福眼龙眼(Dimocarpus longan Lour.cv.Fuyan)果实采后若干生理生化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以福眼龙眼果实为试验材料,经不同蓟剂处理,在不同温度条件下研究了其在采后贮藏过程中蛋白质组分以及自由基的代谢和脂肪酸含量、内源多胺含量的变化。同时探讨了它们之间的关系,以期进一步了解龙眼果实的采后生理。
     1、在采后贮藏过程中,福眼果皮和果肉的蛋白质组分比较丰富,其中果肉含有26种可溶性蛋白质、32种总蛋白质;果皮含有34种可溶性蛋白质。在室温条件下,随着采后贮藏时间的延长,既有新蛋白质组分的出现,也有些蛋白质降解。在果肉的可溶性蛋白质组分中,采后第3d、第4d、第5d新出现了分子量为138.68KD的蛋白质,分子量为87.50KD的蛋白质在采后第5d开始降解消失;在果肉的总蛋白质组分中,采后第6d新出现了分子量分别为41.30KD和27.93KD的蛋白质,同时分子量为42.36KD的蛋白质含量增大;在果皮的可溶性蛋白质组分中,有14种蛋白质在采后逐渐降解(分子量分别为629.51KD、333.43KD、302.69KD、181.97KD、149.28KD、133.66KD、77.62KD、70.47KD、63.97KD、49.55KD、44.36KD、23.07KD、19.95KD、18.92KD),5种蛋白质组分的含量在采后逐渐增大,其分子量分别为94.62KD、59.57KD、55.46KD、41.30KD。随着贮藏时间的延长,果实的蛋白质总体呈不断降解的趋势,并且主要集中表现在采后第4d和第5d,即果实开始出现大量腐烂前。果实的衰老腐烂,伴随着蛋白质的大量降解,且果皮的蛋白质降解时间先于果肉2d,其降解程度也大于果肉。从蛋白质水平上可以认为,龙眼果实的衰老腐败是从果皮开始的,这与龙眼果实贮藏保鲜实践的观察是一致的。因此,要解决龙眼果实的贮藏保鲜问题,关键在于保持果皮的正常生命代谢。
     2、福眼果实中果肉的多胺含量明显高于果皮,采收当天的果肉中Put、Spd和Spm的总量为4.27μg/g·FW,而果皮的Put、Spd和Spm的总量仅为2.35μg/g·FW,前者是后者的1.82倍。在室溫条件下,随着贮藏时间的延长,果皮的内源多胺(Put、Spd、Spm)均呈不断下降的趋势,而果肉中只有Put含量不断下降,Spd和Spm含量变化不明显;在低温条件下,随着贮藏时间的延长,果皮的内源多胺在采后前期迅速下降,接着保持在较稳定水平,而果肉中只有Put含量跟果皮的变化趋势一致,Spd和Spm含量变化不明显。采后贮藏过程中,果皮的内源多胺变化趋势大于果肉,果皮的衰老腐烂亦早于果肉。伴随着采后果实的衰老变质,内源多胺总体呈不断降低的趋势。在果皮中,Put、Spd和Spm的含量差别较小;而在果肉中,Put是多胺的主要组分,其含量占3种多胺总量的89.0%。由此可见,果皮中的多胺含量低可能也是果皮易衰老腐败的原因
    
     摘要
    乙一。
     3、福眼果肉中所含的脂肪酸主要有豆范酸(14:O)、棕搁酸(16:O)、硬脂酸
     (18:O)、油酸(18:一)不11亚油酸(18:2),亚麻酸的含量很少未检出。所含){旨肪酸
    中亚油酸的含量最高,棕搁酸和油酸的含量次之,硬脂酸和豆范酸的含量最少。随着龙
    眼采后贮藏时间的延长,不饱和脂肪酸(油酸、亚油酸)和饱和脂肪酸(豆范酸、棕搁
    酸、硬脂酸)的含量变化不明显。果皮中的脂肪酸含量很少检出。在采后贮藏过程中,
    果肉所含LOX活性较低。随着贮藏时间延长,室温下的LOX活性不断上升,低温下
    LOX活性在前期迅速上升,接着保持在较稳定水平,到后期又升高,活性变化呈双峰
    型。但LOX的变化幅度总体来说不明显。LOX氧化脂肪酸是以亚油酸和亚麻酸为主要
    底物,本试验的结果表明,在果实采后贮期脂肪酸和LOX活性的变化都不明显,推测
    脂肪酸代谢可能不是引起龙眼果实衰老变质的主要因素。
     4、在福眼果实采后贮藏过程中,随着贮藏时间的延长,果皮的质膜透性逐渐增大,
    MDA含量、超氧阴离子自由基含量逐渐增加,但HZO:未能检出;保护物质抗坏血酸
    和谷肤甘肤的含量呈先上升后下降的趋势;过氧化物酶POD的活性逐渐上升,多酚氧
    化酶PPO的活性先上升后下降,SOD的活性呈上升趋势,且果皮的变化趋势比果肉明
    显;但同样未能检测到过氧化氢酶CAT的活性。福眼果实在采后随贮期延长,自由基
    代谢加强,使自由基及其代谢产物逐渐积累,膜透性增大。研究还表明,在3口低温条
    件下,3种不同药剂(疫霜灵、S.ASP、水杨酸)处理对龙眼采后贮藏过程中自由基的
    代谢影响不明显。
     综上所述,在福眼果实采后贮藏过程中,随着贮藏时间的延长,果实中既有新蛋白
    质组分的产生也存在一些蛋白质的降解,但从总体上看,果实的蛋白质呈不断降解的趋
    势,果实的衰老腐败与果实中的蛋白质组分变化关系密切。并且,果皮中蛋白质的降解
    变化先于果肉,这是果皮比果肉先衰败的重要原因。福眼果肉的多胺中Put含量占绝大
    多数,而果皮中Put、Spd和Spm的含量相差较小,其内源多胺含量也明显低于果肉,
    而这可能也是导致果皮比果肉先腐败变质的原因之一。因此,在龙眼采后贮藏保鲜的实
    践中,应着重于果皮生理生化特性的研究,使之能保持较长的生理寿命,从而延长贮藏
    期。试验结果还表明,在采后贮藏过程中,福眼果皮的脂肪酸含量很少,未检出,而果
    肉中的脂肪酸含量变化不大,LOX活性较小且变化不明显,、推测脂肪酸的代谢可能不
    是福眼果实
Variations on protein composition, contents of fatty acids and endogenous polyamines, metabolism of free radicals in Fuyan's fruits treated with different chemicals and stored under different temperatures after harvesting were studied and probed their interrelationships to father understand postharvest physiology of Longan's fruits. The results were as follow.
    In the process of storing after harvest, composition of proteins in peel and flesh was abundant. There were 26 and 34 types of soluble proteins in flesh and peel, respectively; there were 30 types of total proteins in peel. Under room temperature, with delay of store time, new protein compositions would emerge and some proteins would degrade in fruits after harvest. Among the compositions of soluble proteins in flesh, the protein with the molecular weight of 138.68KD appeared at 4th day, 5th day, 6th day after harvest, and the protein with the molecular weight of 87.50KD started to degrade and disappear at 5th day after harvest. Among the compositions of total proteins in flesh, both new proteins with the molecular weight of 41.3KD and 27.93KD appeared at 6th day after harvest, and the contents of protein with the molecular weight of 42.3KD increased; Fourteen types of proteins were gradually degraded after harvest, their molecular weights were 629.51KD, 333.43KD, 302.69KD, 181.97KD, 149.28KD, 133.66KD, 77.6
    2KD, 70.47KD, 63.97KD, 49.55KD, 44.36KD, 23.07KD, 19.95KD, 18.92KD separately, and the contents of five types of proteins increased by degrees after harvest, their molecular weights were 94.62KD, 59.57KD, 55.46KD, 41.30KD separately. Therefore, with delay of storing time, proteins in fruit overall trend to degrade consistently, and mainly focus on 5th day, 6th day after harvest, before which the fruit began to rot largely. The senescence and rotting of fruit companied with proteins degrading largely, and degrading time of proteins in flesh delayed 2 days compared with in peel, its degrading extent was less than peel. From the level of protein, it was thought that The senescence and rotting of fruit in Longan started with peel, which was consistent with observation results in practices of storing and fresh-keeping for Longan's fruit. Summarily, the key to storing and fresh-keeping for Longan's fruit was keeping peel regular metabolism.
    The contents of polyamines in flesh was apparently higher than that in peel, at the day of harvest, total sum of the contents of Put, Spd, and Spm was 4.27 ug/g.FW, but that in peel was 2.35 ug/g.FW, the former was 1.82 times of the latter. Under room temperature, with
    
    
    delay of storing time, the contents of endogenous polyamines (put, Spd, Spm) in peel trended to decrease consistently, but in flesh, only the contents of Put decreased continuously, variation on the contents of Spd and Spm was not apparent; Under low temperature, with delay of storing time, the contents of endogenous polyamines sharply decreased at the beginning of postharvest, then maintained at steadier level, but in flesh, only variation on the contents of Put was consistent with that in peel, variation on the contents of Spd and Spm was not apparent; in the process of storing after harvest, range of endogenous polyamines in peel varied larger than that in flesh, and earlier than senescence and rotting in flesh. In peel, difference of the contents of put, Spd, Spm was little, but in flesh, Put was main composition of polyamines, its contents was 89.0% in total contents. Therefore, low contents of polyamines in peel was probably one of causes that peel was liable to senescence and rotting.
    The main fatty acids in flesh were Myristic acid, Linoleic acid, Oleic acid, Palmitic acid, Stearic acid,but the contents of Linolenic acid was lower and was determined, the contents of Linoleic acid among all fatty acids was highest , that of Palmitic acid and Oleic acid was lower, that of Stearic acid and Myristic acid was lowest, with delay of storing time, variation of unsaturated fatty acids(Oleic acid, Linoleic acid)and saturated fatty acids(Myristic acid, Palmiti
引文
1.蔡孟正.SO2型龙眼常温简易贮藏保鲜[J].福建省农科院学报,1988(5):85-89
    2.陈昆松,徐昌杰,张上隆,等.脂氧合酶与猕猴桃果实后熟软化的关系[J].植物生理学报,1999,25(2):138-140
    3.陈文军,洪启征.龙眼贮藏防腐试验初报[J].福建农业科技,1982(3):44-45
    4.陈志宏,张茹莲,陈红梅.常温下荔枝贮藏保鲜的研究[J].热带作物学报,1997,18(2):59-65
    5.窦世娟,陈昆松等.采后黄花梨果实中丙二烯氧合酶的生理功能[M].植物生理与分子生物学报,2002,28(2):105-110
    6.范华,冯双庆,赵玉梅.黄瓜、番茄冷害及黄瓜溫度预贮处理与多胺的相关性[J].中国农业入学学报,1996,11(1):108-111
    7.郭全城,宋晓杆,张文绪,等.棉花组织中脂肪酸组成成分变化与抗枯萎病的相关性[J].中国棉花,1991,2:46
    8.韩冬梅,吴振先,等.龙眼采后果肉生理生化变化研究[J].华南农业大学学报,2002,23(1):1-5
    9.孙冬梅,吴振先,季作梁,等.SO2对龙眼果实的氧化作用与衰老的影响[J].果树科学,1999,16(1):24-29
    10.华东师范大学生物系生理教研组主编,1980.植物生理学实验指导[M].北京:人民教育山版社,143-144
    11.季作梁,韩冬梅,吴振先.龙眼采后SO2保鲜作用及其残留量问题研究[J].热带作物学报,1999,20(3):36-40
    12.江力,汤一卒,等.肥料吸收活化剂对烟叶抗坏血酸-谷光甘肽循环系统及钾含量的影响[J].南京农业大学学报,2000,23(4):13-16
    13.蒋跃明,陈绵达,林植芳,等.香蕉低温酶促褐变[J].植物生理学报,1991,17(2):157-163
    14.李雪萍,庞学群,等.SO2对龙眼冷藏效果及货架寿命的影响[J].华南农业大学学报,1999,20(1):77-80
    15.李振国.植物质膜透性的测定[M].中科院上海植物生理研究所编.1999,现代植物生理学实验指南[M],上海:科学出版社,302-304
    16.李宗霆,周燮,等.植物激素及其免疫检测技术[M].苏州:江苏科学技术出版社,
    
    1996,241-225
    17.梁汉华,黄晓钰.龙眼气凋(M、A)贮藏研究[J].热带作物学报,1998,19(2):49-54
    18.林河通,陈绍军,席玙芳,等.龙眼果皮微细结构的扫描电镜观察及其与果实耐贮性的关系[J].农业工程学报,2002,18(13):95-99
    19.林琳.硕士论文,福眼龙眼POD的分离纯化与若干采后生理的初步研究,2003
    20.林植芳,李双顺,等.采后荔枝果实氧化和过氧化作用的变化[J].植物学报:1983,30(4):382-387
    21.林植芳,李双顺,等.水稻叶片的衰老与超氧化物歧化酶活性及膜脂过氧化作用的关系[J].植物学报,1984,26(6):605-615
    22.吕容欣,占雪娇,吴金珠,等.龙眼果实防腐保鲜技术[J].亚热带植物通讯,1992,21(2):9-17
    23.罗广华,王爱国.植物体内氧白由基的测定和消除[M].中科院上海植物生理研究所编.1999,现代植物生理学实验指南[M],上海:科学出版社,308-309
    24.罗云波.脂氧合酶与番茄采后成熟的关系.园艺学报[J],1994,21(4):357-360
    25.茅林春,张上隆.釆后桃果实中多胺和乙烯对低温胁迫的反应[J].园艺学报,1999,26(6):360-363
    26.莫长耕,王梅.荔枝、龙眼多酚氧化酶活性的测定[J].中国果品研究,1986(3):22
    27.潘东明,等.贮藏温度对橄榄果实多胺与保护酶活性的影响[J].福建农业大学学报,1999,28(3):284-288
    28.潘东明,郭志雄,等.SO2熏蒸处理对龙眼褐变褐SO2残留量分数的影响.福建农业大学学报[J],1999,28(4):425-427
    29.潘洵操.龙眼果实的显微结构与贮藏关系的探讨[J].广西农业大学学报,1994,13(2):185-188
    30.潘一山,蔡小东,孙立南,等.龙眼采后生理及贮藏保鲜[J].果树科学,1996,1(1)19-22
    31.潘一山.龙眼采后生理变化及B9的效应[J].中国果树,1986,(2):44-46
    32.施清.龙眼采后生理特性及保鲜技术研究[J].福建果树,1990(2):1-4
    33.苏维埃,王文英,李锦树.植物类脂及其脂肪酸的分析技术[J].植物生理学通讯,1980,(3):54—60
    
    
    34.汪家政,范明.蛋白质技术手册[M].北京:科学出版社,2001
    35.王爱国,罗广华.植物的超氧自由基与羟胺反应的定量关系[M].植物生理学通讯,1990(6):55-57
    36.韦军,等.温度对采后梨果实多胺、ACC含量、EFE活性利乙烯生成量的影响[J].园艺学报,1994,21(2):139-144
    37.吴敏,陈昆松,张上隆,等.桃果实采后脂氧合酶活性和膜脂脂肪酸组分的变化[J].园艺学报,2001,28(3):218-222
    38.吴振先,韩冬梅,季作梁,等.SO_2对贮藏龙眼果皮酶促褐变的影响[J].园艺学报,1999,26(2):91-95
    39.吴振先,苏美霞,陈维信,等.贮藏荔枝果皮多酚氧化酶及过氧化物酶与褐变的研究[J].华南农业大学学报,1998,19(1):12-15,39
    40.席屿芳,等.杨梅果实采后的衰老生理[J].园艺学报.1994,21(3):213-216
    41.叶式秀,魏霖江.龙眼气凋贮藏研究初报[J].中国果树,1981(1):19-21
    42.张昭其,庞学群.SO2对龙眼贮藏效果及生理生化的影响[J].热带作物学报,1999,20(1):54-58
    43.赵世杰,等.植物生理学通讯[J],1994,30(3):207
    44.郑永华,席屿芳,李三玉.采后果蔬贮藏时冷害与多胺的关系[J].植物生理学与农业,2000,36(5):85-90
    45.周云,季作梁,林伟振.不同包装、药剂和硫处理对龙眼贮藏保鲜效果的研究[J].中国南方果树,1997,26(3):24-27
    46.周云,季作梁.龙眼冷藏适温及其冷害的研究[J].园艺学报,1997,24(1):13-18
    47.朱广廉,钟海文,等.植物生理实验[M].北京大学出版社,1990:254-255
    48. Apelbaum A, Burgoon A C, Anderson JD, et al. Polyamines inhibit biosynthesis of ethylene in lugher plant tissue and fruit protoplasts. Plant Physiol.,1981,68:453-456
    49. Apelbaum A. Polyamine involvement in the development and ripening of avocado fruit[J]. Acta Horticulturae. 1986,179:779-185
    50. Botondi R, Massantini R, Anelli C et al. Postharvest physiology of red chicory stored at 0℃ and 6℃. Italian J Food Sci, 1996,8(4):273-282
    51. Coseteng MY, Lee C Y. Changes in apple polyphenol oxidase and polyphenol concerntrations in relation to degree of browing[J].J. Food
    
    Sci.,1987,52(4):985-989
    52. Cutting JGM, Bower JP, Wolstenholme BN. Changes in ABA, polyphnol oxidase, phenolic compounds and polyamines and their relationship with mesocarp discoloruation in ripening avocado (Persea Americana Mill.) fruit[J]. Journal of Horticultural Science. 1990,65(4):465-471
    53. Escribano MI, Merodio C. Modifications in polyamine levels of cherimoya(Annona Cherimola Mill.) Acta Horticulturae. 1993,343:279-280
    54. Escribano MI, merodio C. The relevance of polyamine levels in cherimos fruit ripening. J Plant Physiol, 1994,143:207-212
    55. Fan H, Feng S. The correlation of polyamine with CI of peach and pear and the treatments for alleviating CI. Proc Intl Symp Postharvest Sci Technol llort Crops, Beijing, China, 1995, Beijing:China Agricul Sci Press, 1995,40-43
    56. Ferrie B J, Beaudoin N, Burkhart B, et al. The cloning of two tomato lipoxygenase genes and their differential expression during fruit ripening. Plant Physiol., 1994,106:109-118
    57. Fobel M, Lynch D V, Thompson J E. Membrane deterioration in senescing carnation flowers[J]. Plant Physiol.,1987,85:204-211
    58. Galaton AW, Kaur-Sawhey H. Polyamines in plant physiology. Plant Physiol,1990,94:406-410
    59. Galston AW, Kaur-Sawhney R (1987). Polyamines and senescence in plants. In: Thompson WW, Nothnagel EA, Huffaker RC (eds). Plant Senescence: Its Biochemistry and Physiology. Rockville, MD: Amer Soc Plant Physiol, 167-181
    60. Gerasopoulos D, Richardson D G. Effects of storage temperature on fatty acids composition of 'Anjou' pears[J]. Acta Hort, 1995,379:459-466
    61. Gonzalez-Aguilar G, Lafuente MT, Zacarias L. Changes in polyamines in "Fortune" mandarine with cold storage and temperature conditioning. In:Ait-Oubahou A, EI-Otmani M(eds). Postharvest Physiology, Pathology and Technologies for Horticultural Commodities: recent advances. Proceedings of an international symposium. Agadir, Morocco, 1994. Institul Agrouomique et Veterinare Hassan Ⅱ,1995,273-278
    
    
    62. Guri A. 1983: Variation in glutathione and ascorbic acid content among selected cultivars of Phaseolus vulgaris prior to and after exposeure to and after exposure to ozone[J]. Can. J. Plant Sci. 63:733-737
    63. Jiang YM, Chen F. A study on polyamine change and browning of fruit during cold storage of litchi (Litchi chinensis Sonn.) [J]. Postharvest Biology and Technology. 1995,5(3:245-250)
    64. Kramer G F, Wang CY, Conway W S. Inhibition of softening by polyamine application in 'Golden Delicious' and 'McIntosh' apples. J, Amer ,Soc, Hort, Sci,.1991,116(5):813-817
    65. Kramer GF, Wang CY, Conway WS. Correlation of reduced softening and increased polyamine levels during low-oxygen storage of 'Mclntosh' apples. Jouranl of the American Society for Horticultural Science. 1989,114(6):942-946
    66. Marangoni A G, Palma T, Stanley D W. Membrane effects in postharvest physiology[J]. Postharvest Biol. Technol., 1996,7:193-217
    67. McDonald RE, Kushad MM(1986). Aceumulation of putrescine during chilling injury of fruit. Plant Physiol, 82:324-326
    68. Pakasorn A, Hayasaka T, Matsui H, et al. Relationship of polyamine cohetent to ACC content and ethylene evolution in Japanese apricot fruit[J]. Journal of the Japanese Society for Horticultural Science. 1995, 63(4):761-766
    69. Paliyath G, Droillard M J. The mechanism of membrance deterioration and disassembly during senescence[J]. Plant Physio.. Biochem., 1992,30: 789-812
    70. Paul R E, Chen N J. Changes in longan and rambutan during postharvest storage[J]. Hortiscience, 1987,22(6):1303-1304
    71. Robert E, et al. Changes in longan and rambutan uring postharvest storage[J]. Hortscience, 1987,22(6):1303-1304
    72. Sardsudy V, et al. Effects of pstfumigation washing treatments and storage temperature on disease development in fresh longan[J]. Australian Centre for international Agricultural Reasearch. 1994
    73. Serrano M, Martinez-Madrid MC, Pretel MT et al. Modified atmosphere packaging miniaizes increases in putrescine and abscisic acid levels caused by chilling injury in pepper furit. J Agric Food Chem, 1997,45:1668-1672
    
    
    74. Serrano M, Pretel MT, Martinez-Madrid MC et al. CO2 treatment of zucchini squash reduces chilling-induced physiological changes. J Agric Food Fhem, 1998,46:2465-2468
    75. Shirra M. Fatty acid profile changes in "Marsh seedless" grapefruit in response to storage conditions[J]. Acta Hort.,1994,36:429-434
    76. Slocum R D, Kaur-Sawhney R, Galston A W. The physiology and biochemistry of polyamines in plants. Archives of Biochemistry and Biophysics, 1984,235(2):283-303
    77. Suttle J C. Effect of polyamines on ethylene production. Phytochemistry, 1981,20:1477-1480
    78. Thompson J E. The molecular basis for membrane deterioration during senescence. In: Nooden L D, Leopold A C. Senescence and aging in plants. San Diego: Academic Press, 1988:51-83
    79. Toumadje A, Richardson DG. Endogenous polyamines concentration during development, storage and ripening of pear fruits[J]. Phytochemitry. 1988,27(2):335-338
    80. Valero D, Serrano M, Martinez-Madrid MC et al. Polyamines, ethylene and physicochemical changes in low-temperature-atored peach. J Agric Food Chem, 1997,45:3406-3410
    81. Wang CY, Conway WS, Abbott JA, et al. Postharvest infiltration of polyamines and calcium influences ethylene production and texture changes in 'Golden Delicious' apples. Jouranl of the American Society for Horticultural Science. 1993,118(6):801-806
    82. Yuen CMC, Tridjaja NO. Chilling injury development of "Tabitian" lime, "Emperor" macdarine, "Marsh" grape-fruit and "Valencia" orange[J]. J Sci Food Agric, 1995,67:335-339

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700