猕猴桃ACO基因的克隆及遗传转化试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
猕猴桃由于营养成分丰富,特别是维生素含量高,被誉为水果之王,深受人们的喜欢,具有较好的市场前景。但由于猕猴桃果实是一种呼吸跃变型果实,不耐贮藏,在贮运过程中果实易衰老软化,失去其应有的经济价值,给生产和销售带来很大的困难。呼吸跃变的产生是由于在贮藏过程中大量合成乙烯,并产生一系列的生理生化变化所导致的。乙烯是重要的植物成熟激素,调控果实的成熟衰老过程,通过降低果实内源乙烯的合成,是延长果实贮藏保鲜的最有效途径。在控制内源乙烯生物合成的措施中,反义RNA技术是一种最有效的途径之一,利用反义RNA技术抑制乙烯合成的重要限速酶ACC氧化酶的基因表达,将会有效降低乙烯的内源合成。本研究以海沃德猕猴桃为试材,通过ACO基因的克隆、RNAi表达载体的构建及遗传转化试验的研究,取得如下主要结果:
     1.成功克隆了猕猴桃ACO基因。利用已登录其他植物的ACO基因序列合成特异引物,扩增并克隆了猕猴桃ACO基因的全长cDNA序列,该基因cDNA序列全长1003bp,其CDS为960bp,编码319个氨基酸残基,该cDNA序列与其它已登录植物的ACO基因的序列同源性高,最高达94%,具有7个保守区序列及ACO基因的其他序列特点和生化特征,确定为ACO基因(GenBank登录号:JQ062390)。
     2.构建了海沃德猕猴桃ACC氧化酶基因反义表达载体。分别将扩增得到的ACO基因和pCAMBIA1300双酶切后,用T4DNA连接酶连接,成功构建了ACO基因的反义表达载体。将构建好的载体转化农杆菌EHA105,经质粒提取和PCR检测,该反义表达载体构建成功并已转化EHA105,为下一步遗传转化研究提供了转化工具。
     3.优化了猕猴桃的组织培养体系。该体系的诱导培养基为:MS+6-BA(10mg/L)+NAA(0.2mg/L)+TDZ(0.2mg/L);继代培养基为:MS+6-BA(0.25mg/L)+NAA(1mg/L)。叶片接种到诱导培养基后,7天左右可以看到叶脉及叶片边缘处开始膨大,愈伤开始生长,猕猴桃叶片愈伤诱导率为100%,20天左右可以继代一次。
     4.建立了高效、稳定的遗传再生体系。选取米良一号优良单株上无病虫害的1年生硬枝培育成的无菌苗叶片,在含潮霉素等抗生素的筛选培养基YS:MS+6-BA(0.25mg/L)+NAA(1mg/L)+头孢霉素500mg/L+羧苄青霉素400mg/L+潮霉素20mg/L,pH6.0.MS上诱导分化和生根,侵染时农杆菌的OD值为0.6时,愈伤组织浸入菌液中30min,每隔5min摇一次。25-26℃下暗培养3-4d,侵染效果较为理想,成功将RNAi基因转化到离体培养的猕猴桃叶片中,并用PCR检测技术,对转化后的植株进行了鉴定,得到的阳性植株率为71%。实时荧光定量PCR分析结果显示,再生苗ACO基因的表达量低于野生型81%。
     5.为了阳性优良再生植株后续推扩生产,对嫁接时砧木的影响进行了分析。以普通、高抗3号两种砧木和猕猴桃良种米良1号、红阳及翠玉为试材,研究砧木对各品种果实品质的影响。结果表明,与普通砧木相比,高抗3号能显著提高米良1号的所有指标的含量,除让红阳的维生素C略有降低外,其他指标都有所提高。而高抗3号则使翠玉所有的指标都有所降低。表明高抗3号是很理想的米良1号和红阳转化植株的砧木,不太适合翠玉。
With a rich nutrition, especially the high vitamin content, the kiwi fruit(Actinidia deliciosa) is known as "the king of the fruit" by people, and has a good market prospect. But the kiwi fruit is a kind of climacteric fruit, the fruit will be rotten rapidly under the bad storage environment and will lose their economic value. This is a difficult problem in the production and sales of kiwifruit. Ethylene will be synthesised rapidly at the stage of climacteric, and produce a series of physiological and biochemical changes in the fruits. Ethylene is important plant mature hormone, regulating of fruit mature at the aging process, reducing the synthesis of fruit internal vinyl, it's the most effective way to extend the storage and preservation of fruit. In the control measures of ethylene biosynthesis endogenous, antisense RNA technology is one of the most effective ways, antisense RNA technology inhibit ethylene synthesis of speed limit of important enzyme ACC oxidase gene expression, will reduce the ethylene endogenous synthesis. In this study, Heywood kiwi fruit was used as the test materials, had achieved the following main results by cloning aco genes, building the RNAi express carriers and researching the experiment of genetic transformation.
     1. Having Cloned the ACO gene of Actinidia deliciosa successfully. According to the ACO genes sequence of other plants which Gene Bank accepted, the unique primers were synthened to amplify and to clone the full-length cDNA sequence of ACO gene from A.deliciosa. The full-length cDNA sequence contents1003bp of nucleatides, the CDS is960bp,and code the319amino acid residues. This cDNA sequence have a high homology with other ACO genes which had logged on gene bank. The top similarity up to94%. The amplified sequence has7conservative regions and have some others characteristics and biochemical characteristics of ACO gene, can be confirmed as the ACO gene(GenBank accession number:JQ062390)。
     .2. Constructed the antisense expression vector for the ACC oxidase gene of A.deliciosa 'Heywood'. The amplified ACO gene and the amplified pCAMBIA1300plasmid were digested respectively with the enzymes of Sma Ⅰ and Sal Ⅰ. The digested products were ligated with T4DNA ligation enzyme. And the antisense expression vector of ACO gene were successfully constructed. The ligated plasmid was transformed into EHA105Agrobacterium, which was then used for gene transformation to kiwifruit. To detect the constructed plasmid, the technology of PCR was used. The PCR results revealed that the antisense gene was successfully transformed into EHA105.
     3. Optimized the tissue culture system of A.deliciosa. The inductive culture medium are:MS+6-BA (10mg/L)+NAA(0.2mg/L)+TDZ(0.2mg/L); the subculture medium are:MS+6-BA (0.25mg/L)+NAA(1mg/L). Leaf vaccinated to the inductive medium,7days or so after the leaf vaccination, can see the veins of the leaf blades had formed start at swollen, callus began to grow, kiwi callus induction leaves rate was100%, it can be subcultured once after20days or so.
     4. Constructed the efficient and stable genetic regeneration systems The shoots and leaves from a superior individual plant,1year old with no pest diseases were selected. Callus shoot and rooting induction were influenced by different hormone combinations of culture medium YS:MS+6-BA (0.25mg/L)+NAA (1mg/L)+cephalosporins (500mg/L)+Carbencillin (400mg/L)+hygromycin (20mg/L), pH6.0. The Agrobacterium tumefaciens were cultured until its OD value to0.6, callus were immersed in A. tumefaciens media for30min, and were shanked every5min. The callus were cultured under25to26℃with a dark environment for3~4d. The RNAi gene was successfully transformed into the culture leaf in vitro of A.deliciosa, and detected the transformation of the plant after the appraisal by PCR. The PCR results showed that the antisense ACO gene had successfully transformed into the leaves, the rate of infected plant were71%. The result of Quantitative Real-Time Fluorescence PCR Technology shows that the ACC oxidase gene expression of regrowth leaves is19%of the wild type.
     5. Analyzed the rootstocks'effect after grafted.To study the rootstocks'effects, high resistance varieties, ordinary variaties, the kiwifruit of miliangyihao, hongyang and cuiyu were chosen as study varieties. The results showed that, compared with common varieties, it was significantly improved with the rootstock of high resistance varieties, in addition to hongang of vitamin C depressed after grafted outside. The high resistance varieties is an ideal meters of rootstock for miliangyihao and hongyang, but not so good for cuiyu.
引文
[1]中国科学院中国植物志编辑委员会.中国植物志[M].北京:科学出版社,1984,49(2):261-263.
    [2]Li X. W., Li J. Q., Soejarto D. D.. Advances in the study of the systematics of Actinidia Lindley. Front [J]. Biol. China,2009,4(1):55-61.
    [3]Gardner R C. Genetic engineering of kiwifruit [J]. Proceeding of NZ kiwifruit Authority National Research Conference. Rotorua,1986,27-28.
    [4]黄宏文,龚俊杰,王圣梅,等.猕猴桃属植物的遗传多样性[J].生物多样性,2000,8(1):1-12.
    [5]Belrose Inc. Production of kiwifruit [J]. World Kiwifruit Review,2006: 13-24.
    [6]陈启亮,陈庆红,顾霞,等.中国猕猴桃新品种选育成就与展望[J].中国南方果树,2009,38(2):70-76.
    [7]Hallett IC, Sutherland P W. Structure and development of kiwifruit skins [J]. International Journal of Plant Sciences,2005,166:693-704.
    [8]付永琦,陈明,刘康等.1-MCP二次处理对猕猴桃果实采后生理生化及贮藏效果的影响[J].果树学报.2007,24(1):43-48
    [9]徐小彪,张秋明.中国猕猴桃种质资源的研究与利用[J].植物学通报,2003,20(6):648-655
    [10]张素梅,蒙盛华,李钮,等.中华猕猴桃贮藏期产呼吸与乙烯释放规律的研究[J].园艺学报,1985,12(2):95-99.
    [11]Wang, Ran Y, Atkinson RG, etal. Transformation of Actinidia eriantha:A potential species for functional genomics studies in Actinidia [J]. Plant Cell Rep,2006(a),25:425-431.
    [12]张素梅.中华猕猴桃及其储藏保鲜[J].中国果菜,1984,(02):78-83.
    [13]王仁才,谭兴和,吕长平,等.猕猴桃不同品系耐贮性与采后生理生化变化[J].湖南农业大学学报,2000,26(1):46-49.
    [14]Wang T, Atkinson KG, Janssen BJ. The choice of Agrobacteriuim strain for transformation of kiwifruit [J]. Acta Horticulturae,2006(b),753-759.
    [15]王仁才;李先信;张春梅,等.猕猴桃种间差异对其籽油含量及成分的影响[J].湖南农业科学,2010/24:185-189。
    [16]高月,毕静华,刘永九.阔叶猕猴桃遗传转化技术参数的优化[J].果树学报,2007,24(4):553-556.
    [17]武冲,唐树梅,张勇,等.植物花粉培养研究进展[J].农业基础科学,2008,24(11):146-149.
    [18]Pressey R. Changes in polyalacturonase isoenzymes and converter in tomato during ripening [J].Horticultural Science,1986,21(5):1183-1185.
    [19]Awad M, Young R E. Postharvest variation in cellulose, polygalacturonase and pectinmethylesterase in avocado fruit in relation to respiration and ethylene production[J]. Plant Physiology,1979,64:306-308.
    [20]Paull R E, Chen N J. Postharvest variation in cell wall-degrading enzymes of papaya during fruit ripening[J].Plant Physiology,1983,72:382-385.
    [21]Wu Y. J., Xie M., Zhang Q.C., etal Characteristics of 'White':a new easy-peel cultivar of Actinidia eriantha [J]. New Zealand Journal of Crop and Horticultural Science,2009, Vol.37:369-373.
    [22]Xue Y B, KuboYznaba A. Effects of humidity on ripening and texture in banana fruit [J]. Journal of the Japanese Society for Horticultural Science, 1995,64(3):657-664.
    [23]Jen J J, Robison M L Pectolytic enzymes in sweet bell peppers [J]. Journal of Food Science,1984,49(4):1085-1087.
    [24]Jen J J, Kubo M. Pectolytic enzymes polysaccharides and their degrading in sweet bell peppers [J]. Journal of Food Science,1985,37(3):987-993.
    [25]杨德兴.猕猴桃衰老过程中PG、果胶质和细胞壁超微结构的变化[J].园艺学报,1993,20(4):341-345
    [26]Ning B, Kubo Y. Softening characteristics of Chinese pear'Yali'fruit with special relation tocbanges in cell wall polysaccharides and their degrading enzymes [J].Scientific Reports of theFaculty of Agriculture Okayama University,1997,86:71-78.
    [27]Huber D J. Strawberry fruit softening:The potential roles of polyuronides and hemicelluloses [J]. Journal of Food Science,1984,49:1310-1315
    [28]Brandy C J. The pectinesterases of the pulp of the banana fruit [J]. Journal of Plant Physiology.1976,3:163-172.
    [29]王贵禧,韩雅珊.称猴桃果实中PME、PG及其抑制因子的研究[J].中国农业大学学报,1998,3(1):88-94.
    [30]Brummell D A, Harpster MH, Civello P M, et al. Modification of expansin protein abundance in tomato fruit alters softening and cell wall polymer metabolism during ripening [J].Plant Cell,1999,11:2203-2216.
    [31]David A Brummell, Lyn M Watson, Ranjith Pathirana.Biofortification of Tomato (Solanum lycopersicum) Fruit with the Anticancer Compound Methylselenocysteine Using a Selenocysteine Methyltransferase from a Selenium Hyperaccumulator[J].Agric Food Chem,2011,59(20):10987-10994
    [32]王仁才,涂洪强,肖志伟,等.不同预冷处理对猕猴桃果实冷藏效果的影响[J].湖南农业大学学报(自然科学版).2008,03:89-95.
    [33]Perez A Q Sanz C, Olias R, et al. Aroma Quality Fvaluation of Strawberry Cultivars in Southern Spain [J]. International Society for Horticultural Science,1997,439 (1):337-340
    [34]Johnson P R, EckerJ R. The ethylene gas signal transduction pathway a molecular perspective [J], Annu Rev Genet,1998,32:227-254.
    [35]Abeles F B, Morgan P W, Saltiveit M E.Ethylene in Plant Biology[M]. New York:Academic press,1992.
    [36]黄宏文,刘亭,屈红霞.采收期和贮藏温度对金艳猕猴桃品质的影响[J].热带亚热带植物学报.2011,02:88-92.
    [37]Adams D O and Yang S F. Ethylene biosynthesis:identification of 1-aminocyclopropane-1-carboxylic acid as an intermediate in the conversion of methionine to ethylene[J]. Proc Natl Acad Sci USA,1979, 76:170-174..
    [38]叶志彪,李汉霞,郑用链等.反义ACC氧化酶基因的导入对番茄乙烯生成的抑制作用[J].华中农业大学学报,1996,15(4):305-309.
    [39]Lieberman M, Kunishi A, Mapson L et al. Stimulation of ethylene production in apple tissue slices by rnethionme [J]. Plant Phjsicl. 1966,43:376-382.
    [40]Mathooko F M. Regulation of ethylene biosynthesis in higher plants by carbon dioxide[J]. Postharv. Biol. Technol.,1996,7(1):1-26
    [41]Yu B Y, Adams D O, Yang S F.1 -aminocyclobutane-1 -carboxylate synthase, a key enzyme in ethylene biosynthesis[J]. Arch. Biochem. Biophys.,1979,198(1):280-286
    [42]傅达齐,李正国,曾凯芳.乙烯生物合成及其调控研究进展[J]中国园艺学会第四届青年学术讨论会论文集.9-13.
    [43]姚泉洪,黄晓敏,刘宗镇.植物乙烯生物合成与抗衰老基因工程[J].上海农业学报,1994,10(2):89-96.
    [44]周胜军.园艺作物成熟和衰老的分子生物学[J].生物学杂志,2002,19(5):5-8.
    [45]Heby O, Persson L. Molecular genetics of polyamine synthesis in eukaryotic cells [J]. Trends Biochem Sci,1990:153-158.
    [46]Tabor C W, Tabor H, Methionine adenosyltransferase (S-adenosylm Ethionine synthetase) and 5-adetiosylrnethionine decarboxylase [J]. AdvEn zymol,1984,56:251-282.
    [47]Thomas D, Surdin-Kerjan Y..SAMSI, the structural gene for one of the S-adenosylmethionine synthetase in Sarrhnromyre cerefhUte [J]. J Biol Chem,1987,262:16704-16709.
    [48]Woodson WR, Paxk K Y, Droxv A. Expression of ethylene biosynthetic pathway transcripts in senescing carnation flowers [J]. Plant PhysioL 1992, 99:526-532.
    [49]Boerjan W, Bauw G, Van Montagu M. Distinct phenolyps generated by overexpression arid suppression of S-adenosyl-Imethionine reveal developmental patterns of gene si'lencritig in tobacco [J] Plant Cell,1994, 6:1401-1414,
    [50]Izhaki A, Shoseyov O, Weiss a A petunia cDNA encoding S-adenosyl-methionine synthase [J]. Plant Phyaol,1995,108:841-842.
    [51]Dekeysen R A, Claes B, De Rycke R. et al. Transient gene expression in intact and organized tissues [J]. Plant Cell,2:591-602
    [52]Espartero J, Pintor-Toro J A, Pardo J M, Differential accumulation of S-adenosylmethione synthelase transcripts in response to salt stress [S]. Plant Mol Biol,1994,25:217-227.
    [53]Gomez-Gornez L, Carrasco P. Differential expression of the S-ajdenosyl-L-methiotiition synthase genes, during pea development [J]. Plant Physiol,1998, J 17:397-405.
    [54]Gomez-Gornez L, Boll T. FLS2:an LRRreceptor-like kinase in the bacterial al[J]. Mol Cell.2000 Jun;5(6):1003-11.
    [55]Yu Y B, Adams D O, Yang S F.1-aminocyclapropane-1 -carboxylate synthase, a key enzyme m ethylene biosynthesis [J}- Arch Biochem Biophys,1979,198.280-286
    [56]陈新建,刘国顺,陈占宽等.乙烯生物合成途径及其相关基因工程的研究进展[J].热带亚热带植物学报2002,10(1):83-98
    [57]Abel S, Nguyen M D, Chow W, et al. A CS4, a primary indoleacetic acid-responsive gene encoding 1-aminocyclopropane-l-carboxylate synthase in Arabidapsis thaliana. Structural characterization, expression in Escherichia coli, and expression characteristics in response to auxin [J], J Biol Chem,1995,270:19093-19099.
    [58]Vogel J P, Woeste K.E, Theologls A, et al. Recessive and dominant mutations in the ethylene biosynthetic gene and ethylene overproduction respectively[J]. Proc Natl Acad Sci USA,1998,95:4766-4771.
    [59]Banga M, Slaa E J, Blom C W F M, et al. Echylene biosynthesis and accumulation under drained and submerged conditions. A comparative study of two Rumer species [J], Plant Physiol,1996,112:229-237.
    [60]Cohen E, Kende H. In vivo 1-aminocyclopropane-1-carboxylate synthase activity in internodes of deepwater rice[J]. Plant Physiol,1987, 84:282-286,
    [61]Botella J R, Arteca R N, Fnangos J A. A mechanical strain-induced 1-aminocyclopropane-1-carboxylate synthase gene [J]. Proc Natl Acad Sci USA.1995.92:1595-1598.
    [62]Yi H C, Jao S, Lee J S, et al. Auxin and brassinosteroid differentially regulate the expression of three members of the 1-aminocyclopropane-1-carboxylate acid synthase gene family in mung bean [J]. Plant Mol Biol, 199-41:443-454.
    [63]H. Behaviors of 1-aminocyclopropane-1-carboxylate acid (ACC) and ACC synthase responsible for ethylene production m normaJ and mutant {nor and nnl tomato fruils at various ripening stages [J]. I Jpn Soc Hort Sci, 1993,61:S05-S12.
    [64]Olson D C, Oetiker J H, Yang S F. Analysis of a 1-aminocyclopropane-1-carboxylate acid gene expressed during roots of tomato plants [J]. J BioLChem,1995,70:1405-1406.
    [65]Tuomainen J, Betz C, Karigasjarvi Jt et al. Ozone induction of ethylene emission in tomato plants, regulation by differentia! accumulation of transcripts for the biosynthetic enzymes [J]. Plant J,1997,12.1151-1162.
    [66]Woodson WR, Park K Y, Drory A. Expression of ethylene biosynthetic pathway transcripts in senescing carnation flowers [J]. Plant PhysioL 1992, 99:526-532.
    [67]Bui A Q, O'Neill S D. Three 1-aminocyclopropane-l-carboxylate acid synthase genes regulated by primary and seccindary pollinauon signars in orchid flowers [J]. Plant Physiol,1998,116:419-429.
    [68]Knoester M、Van Leon L C, Van den Heuvel J, et al. Ethylene-Insensitive tobacco lacks non-host resistance against soil-bome fungi[J]. Pioc Natl Acad Sci USA,1998,95:1933-1937.
    [69]Imamura A, Hanski N, Umeda h, et al. Response regulaiors implicated in His-to-Asp phosohotransfer signaling in arabidopsis [J]. Proc Natl Acad Sei USA,1998,95.2691-2696.
    [70]Schhlagnhaufer C, Arteca R, Pell E. Sequential expression of two 1-aminocyclopropane-1-carboxylate acid synthase gene in response to biotic and abiotic stresses in potato leaves [J]. Plant Mol Biol.]997, 35:683-688.
    [71]Sunako J, Sakuraba W, Sende M, An allele of the ripening specific 4 CSI in apple fruit with a long storage life [J], plant Physiol,1999,119: 1294-1304.
    [72]Lelievre J M, Tichit L, Dao P. Effects of chilling on the expression of ethylene biosynthetic genes in Passe-Craesan pear fruits [J]. Plant Mol Biol,1997,33:847-855
    [73]Trebitsh T、Staub J E, O'Neill S D, Identification of 1-aminocyclopropane-1-carboxylate acid synthase gene linked to the female locus that enhances female sex expression in cucumber [J]. Plant Physiol,1997,11 J:978-995.
    [74]Subramaniam K, Abbo S, Ueng P P. Isolation of two differentially expressed 1-aminocyclopropane-1-carboxylate acid synthase gene cDNAs and the characterization of one of their genes with root predominant expression [J]. Plant Mol Biol,1996,31:1009-1012.
    [75]Privalle L S, Graham J S. Radio-inbeing of a wound-inducible pyridoxal phosphate-utilizing enzyme:evidence for its identification as ACC synthase [J], Arch Biochem Biophys.1987,253:333-340.
    [76]Slater A, Maunders M J, Edwards K, et al. The use of sodium perchlorate in deproteinization during the preparation of nucleic acids[J]. PlantMol. Biol.,1985,5:137-147.
    [77]HoldsworthM J, Birds C R, Ray J, et al. Structure and expression of an ethylene-related-mRNA from tomato[J]. Nucl Acids Res,1987,15: 731-739
    [78]Hamilton A J, Lycett G W, Grierson D. Antisense gene that inhibits synthesis of the hormone ethylene in transgenic plants[J]. Nature,1990, 346:284-287
    [79]HamitonAJ,Bouzayen M,Grierson D.Identification of a tomato gene for the ethylene-forming enzyme by expression in yeast[J]. Proc. Natl.Acad. Sci. USA,1991,88:7434-7437.
    [80]Spanu P,Reinhardt D,Boller T.Analysis and cloning of the ethylene-forming enzyme from tomato by functional expression of its mRNAin Xenopus laevis cocytes[J]. EMBO J,1991,10:2007-2013
    [81]Ross G S, Knighton M L, Lay-Yee M et al. An ethylene-related cDNA from ripening apples[J]. Plant Mol Biol,1992,18:231-234.
    [82]MacDiarmid C W B and Gardner R C.A cDNA sequence from kiwifruit homologous to 1-aminocyclopropane-1-carhoxylic acid oxidase[J]. Plant Physiol,1993,101:691-692.
    [83]Dong J G, Olson D, Silverstone A et al. Sequence of a cDNA coding for a 1-aminocyclopropane-l-carboxylate oxidase homolog from apple fruit [J]. Plant Physiol,1992,98:1530-1531
    [84]Scott C P, Olson D C, Kende H et al. A cDNA sequence encoding ACC oxidase from pea[J]. Plant Physiol,1993,101:689-671
    [85]Wang H and Woodson W R. A flower senescence-related mRNA from carnation shares sequence similarity with fruit ripening-related mRNAs involved in ethylene biosynthesis [J]. Plant Physiol,1991,96:1000-1001
    [86]Callahan A M, Morgens P H, Wright P et al.Comparison of pch313(pTOM13 homology) RNA accumulation during fruit softening and wounding of two phenotypically different peach cultivars[J]. Plant Physiol, 1992,100:482-488.
    [87]McGarvey D J, Yu H, Christofferson R E et al. Nucleotide sequence of a ripening-related cDNA from avocado fruit[J]. Plant Mol Biol,1990,15: 165-167.
    [88]Yang S F. Ethylene biosynthesis and its regulation in higher plants[J]. Annu Rev Plant Physiol,1984,35:185-189.
    [89]王俊英,张开春,王俊平,等.樱桃ACC氧化酶基因的克隆和序列分析[J].华北农学报,2002,16(1):11-15
    [90]Wang H and Woodson W R. A flower senescence-related mRNA from carnation shares sequence similarity with fruit ripening-related mRNAs involved in ethylene biosynthesis [J]. Plant Physiol,1991,96:1000-1001
    [91]Tang X, et al. Organization and structure of the 1-aminocyclopropane-1-carhoxylic oxidase genes in petunia flowers[J]. Plant Cell,1993,6: 1227-1239.
    [92]饶景萍,杨书珍,中野隆平,等.柿果实ACC氧化酶cDNA的克隆及其序列分析[J].中国农业科学,2002,35(6):695-699.
    [93]王自章,李杨瑞,张树珍,等.甘蔗ACC氧化酶基因片断的克隆与序列分析 [J].遗传学报,2003,30(1):62-69.
    [94]陈新建,刘国顺,陈占宽等.乙烯生物合成途径及其相关基因工程的研究进展[J].热带亚热带植物学报2002,10(1):83-98.
    [95]Kieber J J, Rothenberg M, Roman G, et a], CTRI, a negative regulator of the ethylene response pathway in Arabidapsis, encodes a member of the Raf family of protein kinases [J]. Cell,1993,72:427-4J1.
    [96]Clark K L., Larsen P B., Wang X, et al. Association of the Arabalipsis CTR1 Raf-like kinase with the ETR1 and ERS ethylene receptors[J]. Proc Natl Acad Sci USA,1998,95:5401-5406
    [97]English P J, Lycett G W, Roberts J A, et al. Increased 1-Aminocyclopropane-1-carboxylic acid oxidase activity in shoots of flooded tomato plants raises ethylene production to physiologically active levels[J]. Plant Physiol,1995, 109:1435-1440.
    [98]Nakatsuka. A, Murachi S, Okunishi H, Differential expression and internal feedback regulation of ACS and ACO and receptor genes in tomato fruit during development and ripening [J]. Plant Physiol. t998,118:1295-1305,
    [99]O'Neil S D. Nadeau J At Zhang X S. Interorgan regulation of ethylene biosynthetic:genes by pcllination[J] Plant Cell,1993,5:419-432.
    [100]Guis M, Bouquin T, Zegzouti H, et al. Differential expression of 1-aminocyclopropane-l-carboxylic acid oxidase genes in melon and physiological characterization of fruit expressing an antisense ACC oxidase gene [A]. In:Biology and Biotechnology of the Plant Hormone EUlylene [M]. Drdrecht, The Netherlands:Kluwer,1994.327-338.
    [101]Hyodo H., Hashimoto C, Morozumi S, et al. Characterization and induction of the activity of 1-aminocyclopropane-1-carboxylic acid oxidase in the wounded mesocarp tissue of Cururhirn riuxinui[J]. Plant Cell Physiol,1993,34:667-671.
    [102]Woodson W R, Park K Y, Droxy A. Expression of ethylene biosynthetic pathway transcripts in senescing carnation flowers [J]. Plant Physiol.1992, 99:526-532.
    [103]Kim W T, Yang S P. Structure expression of cDNAs encoding 1-aminocyclopropane-l-carboxylic oxidase homologs isolated from excised mung bean hypococyls [I]. Planta,1994,194:223-229.
    [104]Callahan A M, Morgens P H. Wright P. et al. Comparison of Pch313 (pTOM13 homolog) RNA accumulation during fruit softening and wounding of two phenotypically different peach cultures[J]. Plant Physiol, 1992,100:482-488.
    [105]Dong J G.. Fernandez-Maculet J C, Vang S F. Purification and characterization of 1-aminocyclopropane-l-carboxyate oxidase from apple fruit [J]. Proc Natl Acad Set USA,1992,89:9789-9793.
    [106]Lasserre E, Bouquznt, Hernandez J A. Structure and expression of three genes encoding ACC oxidase homologies from melon (Cucumis melon L.)[J]. Mol Gen Genet,1996,251(1):81-90.
    [107]Dong J G, Hoffinan N E, Vang S F. Characterization and the effect of 1-aminocyclopropane-l-carboxylate oxidase from melon fruit [J]. Plant Physiol,1998,58:1024-1033.
    [108]Yang S F, Hoffinan N E. Ethylene biosynthesis and its regulation in higher plants [J]. Ann Rev Plant Physiol,1984,35:155-189.
    [109]王镜岩,朱圣庚,徐长法.生物化学(下)[M].北京:高等教育出版社,2002:569-570.
    [110]Cottem M, Birustiel M L. Ribozyme mediated destruction of RNA in vivo[J]. EMBO,1989,8(12):38-61.
    [111]张西锋,沈伟,潘庆杰,等.反义RNA技术原理及其在疾病治疗中的应用[J].莱阳农学院学报,2004,21:20-22.
    [112]崔尚金,宋晓华,于康震,等.反义RNA技术研究简述[J].中国预防兽医学报,2000,22:159-160.
    [113]田苗苗,周延清,苑保军,等.反义RNA技术及其在植物中的应用[J].河南农业科学,2006:20-22
    [114]Hamilton A J, Lycett G W, Grierson D. Antisense gene that inhibits synthesis of the hormone ethylene in transgenic plants[J]. Nature,1990, 346:284-287
    [115]Picton S, Barton S L, Bouzayen M, et al. Altered fruit ripening and leaf senescence in tomato expressing an antisense ethylene-forming enzyme transgene[J]. Plant J,1993,3:469-481.
    [116]Vander biezen E A, Jones J D G. Plant disease resistance proteins and the gene-for-gene concept[J]. Trends Biochem Sci,1998,23:454-456.
    [117]Pua E C and Lee J E E. Enhanced de novo shoot morphogenesis in vitro by expression of antisense 1-aminocyclopropane-1-carboxylate oxidase gene in transgenic mustard plant[J]. Planta,1995,196:69-76
    [118]张淑珍,汤火龙,杨本鹏.康乃馨ACC氧化酶基因反义基因遗传转化康乃馨的研究[J].园艺学报,2003,30:6992-7021
    [119]Brondt A S, Woodson W K. Variation in flower senescence and ethylene biosynthesis amony carnation[J]. Hortscience,1992,27(10):1100-1102.
    [120]Prado, M J. Gonzalez, M V. Romo, S. etal Adventitious plant regeneration on leaf explants from adult male kiwifruit and AFLP analysis of genetic variation [J]. Plant Cell Tiss Organ Cult,2007,88:1-10.
    [121]Hirsch AM. The culture of Actinidica chinensis fruit tissues and the metabolism of free amino acid in stem segment sculture in vitro[J]. Comptes Rendus Hebdomadaires des Seances de l'Academiedes Sciences, 1975,280(11):1362-1372
    [122]秦永华,张上隆,朱道圩.猕猴桃的组织培养和遗传转化研究进展[J].细胞生物学杂志,2004,26(4):57-61
    [123]严姜黎,张翼,邢梅,等.红肉猕猴桃离体快速繁殖技术研究[J].华中农业大学学报,2008,27(1):101-104
    [124]母锡金,王文玲.猕猴桃属美味猕猴桃和毛花猕猴桃种间杂交的胚胎学和胚拯救[J].植物学报,1990,32(6):425-431
    [125]胡桂珍,杜令阁,岳沛华.软枣猕猴桃末成熟杂种培养再生植株[J].特产研究,1992,(14):24-25
    [126]Mu XJ, Tsaid R, An HX, Wang WL. Embryology and embryo rescue of interspecific hybrids in Actinidia[J]. Aeta Hort,1991,17:93-98
    [127]桂耀林,徐延玉,母锡金.猕猴桃胚乳培养中的胚胎发生.武汉植物学研究,1988,6(4):395-397
    [128]余叔文,汤章城.植物生理与分子生物学[M].科学出版社,1998,30-53
    [129]Gui Y, Hong S, Ke S. Fruit and vegetative characteristics of endosperm-derived kiwifruit (Actinidia chinensis)[J]. Euphytica, 1993,71(1-2):7-62
    [130]Kataoka I, Nakahira M, Inoue H. Active shoot regeneration in callus culture of kiwifruit (Acrinidia chineresis Planch)[J]. Technical Bulletin of Faculty of Agriculture Kagawa University (Japan),1987,39(1):21-26
    [131]刘翠云,张小红,马洪明.哑特猕猴桃微繁工艺流程的研究[J].西北植物学报,1997,17(1):118-123。
    [132]汪建亚,蒋祥娥,河村嘉一郎.猕猴桃试管苗愈伤组织诱导及叶片和茎段的再生[J].湖北林业科技,2000(增刊):91-95
    [133]Leva AR, Bertocci F. The effect of sorbitol and mannitol on the morphogenesis of Actinidia deliciosa[J]. Acta Horticulturae,1988, (227): 447-449
    [134]Dimassi TK, Bosabalidis AM. Effects of light, magnesium and sucrose on leaf anatomy, photosynthesis, starch and total sugar accumulation in kiwifruit cultured in vitro[J]. Plant Cell, Tissue and Organ Culture, 1997,47(2):127-134
    [135]曹孜义,刘国民.植物组织培养技术教程[M].兰州:甘肃科学技术出版社,1999:111-114.
    [136]张远记,钱迎倩.软枣猕猴桃试管苗叶片和茎段的愈伤组织诱导及植株再生[M]植物学报,1996,16(2):137-141.
    [137]樊军锋,李玲,韩一凡,李嘉瑞.秦美猕猴桃叶片最佳再生系统的建立[J].西北植物学报,2002,22(4):907-912.
    [138]Nachtigal J.C., Zecca A.GD., Figueiredo S.L.B. Effect of benzylaminopurine(BAP) on the in vitro multiplication of kiwifruit (Actinidia deliciosa[J]. Ciencia Rural,1995'25(1):23-26.
    [139]Lionakis SM Gerasopoulos D, Souad B. Kiwi plantlet regeneration from calli derived from the in vitro culture of unburst dormant lateral buds[J]. Agricultura Mediterranean 1997,127 (2):122-127.
    [140]Shimura I, Higuchi Y, Ishikawa S. Shoot formation from internode callus of kiwifruit (Actinidia deliciosa) cane by N-(2-chloro-4-pyridyl)-N'- phenylurea[J]. Journal of the Japanese Society for Horticultural Science, 1990,58 (4):841-847.
    [141]丁士林,朱秀珍,余厚敏.美味猴桃的组织培养.中国果树,1997,49(2).27-29.
    [142]谢志兵,鲁旭东.不同浓度的IBA对猕猴桃组培苗生根的影响,落叶果树,2003,55(2):9-10
    [143]Figueiredo S.L.B.'Zecca A.GD., Nachtighal J.C. Effect of indolebutyric acid on in vitro rooting of the kiwifruit cv. Hayward[J]. Ciencia Rural, 1994,24 (3):633-634
    [144]朱德瑶,沈显华,万勇.中华猕猴桃的组织培养研究[J].江西农业科技,1993,(4):18-19
    [145]李昌禹,赵淑兰.软枣猕猴桃组织培养研究[J].特产研究,1998(1):19-20
    [146]Canhoto JM, Cruz GS. In vitro multiplication of Actinidia chinensis plant by culture of young leaves[J]. Boletimda Sociedade Broteriana,1987, (60): 239-252
    [147]郭延平,李嘉瑞.多效唑对猕猴桃离体试管苗生长及内源激素的影响[J].园艺学报,1994,21(1):26-30
    [148]朱道圩.软枣猕猴桃叶片愈伤组织分化再生植株[J].植物生理学通讯,1997,33(2):127-128
    [149]Boase MR. Wright S, McLeay PL. Coconut milk enhancement of axillary shoot growth in vitro of kiwifruit[J]. New Zealand Journal of Crop and Horticultural Science,1993,21 (2):171-176
    [150]丁士林,王谋才,储琳.美味猕猴桃新品种‘皖翠’美味猴桃的组织培养[J].园艺学报,2001,01:83-86.
    [151]Dimassi TK, Bosabalidis AM. Effects of light, magnesium and sucrose on leaf anatomy, photosynthesis, starch and total sugar accumulation in kiwifruit cultured in vitro[J]. Plant Cell, Tissue and Organ Culture, 1997,47(2):127-134
    [152]Mule R, Morini S. Effect of light quality on regeneration from callus of Actinidia deliciosa[J]. Acta Horticulturae,1990, (280):155-158
    [153]Lionakis SM, Zirari A, Warrington IJ. The effect of kind of explant and chilling pretreatment of plant material on shoot proliferation of kiwifruit in vitro[J]. Acta Horticulturae,1992,127(2):205-210
    [154]Standardi A. The effects of repeated subculture on buds of Actinidia chinensis cultured in vitro[J]. Rivista della Ortoflorofrutti coltura Italiana, 1982,66 (6):419-429
    [155]Gonzalez MV. Morphgenetic patterns in kiwi tissue culture and after Agrobacterium co-culture[J]. Acta Hort.,1990,282:358-364
    [156]Uemastsu C, Murase M, Ichikawa H. Agrobacterium mediated transformation and regeneration of kiwifruit[J]. Plant Cell Reports, 1991,10(6-7):286-290
    [157]Nakamura Y, Sawada H, Kobayashi S. Expression of soybean beta-1, 3-endoglucanase cDNA and effect on disease tolerance in kiwifruit plants[J]. Plant Cell Reports,1999'18(7-8):527-532
    [158]Yamakaya Y, Chen LH. Agrobacterium rhizogenes mediated transformation and regeneration of kiwifruit{Actinidia chinensis) by direct deventitious buds[J]. Journal of the Japanese society for hort sci, 1999,68(4):741-747
    [159]樊军锋,李嘉瑞,韩一凡等.MtlD/gutD双价耐盐基因转化秦美猕猴桃的研究[J].西北农林科技大学学报(自然科学版),2002,30(3):53-58
    [160]Kusaba S, Yuriko KM, Makoto. Expression of the rice honeobox gene, OSH1, causes morphological changes in transgenic kiwifruit[J]. Journal of the Japanese society for hort sci,1999,18(7-8):527-532
    [161]黄萍,沈孝善,马朝宏.农杆菌对猕猴桃叶柄的遗传转化初报[J].西南农业学报,2002,15(4):113-115
    [162]朱喜贵,阎茂华,路正社,王丽娟,王喆之.番茄ACC合成酶反义基因在转基因猕猴桃中表达的初步研究[J].连云港师范高等专科学校学报,2003,20(2):69-71
    [163]Rugini E, Pelegrineschi A, Mencuccini M, etal. Increase of rooting abilit in the woody species kiwi (Actinidia deliciosa A. Chev.) by transformation with Agrobacterium rhizogenes rol genes [J]. Plant Cell Reports,1991, 10:291-295.
    [164]Rugini E, Craricato G, Muganu M, etal. Genetic stability and agronomic evaluation of six- year-old transgenic kiwi plants for rol ABC and rol B genes [J]. Act a Horticulturae,1997,447:609-610.
    [165]Balestra GM, Rugini E, Varvaro. Increased susceptibility to Pseudomonas syringae pv. Syringae and Pseudomonas viridiflava ofkiwifruit plants having transgenic rolABC genes and its inheritance in the T1 offspring [J]. Phytopathology,2001,149:189-194.
    [166]Yamakaua Y, Chen LH. Agrobacteriuim rhizogenes-medisted transformation of kiwifruit (Actinidia chinensis) by direct formation of adventitious buds [J]. Horticultural Science,1996,64:741-747.
    [167]Kusaba S, Kano-murakmi Y, Matsuoka M, etal. Expression of he rice homebox gene, OSH1, causes morphological changes in transgenic kiwifruit [J]. Horticultural Science,1999,68:482-486.
    [168]Nakamura Y, Sawada H, Kobayashi S, etal. Expression of soybean P-1,3-endoglucanase cDNA and effect on disease tolerance in kiwifruit plants [J]. Plant Cell Rep,1999,18:527-532.
    [169]Kobayashi S, Ding CK, Nakamura K, etal Kiwifruits (Actinidia deliciosa) transformed with a Wis stilbene synthas gene produce piceid (resveratrol-glucoside) [J]. Plant Cell Reports,2000,19:904-910.
    [170]郭卫东,沈向,李嘉瑞,等.利用LfycDNA转化猕猴桃的研究[J].园艺学报,1999,26(4):116-117.
    [171]樊军锋,李嘉瑞,韩一凡,等mtlD/gutD双价耐盐基因转化秦美称猴桃的研究[J].西北农业大学学报,2002,30(3):53-58.
    [172]Fraser LQ Kent J, Harvey CF. Transformation studies of Actinidia chinensis Planch [J]. Crop andHorticultrual Science,1995,23:407-413.
    [173]Kobayshi S, Nakamura Y, Kaneyoshi J, etal. Transformation of kiwifruit (Actinidia chinensis) and trifoliate orange (Poncirus trifoliate) with a synthetic gene encoding the human epidermal growth factor (hEGF) [J]. Horticultural Science,1996,64:763-769.
    [174]付永琦,陈明,刘康等.1-MCP二次处理对猕猴桃果实采后生理生化及贮 藏效果的影响[J].果树学报.2007,24(1):43-48
    [175]Lieberman M, Kunishi A, Mapson L et al. Stimulation of ethylene production in apple tissue slices by rnethionme [J]. Plant Phjsicl. 1966,43:376-382.
    [176]陈新建,刘国顺,陈占宽等.乙烯生物合成途径及其相关基因工程的研究进展[J].热带亚热带植物学报2002,10(1):83-98
    [177]Kevany B M, Taylor M G, Klee H J. Fruit-specific suppression of the ethylene receptor LeETRA results in early ripening tomato fruit[J]. Plant Biotechnology Journal,2008,6(3):295-300.
    [178]陈红惠.猕猴桃籽成分分析及活性油脂提取工艺的研究[J].文山师范高等专科学校学报,2005,18(4):326-328.
    [179]Yang S F, Hoffinan N E. Ethylene biosynthesis and its regulation in higher plants [J]. Ann Rev Plant Physiol,1984,35:155-189.
    [180]Holdsworth M J, Birds C R, Ray J, et al. Structure and expression of an ethylene-related-mRNA from tomato[J]. Nucl Acids Res,1987,15: 731-739
    [181]秦永华,张上隆,朱道圩.猕猴桃的组织培养和遗传转化研究进展[J].细胞生物学杂志,2004,26(1):57-61.
    [182]Prado, M J. Gonzalez, M V. Romo, S. etal Adventitious plant regeneration on leaf explants from adult male kiwifruit and AFLP analysis of genetic variation [J]. Plant Cell Tiss Organ Cult,2007,88:1-10.
    [183]高月,刘永立,叶庆富.阔叶猕猴桃抗生素敏感性及遗传转化的研究[J].Journal of Nuclear Agricultural Sciences,2006.4:872-879.
    [184]Hirsch A M. The culture of Actinidia chinensis fruit tissues and the metabolism of free amino acids in Stem segments cultured in vitro [J]. Comptes Rendus Hebdomadaires des Seances de 1'Academic des Sciences, D,1975,280(11):1369-1372.
    [185]桂耀林.猕猴桃离体茎段愈伤组织的诱导和植株再生[J].植物生理学通讯,1979,21(4):339-343.
    [186]田宏现,曾艳玲,谭晓风等.米良一号猕猴桃的组织培养研究[J].经济林研究,2005,23(1):7-9.
    [187]杨谷良,谭晓风,乌云塔娜.应用CTAB法对砂梨品种DNA提取效果的研究[J].生物技术,2005,15(5):41-43.
    [188]Wang T, Atkinson KG, Janssen BJ. The choice of Agrobacteriuim strain for transformation of kiwifruit [J]. Acta Horticulturae,2006(b),753-759.
    [189]秦华明,周玲艳,潘少英等.阔叶猕猴桃抗生素敏感性及遗传转化的研究[J].核农学报,2006,20(4):287-291.
    [190]高月,毕静华,刘永九.以潮霉素为筛选标记猕猴桃遗传转化体系的初步建立[J].北方园艺,2008,1:45-52.
    [191]陈启亮,陈庆红,顾霞,等.中国猕猴桃新品种选育成就与展望[J].中国南方果树,2009,38(2):74-76.
    [192]陈一星.对湘西猕猴桃资源的调查[J].生物学杂志,2004,1(21):38-39.
    [193]王秀奇,秦淑媛,高天慧,等。基础生物化学试验[M].,高等教育出版社.北京:1999,103-105
    [194]陶雅,玉柱,孙启忠,等.紫花苜蓿的抗寒生理适应性研究[J].草业科学,2009,26(9):151-155.
    [195]李静,别之龙,曾维寅,等.不同砧木嫁接对西瓜植株生长和果实品质的影响初报[J].长江蔬菜,2009,(4):32-34.
    [196]裴孝伯,解静,王跃,等.嫁接处理对黄瓜果实Vc、可溶性糖和蛋白质的影响[J].安徽农业科学,2009,(2):557-607.
    [197]王曼玲,朱虹琳,周明全,胡中立,宋运淳.莲藕组织总RNA的快速提取方法[J].武汉植物学研究,2005,23(5):475-477.
    [198]Wall S J, Edwards D R. Quantitative reverse transcription-polymerase chain reaction (RT-PCR):A comparison of primer-dropping, competitive, and real-time RT-PCRs[J].Analytical Biochemistry,2002,300(2):269-273.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700