of clinical and environmental isolates of Vibrio vulnificus and other vibrio species. Appl Environ Microbiol, 1999, 65(3): 1141-1144.
    30. Lin M, Schwarz J R. Seasonal shifts in population structure of Vibrio vulnificus in an estuarine environment as reveled by partial 16S ribosomal DNA sequencing. FEMS Microbiol Ecol, 2003, 45(1): 23-27.
    31. Kim M S, Jeong H D. Development of 16S rRNA targeted PCR methods for the detection and differentiation if Vibrio vulnificus in marine environment. Aquaculture, 2001, 193(3-4): 199-211.
    32. Vaseeharan B, Ramasamy P, Murugan T, et al. In vitro susceptibility of antibiotics against Vibrio spp. and Aeromonas spp. isolated from Penaeus monodon hatcheries and ponds. Int J Antimicrob Agents, 2005, 26(4): 285-291.
    33. Zanetti S, Spanu T, Deriu A, et al. In vitro susceptibility of Vibrio spp. isolated from the environment. Int J Antimicrob Agents, 2001, 17(5): 407-409.
    34. Neu H C. The crisis in antibiotic resistance. Science, 1992, 257(5073): 1064-1073.
    35. Aarestrup F M, Wegener H C. The effects of antibiotic usage in food animals on the development of antimicrobial resistance of importance for humans in Campylobacter and Escherichia coli. Microbes Infect, 1999, 1(8): 639-644.
    36. Gordon L, Giraud E, Ganiere J P, et al. Antimicrobial resistance survey in a river receiving effluents from freshwater fish farms. J Appl Microbiol, 2007, 102(4): 1167-1176.
    37. Stepanauskas R, Glenn T C, Jagoe C H, et al. Coselection for microbial resistance to metals and antibiotics in freshwater microcosms. Environ Microbiol, 2006, 8(9): 1510-1514.
    38. Han F, Walker R D, Janes M E, et al. Antimicrobial susceptibilities of Vibrio parahaemolyticus and Vibrio vulnificus isolates from Louisiana Gulf and retail raw oysters. Appl Environ Microbiol, 2007, 73(21): 7096-7098.
    1. Gulig P A, Bourdage K L, Starks A M. Molecular pathogenesis of Vibrio vulnificus. J Microbiol, 2005, 43: 118-131.
    2. Linkous D A, Oliver J D. Pathogenesis of Vibrio vulnificus. FEMS Microbiol Lett, 1999, 174(2): 207-214.
    3. Strom M S, Paranjpye R N. Epidemiology and pathogenesis of Vibrio vulnificus. Microbes Infect, 2000, 2(2): 177-188.
    4.卢中秋,邹长林,李秉熙,等.12例创伤弧菌败血症的流行病学特点[J].中华流行病学杂志,2003,24(10):900.
    5.林杰,吴露楠.以下肢肿痛为首发表现的创伤弧菌感染2例[J].中国社区医师-医学专业,2011,13(22):178.
    6.卢中秋,李秉熙,黄唯佳,等.创伤弧菌败血症的临床和流行病学特点[J].中国急救医学,2003,23(7):470-471.
    7.陈艳,梅玲玲,李秀桂,等.东南沿海地区零售海产品中创伤弧菌的监测[J].中国食品卫生杂志,2009,21(4):344-347.
    8. McCoubrey D J. Risk of Vibrio vulnificus infection following comsumption of raw commercially harvested North Island oyster. MPH Thesis. 1996, The University of Auckland. New Zealand. 86.
    9. Scientific Committee on Veterinary Measures relating to Public Health, 2001. Opinion of the Scientific Committee on Veterinary Measures Relating to Public Health on Vibrio vulnificus and Vibrio parahaemolyticus (in raw and undercooked seafood) (adopted on 19-20 September 2001). European Commission. Health &Consumer Protection Directorate-General. Directorate C-Scientific Opinions. 64.
    10. (FAO-WHO) Food and Agriculture Organization-World Health Organization. 2005. Risk assessment of Vibrio vulnificus in raw oysters. Microbiological Risk Assess.Series 8. Available from: http://www.who.int/foodsafety/publications/micro/mra8/en/index.html.
    11.曹荣.对虾生物保鲜与其熟制品保鲜技术的研究[D]:[博士学位论文].青岛:中国海洋大学食品科学与工程学院,2009.
    12. Codex Alimentaius Commission. Draft principles and guidelines for the conduct of microbiological risk assessment. ALINOR 99P13A. Http://fsf/mbriskassess/pdf/9913 ap 20.pdf.1998.
    13. CAC. Principles and guidelines for the conduct of microbiological risk assessment. CAC/GL-30. Codex Allimentarius Commission. FAO, Rome, 1999.
    14. Buchanan R L, Stahl H G, Whiting R C. Effect and interaction of temperature, pH, atmosphere, sodium chloride and sodium nitrite on the growth of Listeria monocytogenes. J Food Prot, 1989, 52(12): 844-851.
    15. Bank G J, Hong C H, Oh D H, et al. Modeling the level of contamination of Staphylococcus aureus in ready-to-eat kimbab in Korea. J Food Prot, 69(6): 1340-1346.
    16. Yamamoto A, Iwahori J, Vuddhakul V, et al. Quantitative modeling for risk assessment of Vibrio parahaemolyticus in bloody clams in southern Thailand. Int J Food Microbiol, 2008, 124(1): 70-78.
    17. Blake P A, Weaver R E, Hollis D G. Diseases of human(other than cholera) caused by vibrios. Annu Rev Microbiol, 1980, 34: 341-367.
    18. Biosca EG, Oliver J D, Amaro C. Phenotypic characterization of Vibrio vulnificus biotype 2, a lipopolysaccharide-based homogeneous O serogroup within Vibrio vulnificus. Appl Environ Microbiol, 1996, 62(3): 918-927.
    19. Amaro C, Biosca E G, Esteve C, et al. Comparative study of phenotypic and virulence properties in Vibrio vulnificus biotypes 1 and 2 obtained from a European eel farm experiencing mortalities. Dis Aquat Org, 1992, 13(1): 29-35.
    20. Amaro C, Biosca G G, Fouz B, et al. Electrophoretic analysis of heterogeneous lipopolysaccharides from various strains of Vibrio vulnificus biotypes 1 and 2 by silver-staining and immunoblotting. Curr Microbiol, 1992, 25(2): 99-104.
    21. Bisharat N, Agmon V, Finkelstein R , et al. Clinical, epidemiological, and microbiological features of Vibrio vulnificus biogroup 3 causing outbreaks of wound infection and bacteraemia in Israel. Lancet, 1999, 354: 1421-1424.
    22. Shapiro R L, Altekruse S, Hutwagner L, et al. The role of Gulf Coast oysters harvested in warmer months in Vibrio vulnificus infections in the United States, 1988-1996. J Infect Dis, 1998, 178: 754 -759.
    23. Merkel S M, Alexander S, Zufall E, et al. Essential role for estrogen in protection against Vibrio vulnificus-induced endotoxic shock. Infect Immun, 2001, 69(10): 6119-6122.
    24. Jones M K, Oliver J D. Vibrio vulnificus: disease and pathogenesis. Infect Immun, 2009, 77(5): 1723-1733.
    25. Nilsson W B, Parajpye R N, DePaola A, et al. Sequence polymorphisms of the 16S rRNA gene of Vibrio vulnificus is a possible indicator of strain virulence. J Clin Microbiol, 2003, 41(1): 442-446.
    26. Cook D W. Effect of time and temperature on multiplication of Vibrio vulnificus in postharvest Gulf Coast shellstock oysters. Appl Environ Microbiol, 1994, 60(9): 3483-3484.
    27.中国气象局.中国气象年鉴[S].北京:中国气象出版社,2010.
    28.黄驰云.冻生虾仁中大肠杆菌和金黄色葡萄球菌的风险评估及对产品货架期的预测[D]:[硕士学位论文].湛江:广东海洋大学食品科技学院,2010.
    29.韩丽.不同保藏方法的南美白对虾保藏过程中腐败微生物的动态检测研究[D]:[硕士学位论文].上海:上海海洋大学食品学院,2008.
    30.金德沂.介绍一个在淡水中有养殖前途的对虾品种[J].科学养鱼,1987,6:15.
    31.王平,李婷,李义军,等.高位池精养斑节对虾(Penaeus monodon)的生长规律[J].海南大学学报自然科学版,2011,29(3):264-269.
    32.刘瑞玉,钟振如.南海对虾类[M].北京:农业出版社,1988.114-120.
    33.黄鸿基,吴琴瑟,蒋静南.墨吉对虾体长与体重关系的计算及其在生产中的应用[J].湛江水产学院学报,1990,10(1):52-57.
    34.王广军,谢骏,潘得播.南美白对虾的生物学特性及繁养殖技术[J].江西水产科技,2000,2:18-19.
    35.宋迁红.南美蓝对虾的生物学、肌肉营养品质分析及淡化养殖技术推广试验研究[D]:[硕士学位论文].南京:南京农业大学食品科技学院,2005.
    36. Desenclos J C A, Klontz KC, Wolfe L E, et al. The risk of Vibrio illness in the Florida raw oyster eating population, 1981–1988. J Epidemiol, 1991, 134: 290 -297.
    37. Osaka K, Komatsuzaki M, Takahashi H, et al. Vibrio vulnificus septicaemia in Japan: an estimated number of infections and physicians' knowledge of the syndrome. Epidemiol Infect, 2004, 132(5): 993-996.
    38.日本总人口.http://roll.sohu.com/20111027/n323598435.shtml.
    39. Korean Center for Disease Control and Prevention. 2004. Reported cases of national notifiable diseases by areas, November 2004. Commuible Disease and Monthly report 1:256-257.
    40.韩国总人口.http://wenwen.soso.com/z/q986361308.htm?pid=ask.
    41.刘诗瑶,王建生.我国成人糖尿病患病率和空腹血糖受损率估计[J].中国慢性病预防控制,2010,18(4):331-334.
    42.李鹏,孙伟,杨雪静,等.2006-2009年天津市和平区4种慢性病报告发病率分析[J].中国慢性病预防控制,2011,19(1):81-83.
    43.沙庆洪,陈大保.我国病毒性肝炎现患率和发病率的现状调查[J].中华微生物学和免疫学杂志,1986 ,(增刊) :16-19.
    44.郑莹,吴春晓,金凡,等.上海市区1973至2005年癌症的发病趋势[J].诊断学理论与实践,2009,8(1):25-32.
    45.钟进彦,张栗,柳建发.艾滋病的流行研究进展[J].地方病通报,2010,25(6):72-74.
    46.张乃峥,Wisley R,曾庆徐,等.关于某些风湿性疾病在中国流行情况的调查[J].中华内科杂志,1995,34(2):79-83.
    47.邹红云.系统性红斑狼疮的免疫发病机制研究进展[J].中国优生与遗传杂志,2010,18(4):144-147.
    48. Cook D W, Ruple A D. Cold storage and mild heat treatment as processing aids to reduce the numbers of Vibrio vulnificus in raw oysters. J Food Prot, 1992, 55(12): 985-989.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700