甜菜抗丛根病细胞生物学特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甜菜是我国乃至世界上重要的糖料作物和经济作物之一,由于长期以来受到甜菜各种病害的袭击,不仅给甜菜生产造成巨大的经济损失,并且制约制糖业的发展。甜菜丛根病(Rhizomania)是危害最为严重的病害之一,该病以多粘菌(Polymyxa betae)为传播介体,由甜菜坏死黄脉病毒(Beet necrotic yellow vein virus, BN YVV)引起的土传病害。近年来,国内外主要从病原基因组学、分子生物学及寄主生理生化角度来探讨病毒致病机理和甜菜抗丛根病机理。本研究以甜菜抗、感丛根病品种与BNYVV互作体系为研究对象,对不同互作体系中的形态学特征和细胞学特征进行了比较研究,利用生理生化方法明确不同互作体系间活性氧(H2O2和02-·)及保护酶系(POD和SOD)产生的时间变化特征,采用电镜细胞化学标记技术在亚细胞水平上对活性氧(H2O2和O2-·)及保护酶系(POD和SOD)的空间分布进行了定位,并检测了不同互作体系间木质素组织定位的差异及细胞壁糖蛋白在寄主细胞内积累的规律,以明确活性氧代谢及细胞壁成分在甜菜抗丛根病性中的作用,从而为进一步揭示甜菜抗丛根病信号传导机制奠定理论基础。通过研究取得的主要结果如下:
     1.利用光学显微技术和透射电镜技术研究了甜菜抗、感丛根病品种与BNYVV互作过程中的形态学和超微结构特征。结果表明,不同寄主与病毒互作体系的甜菜块根形态学和超微结构上均表现出明显的差异,而甜菜叶脉受该病毒侵染后其形态学解剖结构无差异,但超微结构受到影响。形态学水平上,抗、感病品种表现为表皮破坏,皮层薄壁细胞组织产生裂隙,大多细胞都脱落,木质部附近的木薄壁细胞破损,完全丧失了对根部的保护作用。其中感病品种比抗病品种表现被伤害程度更为严重,其皮层薄壁细胞几乎全部脱落,生长速度缓慢,根部发育受阻。而叶脉的形态解剖结构与对照比较,未发现异常变化。另外抗病品种比感病品种有更发达的维管束结构。在亚细胞水平上,BNYVV对感病品种的细胞超微结构破坏严重,整个细胞变形,空虚化,细胞核结构发生紊乱,线粒体和高尔基体明显增多,细胞质中小液泡增多,在液泡膜边缘可见到一些纤细丝状物质的圆形或卵圆形小泡突入液泡中。叶脉细胞叶绿体完全瓦解,出现许多嗜锇颗粒。而抗病品种细胞超微结构破坏较轻,寄主细胞产生一系列显著的结构防卫反应:形成细胞壁沉积物及液泡膜上显示出黑色颗粒状沉积物等。说明组织形态结构变化和细胞器病理变化与甜菜抗丛根病性有关。
     2.利用生理生化方法和电镜细胞化学标记技术研究了甜菜-BNYVV互作过程中H2O2和O2-·产生的时间变化特征和空间分布定位。研究结果表明,甜菜抗、感丛根病体系均在侵染早期出现大量H2O2和O2-·,其中抗病体系的H2O2和O2-·产生量明显高于感病体系。H2O2在抗病和感病体系中的分布位置基本相似,多分布在块根、叶脉细胞的液泡膜和质膜上,叶脉细胞间隙也有H2O2的分布,而O2-·在抗病品种块根与叶脉细胞的质膜上定位,感病品种的则在液泡膜上被发现。而且感病体系H202和O2-·沉积量明显弱于抗病体系。H2O2和O2-·产生量和分布与甜菜抗丛根病性有密切联系,不同部位定位的H2O2和O2-·作为信号分子,参与了甜菜对病毒侵染的防御反应。
     3.采用生化检测及酶细胞化学方法研究了甜菜与BNYVV互作过程中POD和SOD的活性及其在细胞内分布特征。结果表明,病毒感染前POD主要定位在甜菜块根细胞细胞壁及叶脉细胞线粒体和细胞间隙,当病毒感染后,抗、感病甜菜品种块根皮层细胞的细胞壁、质膜和液泡膜上的POD及叶脉薄壁细胞的细胞壁、质膜、液泡膜、线粒体、细胞间隙上的POD活性均比其对照显著升高,抗、感病甜菜品种在POD分布部位上没有区别,但两者沉积量有所差异,抗病品种明显高于感病品种;SOD在未感染病毒的抗、感病甜菜块根皮层薄壁细胞质膜与液泡膜,叶脉厚角组织薄壁细胞质膜及叶脉细胞线粒体、细胞间隙上被发现,病毒侵染后甜菜抗、感病品种块根SOD在细胞内分布位置相同都分布在质膜和液泡膜,但抗病品种以质膜上分布为主,感病品种以液泡膜上分布为主。抗病品种SOD活性不仅明显高于其对照,也明显高于病毒侵染后的感病品种。甜菜抗、感病品种POD及SOD细胞内分布的沉积量与生理生化检测的酶活性结果一致,从亚细胞学水平说明高活性的POD及SOD是甜菜抗丛根病性生化标记的重要生理机制之一。
     4.通过组织化学染色法及电镜细胞化学方法研究BNYVV对甜菜细胞壁中木质素和HRGP的影响。结果显示,BNYVV侵染前后在甜菜抗、感病品种的块根与叶脉横切面的所有导管上均有木质素和HRGP的沉积,块根薄壁组织的细胞壁由外向内也逐渐显示出由深至浅的木质素沉积;抗病品种木质素和HRGP的积累量较感病品种和其对照增加更为显著;说明在甜菜与BNYVV互作体系中,HRGP参与木质素的合成,木质素和HRGP在甜菜组织内快速积累是甜菜抗丛根病性的表现之一。
Sugar beet (Beta vulgaris L.) is important sugar and cash crops in our country even in the world. Under the various attacked of sugar beet diseases not only have causing huge economic losses in the sugar beet production industry but also restricted the development of the sugar industry. Rhizomania caused by Beet necrotic yellow vein virus (BNYVV) and mediated by Polymyxa betae which was one of the most serious soil-born diseases. Recently, numerous researchs had studied the mechanism of rhizomania at domestic and abroad were main under the views of genomics, molecular biology, physiological and biochemical. No research studying the mechanism of rhizomania and its resistance signal transduction pathway from the cytological at present. Therefore, in this study, sugar beet varieties and BNYVV interaction system were the research objects, the morphological and cytological features of the two objects were studied. Also, to make sure the time-varying characteristics and located the spatial distribution in the sub-cellular level of the production of the active oxygen species (H2O2and O2-·) and the protection of enzymes (POD and SOD) in the interaction system, the physiological and biochemical methods and electron microscopic cytochemistry labeling technique were used, And we have detected the locating differences within organization of the lignin and the law of cell wall glycoprotein accumulated in the host cell in the interactions system to observed the roles of the active oxygen metabolism and cell wall components in the sugar beet resistance to rhizomania disease resistance, then lay a theoretical foundation for the further study of the signal conduction mechanism of sugar beet resistance to rhizomania disease. The main results obtained through the study were as follows:
     1. We have utilized optical microscopy and transmission electron microscopy to reveal the structural features of the morphology and ultrastructure between the interaction of the resistant and susceptible beet varieties and the BNYVV. The results showed that the morphology and ultrastructure of the sugar beet roots of the resistant and susceptible interaction system, infected by BNYVV, showed significant differences, the ultrastructure of the sugar beet vein have been seriously affected too, but the morphological anatomical structure of the sugar beet vein was no difference. The performance of the Morphology happened in the resistant and susceptible sugar beet included the epidermal destruction, the fracture of the cortical parenchyma tissue, the shed in most cell and the damage of the wood parenchyma cells near the xylem, the protection for the roots loss completely. The performance of the susceptible beet is more serious than the resistant beet. In the susceptible beet, the cortical parenchyma cells were almost all off, growing slowly and the root's development was blocked. However, there are no abnormal changes in the morphological anatomical structure of the beet vein. In addition, the resistant varieties have a well developed vascular bundle structure than susceptible varieties. When observed from the sub-cellular level, we found that BNYVV resulted in a series of damaged on cell ultrastructure of the susceptible beet, such as the deformation, empty and the structure of the nuclear is disorder, the mitochondria and the Golgi apparatus was significantly increased, small and medium-sized vacuoles were increased in the cytoplasmic. We observed some round or oval vesicles containing thin filaments broke into the vacuole at the edge of the vacuolar membrane. In the Vein cells the chloroplast disintegrated completely and a abundance of Osmiophilic globule emerged. Destruction of the cell ultrastructure of resistant varieties was lighter, a series of significant structural defense reaction produced in:the host cells:there was sediments in the cell wall and black granular sediment showed in the vacuolar membrane. These indicated that the description of the morphological changes of the tissue and the pathological changes of the organelle were relative to the resistance to rhizomania.
     2. We have utilized Physiological and biochemical methods and electron microscopy cytochemistry labeling technique to study the time-varying characteristics and the orientation of spatial distribution of the H2O2and O2-·generated between the process of the beet-BNYVV interaction. A large number of H2O2and O2·detected both in the resistant and susceptible beet, but the production in the resistant beet was higher than the susceptible beet significantly. H2O2whose position of distribution was similar in the resistant and susceptible beet, which was located in the roots, the tonoplast and plasma membrane of the veins cell, and exist in the gap of the veins cell also. The O2-·is detected in the vein and the plasma membran of the veins cell in the resistant, but found that in the tonoplast in the susceptible beet. However, the content of H2O2and O2-·was distinctly different in the different beet systems, the content in the susceptible system was significantly lower than the resistant system. The results suggested that the production and distribution of the H2O2and O2-·were significantly different in the different interactive system, these difference were close with the beet's resistance to the rhizomania. As a signaling molecule, the H2O2and O2-·located in different positions involved in the defense response of the beet to virus infection.
     3. Research was carried on POD and SOD activity and their intracellular distribution characteristics in sugar beet and BNYVV interaction processes by using biochemical detection and enzyme cytochemical methods. The results showed that before the viral infection, the POD was mainly localized in the root cell wall and mitochondria of the vein cells and the gaps between the cells. after the virus infection, in the resistant and susceptible sugar beet varieties, the POD activity in the cell wall, plasma membrane and tonoplast of the tuberous root cortex cells, and in the cell wall, plasma membrane, tonoplast, mitochondria and the gap of the veins cells is significantly increased than that of the control group. Although the distribution of POD was almost same in both beet system, but the deposition in the former was significantly higher in the latter. When the resitant and susceptcible were not infected virus, SOD was defected in plasma membrane and tonoplast of the beet root cortical parenchyma cell, cytoplasmic membrane of vein collenchyma thin-walled, mitochondria of veins and the gaps of the cells. The distribution of SOD in susceptible varieties and resistant sugar beet root is the same after the infection by virus, which was in the cells, and the same position are located in the plasma membrane and tonoplast, But superoxide dismutas is mainly distributed on the plasma membrane for resistant varieties, while it was distributed on the'vacuole membrane for susceptible ones. Resistant varieties SOD activity was not only significantly higher than the control group, but also significantly higher than susceptible varieties, which were infected by virus. The results of POD and SOD intracellular distribution and physiological and biochemical detection in Resistant sugar beet varieties were the same with susceptible varieties, higher activity of POD and SOD in resistant sugar beet plexus root disease was one of the important mechanisms of biochemical markers at the subcellular level.
     4. By the methods of histochemical staining and electron microscope cytochemical, We have Studied the Influence of BNYVV on lignin and HRGP, which were in sugar beet cell wall, clearly to see the relationships between different resistance beet cell wall lignin as well as different HRGP accumulation and distribution and the nature of anti plexus root disease in sugar beet roots. The results showed that no matter it was the resistant sugar beet varieties or not, no matter the beet varieties were infected by BNYVV before or after, there are lignin and HRGP deposition in their roots and all catheters on vein transverse. In addition, lignin deposition was shown gradually from deep to shallow, which was throughout the parenchyma cell walls from the outside to the inside in roots; lignin and HRGP accumulation in resistant varieties is more significant than susceptible varieties and its control group; it was notable that it also showed black granular sediment on sugar beet cell vacuoie membrane when determinated the cell wall surface glycoprotein, and vacuole membrane deposition was deeper·in disease-resistant varieties than susceptible varieties and the control group. It explains that HRGP was involved in the synthesis of lignin between sugar beet and BNYVV interaction system, the rapid accumulation of Lignin and HRGP in Sugar beet tissue was one of the manifestations of rhizomania.
引文
1 Pferdmenges F, Korf H, Varrelmann M. Identification of rhizomania-infected soil in Europe able to overcome Rzl resistance in sugar beet and comparison with other resistance-breaking soils from different geographic origins [J]. Eur J Plant Pathol, 2009,124:31-43
    2 Mcgrann G, Grimmer M, Mutasa-Gottgens E, Stevens M. Progress towards the understanding and control of sugar beet rhizomania disease [J]. MOLECULAR PLANT PATHOLOGY,2009,10 (1):129-141
    3 秦德志.甜菜抗、感丛根病品种品质性状的差异的初步研究[D].内蒙古农业大学,2005
    4 张福顺.张文彬.甜菜丛根病研究概况[J].中国糖料,2006,2:45-49
    5 张素珍.甜菜丛根病的防治研究与实践[J].中国糖料,2005,2:47-48
    6 Tamada T. Beet Necrotic Yellow Vein Virus. CMI/AAB Description of Plant Viruses [J], No.391. Wellesbourne:Association of Applied Biologists,2002
    7 李彦丽,齐兴亚.我国甜菜丛根病研究进展[J].中国糖料,2001,1:36-40
    8 武文琦,李旻,韩成贵,李大伟,于嘉林.影响甜菜坏死黄脉病毒RNA4翻译的序列定位[C].中国植物病理学会2011年学术年会论文集,2011
    9 Bouzoubaa S, Guilley H, Jonard G, et al. Nucleotide sequence analysis of RNA-3 and RNA-4 of beet necrotic yellow vein virus isolates F2 and G1 [J]. Gen Virol,1985, 66:1553-1564
    10 Bouzoubaa S, Ziegler V, Beck D, et al. Nucleotide sequence analysis of beet necrotic yellow vein virus RNA2[J]. Gen Virol,1986,67:1689-1700
    11 Bouzoubaa S, Ziegler V, Beck D, et al. Nucleotide sequence analysis of beet necrotic yellow vein virus RNA1[J]. Gen Virol,1987,68:615-628
    12 Kiguchi T, Saiti M, Tamada T. nucleotide sequence analysis of RNA5 of five isolates of beet necrotic yellow vein virus and the identity of a deletion mutant [J]. Gen Virol,1996,77:575-580
    13玉田哲男.甜菜丛根病毒(BNYVV)基因的生物机能[J].植物防疫,1991,45(4):157-160
    14 lupin I, Guiliey H, Richards K E, et al. Two proteins encoded by beet necrotic yellow vein virus RNA3 influence symptom phenotype on leaves [J]. EMBO J,1992, 11(2):479-488
    15 Tamada T, Abe H. Eveidence that beet necrotic yellow vein virus RNA-4 is essentialfor efficient transmiss ion by fungus Polymyxa betae [J]. Gen Virol,1989, 70:3391-3398
    16 Koeing R, Haebeleli A M, Commandeur U, et al. Detection and characterization of a distinct type of beet necrotic yellow vein virus RNA5 in a sugarbeet growing area in Europe [J]. Arch Virol,1997,142(7):1499-1504
    17 Kiguchi T, Saiti M, Tamada T. nucleotide sequence analysis of RNA5 of five isolates of beet necrotic yellow vein virus and the identity of a deletion mutant [J]. Gen Virol,1996,77:575-580
    18 Mcgrann G, Grimmer M, Mutasa-Gottgens E, Stevens M. Progress towards the understanding and control of sugar beet rhizomania disease[J]. Molecular Plant Pathology,2009,10 (1):129-141
    19 Koeing R, Lennefors B L. Molecular analysis of European A, B and P type sources of beet necrotic yellow vein virus and detection of the rare P type in Kazakhstan [J]. Arch Virol,2000,145 (8):1561-1570
    20韩成贵,李大伟,王东勇,杨莉莉,于嘉林,蔡祝南,刘仪.甜菜坏死黄脉病毒RNA4的菌传功能分析[J].科学通报,2002,10:772-774
    21 李旻.甜菜坏死黄脉病毒RNA5功能分析及甜菜抗病品种的鉴定[D].中国农业大学,2004
    22 李泽,王洪超,吴玉梅,张福顺.利用ELISA和RT-PCR法检测甜菜丛根病毒(BNYVV) [J].中国甜菜糖业,2008,2:5-7+55
    23刘大丽,马龙彪,王晳玮,吴玉梅,张福顺.应用RT-PCR技术检测甜菜坏死黄脉病毒[J].中国糖料,2008,2:12-17
    24张惠忠,白晨,云和义等.甜菜抗(耐)丛根病育种进展[J].内蒙古农业科技,1999,3:17-18
    25 李晓东,白晨,张惠忠等.甜菜抗丛根病单粒型雄性不育系N9849A、B的选育[J].内蒙古农业科技,2006,2:11-13
    26王立方.抗丛根病甜菜品种在我国的紧迫性和选育技术[J].中国甜菜糖业,1992,1:13-18
    27 Kallerhoff J. Beet nectrotic yellow vein virus coat protein-mediated proteion in sugarbeet (Beta vulgaris L.) protplasts [J]. Plant cell Rep,1990,9:224-228
    28 Ehlers U, Commandeur U, Frank R, et al. Cloning of the coat protein gene fromBeet Necrotic Ye 1 low Vein Virus and it's expression in sugar beet hairy roots [J]. Theor Appi Genet,1991,81:777-782
    29 Mannerlof M. Reduced titer of BNYVV on transgenic sugarbeets expressing the BNYVV coat protein [J]. Euphytica,1996, (90):293-299
    30斯钦巴特尔,莫日根,哈斯阿古拉等BNYVV CP基因的克隆及载体构建[J].华北农学报,2004,19(2):37-39
    31徐德昌,刘巧红,江莉萍.甜菜转基因植株抗性表现及种子获得[J].中国甜菜糖业,2002,(4):3-5
    32姚华建,李大伟,于嘉林等.甜菜坏死黄脉病毒外壳蛋白基因在甜菜转基因植株中的表达[J].生物工程学报,1997,(13):440
    33 Andika I B, Kondo H, Tamada T. Evidence that RNA silencing-mediated resistance to Beet necrotic yellow vein virus is less effective in roots than in leaves [J]. Mol Plant Microbe Interact,2005,18:194-204
    34 Lennefors B L, Savenkov E I, Bensefelt J, et al. dsRNA-mediated resistance to beet necrotic yellow vein virus infections in sugarbeet (Beta vulgaris L. ssp. vulgaris)[J]. Mol Breed,2006,18:313-325
    35 Pavli O I, Panopoulos N J, Goldbach R, et al. BNYVV-derived dsRNA confers resistance to rhizomania disease of sugar beet as evidenced by a novel transgenic hairy root approach [J]. Transgenic Res,2010,19(5):915-922
    36 Lewellen R T. Registration of sugar beet germplasm lines with multiple disease resistance:C39, C39R, C39R-6, C47, C47R, C93, and C94 [J]. Crop Sci.,1995, 35:596-597
    37 Lewellen R T. Registration of 11 sugar beet germplasm C79 lines with resistance to rhizomania [J]. Crop Sci.,1997,37:1026
    38 Lewellen R T. Regis trat ion of rhizomania-resistant germplasm of Beta vulgar is [J]. Crop Sci.,1991,31:244-245
    39 Hunger S, Digaspero G, Mohring S, et al. Isolation and linkage analysis of expressed disease-resistance gene analogues of sugarbeet (Beta vulgar is L.) [J]. Gename,2003, 46:70-82
    40 Tian Y Y, Fan L J, Thurau T, et al. The absence of TIR-type resistance gene analogues in the sugar beet (Beta vulgaris L.) genome [J]. J Mol Evol,2004,58:40-53
    41 Lein J C, Asbach K, Tian Y Y, et al. Resistance gene analogues are clustered on chromosome 3 of sugar beet and cosegregate with QTL for rhizomania resistance [J]. Genome,2007,50:61-71
    42张春来,蔡惠珍,孙以楚等.甜菜抗丛根病种质创新与分子生物技术[J].中国糖料,2008,(1):61-63+75
    43孙佰臣,白慧梅,李彦丽等.我国抗(耐)甜菜丛根病育种研究进展[J].中国甜菜糖业,2002,(3):34-38
    44祝延立,包淑英,黄枭等.吉林省甜菜主要病虫害的发生与防治[J].吉林农业科学,2006,1:56-58
    45 刘长兵.新疆甜菜主要病害及有效防治技术[J].现代农业,2011,10:30-31
    46严丽,王书双.无公害甜菜病害综合防治措施[J].新疆农业科技.2009,3:35-36
    47满红.甜菜丛根病的发生与防治[J].山东农机化.2007,6:25
    48 张蓉,刘浩等.甜菜丛根病综合防治技术研究Ⅱ.综合防治技术示范[J].中国糖料,2000,(3):26-28
    51 杨继春,秦树才,阎新元等.甜菜丛根病的发生与防治研究概述[J].中国甜菜糖业,2003,(3):24-31
    52许丽,李明莹,林凤.植物抗病的分子基础与研究进展[J],杂粮作物,2006,26(6):428-432
    53王丽芳.向日葵抗锈病生理机制及超微结构的研究[D].内蒙古农业大学,2008
    54王金生.植物抗病性分子机制[J],植物病理学报,1995,25(4):289-295
    55 王海华,曹赐生,高健.植物抗病性的遗传基础及其分子机制[J].湘潭师范学院学报,2000,21(6):88-92
    56古瑜,贾占温,孙德岭等.植物抗病机制的研究进展[J],天津农业科学,2008,14(4):45-48
    57 张德水,陈受宜.植物抗病性的分子生物学研究进展[J],植物病理学报,1997.27(2):97-103
    58董汉松.植物诱导抗病性:原理和研究[M].北京:科学出版社,1995
    59铃木直治.近代植物病理化学[M].张际中等译.上海:上海科学技术出版社,1985
    60赵可夫,王韶唐.作物抗性生理[M].北京:农业出版社,1990
    61 王文娟,张飞云.植物抗病分子机制研究进展[J],生物技术通报,2007,(1):19-23
    62 张建国,王森,王杰明.葡萄属植物的抗病性[J].中外葡萄与葡萄酒,2003,1:35-37
    63刘延琳,张振文,贺普超.葡萄对霜霉病的抗病性机制[J].葡萄栽培与酿酒,1997,2:33-36
    64 Thannickal V, Fanburg B. Reactive oxygen species in cell signal ing [J]. Lung Physiol, 2000,279(6):1005-1028
    65 Lamb C, Dixon R A. The oxidative burst in plant disease resistance [J]. Annu Rev Plant Physiol PlanMol Biol,1997,48:251-275
    66王晨芳.小麦与条锈菌互作过程中活性氧迸发的组织学和细胞化学研究[D].西北农林科技大学,2008
    67郭泽建,李德葆.活性氧与植物抗病性[J].植物学报,2000,42(9):881-891
    68 Scandalios J G, Oxygen stress and superoxide dismutases [J]. Plant physiol,1993, 101:7-12
    69 Mehdy M C. Active oxiygen species in plant defense against pathogens [J]. Plant Physiol,1994,105:467-47
    70王宝山.生物自由基与植物膜伤害[J].植物生理学通迅,1988,(2):12-16
    71 蔡以滢,陈珈.植物防御反应中活性氧的产生和作用[J].植物学通报,1999,16(2):107-112
    72 Gozzo F. Systemic acquired resistance in crop protect ion:from nature to a chemical approach [J]. Journal Agricultural Food Chemical,2003,51 (16):4487-4503
    73 Doke N. Involvement of superoxide anion generation in the hypersensitive response of potato tuber tissues to infection with an incompatible race of Phytophthora infestans and to the hyphal wall components [J]. Physiol Plant Pathol,1983, 23(33):345-357
    74王媛.杨树与溃疡病菌(Botryophaeria doth idea)互作中的细胞物学、活性氧代谢及细胞过敏性反应[D].中国林业科学研究院,2009
    75 Adam A,Farkas T,Somlyai G, et al.Consequence of 02-generation during a bacterially induced hypersensitive reaction in tobacco deterioration of membrane lipids [J]. Physiol Mol Pint Pathol,1989,34:13-16
    76 Sekizawa Y, Haga M, Hirabayashi E, et al. Dynamic behavior of superoxide generation in rice leaftissue infected with blast fungus and its regulation by some substances [J]. Agricultural and Biological Chemistry,1987,51 (3):763-770
    77 Doke N, Ohashi Y. Involvement of 02generation system in the induction of necrotic lesions on tobacco leaves infected with tobacco mosaic virus [J]. Physiol Mol Plant Pathol,1988,32:163-175
    78 Moshaty E F I B, Pike S M, Noveky A J. Lip id peroxidat ion and superoxide product ion in cowpea (Vigna unguiculata) leaves infected with tobacco ring spot virus or southern bean mosaic virus [J]. Physiol Mol Plant Pathol,1993,43:109-119
    79席德慧,孙歆等.两种病毒与烟草互作中的活性氧代谢研究[C].2005年全国植物逆境生理与分子生物学研讨会论文摘要汇编,2005
    80 Zacheo G, Zacheo T B. Involvement of superoxide dismutase and superoxide radicals in the susceptibility and resistance of tomato plants to Meloidogyne incognita attack [J]. Physiol Mol Plant Pathol,1988,32:313-322
    81 张云华等.低温强光对两优培九及其亲本苗期活性氧代谢的影响[J].种子,2007,26(11):73-74.
    82 Prasad T K. Mechanisms of chilling-induced oxidative stress injury and tolerance in developing maize seedlings:changes in antioxidant system, oxidation of proteins and lipids and protease activities [J]. The Plant Journal,1996, 10:1017-1026
    83 冯佰利,高小丽等.干旱条件下不同温型小麦叶片衰老与活性氧代谢特性的研究[J].中国生态农业学报,2005,13(4):74-76
    84 Rao M V, Paliyath G, Ormrod D P, et al. Ultraviolet-B-and ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana[J]. Plant Physiol,1996,110 (1):125-136
    85 Wohlgemuth H, Mittelstrass K, Kschieschan S, et al. Activation of an oxidative burst is a general feature of sensitive plants exposed to the air pollutant ozone [J]. Plant Cell Environ,2002,25:717-726
    86 Castro-Mercado E, Martinez-Diaz Y, Roman-Tehandon N, et al. Biochemical ana lysis of reactive oxygen species productionand antioxidative responses in unripe avocado(Perseaamericana Mill var Hass) fruits in response to wounding [J]. Protoplasma,2009,235:67-76
    87 刘蕾,何聪芬,董银卯等.不同胁迫对美花兰幼苗活性氧代谢相关酶活性的影响[J],北方园艺,2007,(9):154-156
    88 支立峰,余涛等.镉胁迫引起烟草悬浮细胞程序性死亡[J],武汉植物学研究,2006,24(5):403-407
    89黄雪琳, 李艳英, 董登峰等.低磷和铝毒胁迫对大豆活性氧代谢的影响[J],西南农业学报,2009,22(3):615-620
    90 TewariR K, Kumar P. Antioxidant responses to enhanced generation ofsuperoxide anion radical and hydrogen peroxide in the copper-stressed mulberry plants [J]. Planta,2006,223:1145-1153
    91 Schopfer P, Liszkay A, Bechtold M et al. Evidence that hydroxyl radicals mediate auxin-induced extension growth [J]. Planta,2002,214:821-828
    92 Pei Z M, Murata Y, Benning G et al. Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells [J]. Nature,2000,406:731-734
    93 Zhang X, Zhang L, Dong F, et al. Hydrogen peroxide involves abscisic acid-induced stomatalmovement in Vicia faba L [J]. Plant Physiol,2001,126:1438-1448
    94 Chen Z, Silva H, Klessig D F. Active oxygen species in the induction of plant systemic acquired res istance by sal icyl ic acid [J]. Science,1993,262:1883-1886
    95 刘艳.机械伤害诱导豌豆幼苗防御性反应及其调控机制—着重于茉莉酸和H2O2信息的研究[D].中国农业大学,2005
    96石利伟.茉莉酸处理对甜菜抗丛根病性的作用[D].内蒙古农业大学,2009
    97 REPKA V, FISCHEROVA I, SILHAROVA K. Methyl jasmonate is a potent elicitor of multiple defense responses in grapevine leaves and cell-suspension cultures [J]. Biologia Plantarum,2004,48 (2):273-283
    98 Lin C C, Kao C H. Abscisic acid induced changes in cell wall peroxidase activity and hydrogen peroxide level in roots of rice seedlings [J]. Plant Scence,2001, 160:323-329
    99 Jiang M Y, Zhang J H. Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage in leaves of maize seedlings [J]. Plant Cell Physiol,2001,42:1265-1273
    100刘高峰,杨洪强等.水杨酸对湖北海棠活性氧代谢及超微弱发光的影响[J],园艺学报,2006,33(1):118-121
    101 Bais H P, Vepachedu R, Gilroy S, et al. Allelopathy and exotic plant invasion:From molecules and genes to species interact ions [J]. Science,2003,301:1377-1380
    102 D'Haeze W, Rycke R D, Mathis R, et al. Reactive oxygen species and ethylene play a positive role in lateral root base nodulation of a semiaquatic legume [J]. Proc. Nat1.Acad. Sci.,2003,100 (20):11789-11794
    103胡文琴,王恬,孟庆利.动物中活性氧的产生及清除机制[J].家畜生态,2004,25(3):64-67
    104郭泽建,李德葆.活性氧与植物抗病性[J].植物学报,2000,42(9):881-891
    105 Peng M, Kuc J. Peroxidase-generated hydrogen peroxide as a source of antifungal activity in vitro and on tobacco leaf disks [J]. Phytopathology,1992,82(6): 696-699
    106 Baker C J, Orlandi E W. Active oxygen in plant pathogenesis [J]. Ann Rev Phytopathol,1995,33:299-321
    107 Kim K K, Fravel D R, Papavizas G C. Identification of a metabolite produced by Talaromyces flavusas glucose oxidase and its role in the biocontrol of Verticillium dabliae[J]. Phytopathol,1988,78 (4):488-492
    108董金皋,刘秀峰,李正平.HT-毒素胁迫下玉米叶片细胞的活性氧代谢及可能性作用[J].河北农业大学学报,2000,23(4):62-66
    109刘志文,沙爱华,王英.活性氧物质在植物抗病中的作用[J].安徽农业科学,2005,33(9):1705-1707
    110 Rogers K R, Albert F. AndersonA. Lipidperoxidationis a consequenceof elicitor activity [J]. PlantPhysiology,1988,86:547-553
    111 Devlin W S, Gustine D L. Involvement of the oxidative burst in phytoalexin accumulation and the hypersensitive reaction [J]. Plant Physiol,1992,100: 1189-1195
    112 Levine A, Tenhaken R, Dixon R A, Lamb C. H202from the oxidative burst orchestrates the plant hypersensitive response [J]. Cell,1994,79:583-593
    113 Bradley D J, KjellbomP, Lamb C J. Elicitor-andwound-induced oxidative cross-Linking of a proline-rich plant cellwall protein:a novel, rapid defense response [J]. Cell,1992,70:21-30
    114 Etienne P, Petitot A S, Houot V, et al. Inductionof tcl 7, a gene encoding a β subunit of proteasome, in tobacco plants treated with elicitin, salicylic acid or hydrogen peroxide [J]. FEBS Letters,2000,466:213-218
    115 Susana R, Alejandra R C, Matthew S, et al. CITRX thioredoxin interacts with the tomato Cf-9resistance protein and negatively regulates defence[J]. The EMBO Journal,2004,23(10):2156-2165
    116 Barna B, Fodor J, PoganyM, et al. Role of reactive oxygen species and antioxi-dants in plant disease resistance [J]. Pest Manag Science,2003,59 (4):459-464
    117刘志文,沙爱华,王英.活性氧物质在植物抗病中的作用[J].安徽农业科学,2005,33(9):1705-]707
    118 Dangl J L, Dietrich R A, Richberg M H. Death do not have no mercy:Cell death programmed in plant-microbe interactions [J]. Plant Cell,1996,18(8):1793-1807
    119戈家英,阮芸玮.植物的抗病机理探讨[J].湖北植保,2000,5:32-34
    120 H u ckelhoven R, Kogel K H. Tissue-specific superoxide generation at interaction sites in resistant and susceptible nearisogenic barley lines attacked by the powdery mildew fungus (Erysiphe graminis fsp hordei) [J]. Mol Plant Microbe Interact,1998,11:292-300.
    121 Huckelhoven R, Fodor J, Preis C, et al. Hypersensitive cell death and papilla formation in barleyattacked by the powdery mildew fungus are associated with HiOjbut not with salicylic acid accumulation [J]. Plant Physiol,1999,119: 1251-1260
    122 Liu F L, Andersen M N, Jensen C R. Root signal controls pod growth in drought-stressed soybean during the critical, abortion-sensitive phase of pod development [J]. Field Crops Research,2004,85:159-166
    123 Fabienne V, Xavier D, MauriceT, et al. AR2R3-MYB gene, AtMYB30, acts as a positive regulator of the hypersensitive cell death program in plants in response to pathogen attack [J]. Proc Nat1 Acad Sci USA,2002,99:10179-10184
    124 Wojtasxek P. Oxidative burst:an early plant response to pathogen infection [J]. Biochem J,1997,322:681-692.
    125葛秀春,宋凤鸣,郑重.稻瘟菌侵染后水稻幼苗活性氧化的产生与抗病性的关系[J].植物生理学报,2000,26(3):227-231
    126 Fridovich L. The biology of oxygen radicals:The superoxide radical is an agent of oxygen toxicity, superoxide dismutase provide an important defence [J]. science,1978,201:875-880
    127宋瑞芳,丁永乐,宫长荣等.烟草抗病性与防御酶活性间的关系研究进展[J].中国农学通报,2007,5:309-314
    128张志刚,杨晓萍,卢翰等.细极链格孢菌蛋白激发子对棉花生长相关酶活性的影响[J].棉花学报,2010,2:120-124
    129宋圆圆,王瑞龙,魏晓晨等.地表球囊霉诱发番茄抗早疫病的机理[J].应用生态学报,2011,9:2316-2324
    130张树生,胡蕾,刘忠良等.植物体内抗病相关酶与植物抗病性的关系[J].安徽农学通报,2006,12(13):48-49
    131蒋选利,李振岐,康振生.小麦与条锈菌互作中过氧化物酶的细胞化学研究[J].西北植物学报,2002,22(3):516—520
    132李敬玺,刘继兰,王选年等.超氧化物歧化酶研究和应用进展[J].动物医学进展,2007,28(7):70-75
    133董艳珍.植物苯丙氨酸解氨酶基因的研究进展[J].生物技术通报,2006,(SI):31-33
    134王生荣,朱克恭.植物系统获得抗病性研究进展[J].中国生态农业学报,2002,10(2):32-35
    135王文娟,张飞云.植物抗病分子机制研究进展[J],生物技术通报,2007,(1):19-23
    136邓欣,谭济才.茶树抗病的生化基础和形态抗性概述[C].2005年中南、西南植物病理学会和中国菌物学会联合学术年会论文集,2005,35-38
    137 Ende G V D. Cutinolytic enzymes in relation to pathogenesis [J]. Annu Rev Phytopathol,1992,30:369-389
    138 Neilso, Boagb. The Predieted impact of Possible elimatice hangeon virus-veetornema to desin Great Britain [Jj.Euro Pean journal of Forest Pathology,1996,102:193-199.
    139冯丽贞.桉树种系对焦枯病的抗性机制研究[D].福建农林大学,2008
    140温寿星,黄镜浩,陈瑾等.叶片结构与柑橘溃疡病抗性的初步研究[J].中国农学通报,2009,13:66-69
    141杨光道.油茶品种对炭疽病的抗性机制研究[D].安徽农业大学,2009
    142 Fisher I. The role of exocarp thickness in the production, consumption and select ion of paprika for consumption [J]. Genet Breed Capsicum,1994,8:106-109
    143 Koller W. Parker D M, Becker C M. Role of cutinase in the penetration of apple leaves by Venturis inaequalis [J]. Phytopathol,1991,81:1375-1379
    144王兆顺.不同种类葡萄对根瘤蚜侵染的结构抗性研究[D].山东农业大学,2009
    145马艳玲,吴凤芝,刘守伟.抗感枯萎病黄瓜品种的病理组织结构学研究[J].植物保护,2008,34(1):81-84
    146李梅婷,严琰,张绍升.香蕉枯萎病菌及其粗毒素对香蕉的致病性比较[J].热带作物学报,2010,31(3):446-452
    147刘双清,高必达,李红枚.植物诱导抗病性的研究进展[J].江西农业学报,2006,18(6):106-108
    148李合生.现代植物生理学[M].高等教育出版社.2002:405-414
    149 Kgrkonen A, Koutaniemi A. Lignin Biosynthesis Studies in Plant Tissue Cultures [J]. Journal of Integrative Plant Biology 2010,52 (2):176-185
    150范志金,刘秀峰,刘凤丽等.植物抗病激活剂诱导植物抗病性的研究进展[J].植物保护学报,2005,32(1):87-92
    151 Daisuke 0, Nobuyoshi N, Shigemi S, et al. The phenylanine pathway is the main route 70 of salicylic acid biosnthess in Tobacco mosaic virus-infected tobacco leaves [J]. plant Biotechnology,2006,23:395-398
    152 Ratul S, Mrkesh Y, Bhim P S, et al. Induction of resistance in chickpea by cell wal-lprotein of Fusarium oxysporum ciceri and Macrophomina phaseoina [J]. CURRENT SCIE-NCE,2003,91(11):1543-1546
    153陈年来,胡敏,乔昌萍等.BTH, SA和Si02处理对甜瓜幼苗白粉病抗性及叶片HRGP和木质素含量的影响[J].中国农业科学2010,43(3):535-541
    154程智慧,李玉红,孟焕文等.BTH诱导黄瓜幼苗对霜霉病的抗性与细胞壁HRGP和木质素含量的关系[J].中国农业科学,2006,39(5):935-940
    155弭忠祥,胡宝忠,陈绍江.细胞壁糖蛋白与大豆灰斑病抗性关系的研究[J].东北农业大学学报,1998,29(1):82-86
    156余名仑译.[苏]德日阿帕利捷著.植物显微化学实验指导[M].北京:人民教育出版社.1960
    157李正理著.植物组织制片学[M].北京:北京大学出版社,1996
    158楼之岑,李胜华主编.中草药性状和显微鉴定法[M].北京:北京医科大学,中国协和医科大学联合出版社,1997
    159郑艳,徐珞珊,王峥涛.组织化学在药用植物研究中的应用[J].现代中药研究与实践,2007,22(3):61-64
    160穆长征主编.组织化学技术教程[M].辽宁:辽宁医学院,2003
    161 Cui K M, Hu Z H. Advancement of Structural Botany in the Past Fifty Years in China [J]. Acta Botanica Sinica,2002,44 (9):1043-1067
    162装余一.组织化学方法及其在生药学中的应用[J].江苏药学与临床研究,2003,11(5):41-43
    163李进瞳.丹参次生代谢物的组织化学定位及生物运转探讨[D].西北农林科技大学,2008
    164 Douglas J. Taatjes A E, Roth J. Recent progress in histochcmistry and cell biology [J]. Histochem Cell Biol 2005,124:547 574
    165彭芳,田敏,王彩霞等.文心兰花芽分化过程中糖类和蛋白质的组织化学定位[J].亚热带植物科学,2011,4:8-11
    166石旭,李牡丹.葛根的解剖结构及主要化学成分的组织化学定位[J].山地农业生物学报,2009,28(4):306-309
    167吕洪飞,郭卫东等.二种石斛属植物和小叶石仙桃多糖的组织化学定位[J].中山大学学报(自然科学版),2007,46(3):79-83
    168吴鸿,贺游利,胡正海.油松含树脂细胞组织化学和细胞化学研究[J].西北植物学报,1999,19(1):100—103
    169曹冰,余小平.NDP-黄递酶组织化学方法用于植物组织NOS定位的初步研究[J].陕西师范大学学报(自然科学版),2004,32:129-130
    170李爱民,卜晓英,李胜华等.马尾松茎树脂道发育的组织化学研究[J].福建林学院学报,2009,29(1):89-92
    171穆靖,袁强,吴秀菊.北细辛(Asarum heterotropoides)营养器官的形态结构及其挥发油的组织化学定位[J].东北农业大学学报,2009,40(2):51-56
    172吕洪飞,胡正海.贯叶金丝桃不同器官的分泌细胞团分布密度与金丝桃素含量的相关性研究[J].中草药,2003,11:88-91
    173 Wang C F, Huang L L Kang Z S, et al. Histocheraical studies on the accumulation of reactive oxygen species(O2- and H2O2) in the incompatible and compatible interaction of wheat-Puccinia striiformis f. sp. Tritici[J]. Physiological and Molecular Plant Pathology,2007,71:230-239
    174殷奎德,黄海.拟南芥叶片超氧自由基的组织化学定位[J].生物学杂志,2003,20(2):44
    175杨杨,姜虹,傅华龙等.野生和组培川贝母总生物碱含量的测定和定位研究[J].四川大学学报(自然科学版),2008,45(1):209-213
    176彭斯文,张明生,王玉芳.杜鹃兰生物碱组织化学定位初步研究[J].世界科学技术一中医药现代化中药研究,2009,11(5):728-730
    177辛华,丁雨龙.珊瑚菜中香豆素的组织化学定位[J].广西植物,2008,28(6):847-850
    178王健,朱锦懋,林青青等.小麦茎秆结构和细胞壁化学成分对抗压强度的影响[J].科学通报,2006,51(6):679-685
    179滕红梅,房敏峰,胡正海.卵叶远志营养器官的结构及远志皂苷的组织化学定位和含量测定[J].分子细胞生物学报,2009,42(1):61-65
    180岳银屏,吴强,邢旭.芦荟苷的稳定性研究[J].食品工业科技,2006,10:85-86+95
    181彭华胜,刘文哲,胡正海等.栽培太子参块根中皂苷的组织化学定位及其含量变化[J].分子细胞生物学报,2009,42(1):1-10
    182彭华胜,王德群,胡正海.木瓜的果实发育及其结构防御策略[J].中药材,2010,3:325-328
    183沈宗根,吕洪飞,GUTTERMAN Yitzchak等.芦荟属植物叶内蒽醌类物质的组织化学定位研究[J].西北植物学报,2002,22(6):1384—1370
    184刘文哲,张爱新.大黄蒽醌类化合物的组织化学定位研究[J].西北植物学报,2000,20(6):1082—1085
    185李晓丹.药用石韦的抱子扫描电镜鉴定及黄酮化合物的组织化学定位和测定[D].陕西师范大学,2008
    186卜晓英.虎杖营养器官与愈伤组织结构及白葵芦醇组织化学定位研究[D].湖南农典大学,2007
    187王立丰,季红兵,田维敏.重稀土矿区芒萁稀土元素精细定位及光抑制对其光合活性的影响[J].中国稀土学报,2009,28(3):379-386
    188魏幼璋.钕在油菜中的分布、运输与细胞定位[J].中国稀土学报,2000,18(3):279-281
    189高玲玲.远志的解剖学、组织化学及皂昔类化合物积累规律的研究[D].西北大学,2008
    190乔琦,肖娅苹,王喆之.山茱萸核果的解剖结构和组织化学定位[J].云南植物研究,2004,26(6):651-655
    191叶祖云,阮少江,王雅英等.太子参微块根发育的解剖学与组织化学定位[J].植物生理学通讯,2009,45(10):981-985
    192彭晓英,周朴华,蒋道松等.盾叶薯蓣类原球茎的细胞结构及薯蓣皂苷的组织化学定位[J].电子显微学报,2009,28(6):579-584
    193 Atia A, Debez A, Barhoumi Z, et al. Histochemical Localization of Essential Oils and Bioactive Substances in the Seed Coat of the Halophyte Crithmum maritimum L. (Aplaceae) [J]. Journal of Plant Biology.2009,52 (5):448-452
    194 Zafra A, Rodr f guez-Garc f a M I, Alch e Jde D. Cellular localization of ROS and NO in olive reproductive tissues during flower development [J].2010,10:36
    195王金发编著.细胞生物学[M].北京:科学出版社.2003
    196 Iwano M, Che F S, Goto K, et al. Electron microscopic analysis of the H2O2 accumulation preceding hypersensitive cell death induced by an incompatible strain of Pseudomonas avenae in cultured rice cells [J]. Molecular Plant Pathology, 2002,3(1):1-8
    197韦存虚,兰盛银,徐珍秀.水稻胚乳发育中ATP酶的超微细胞化学定位和功能分析[J].中国农业科学,2003,3:259-262+353-354
    198 Romero-Puertas M C, Rodriguez-Serrano M, Corpas F J, et al. Cadmium induced subcellular accumulation of O2-and H2O2 in pea leaves [J]. Plant Cell Environ, 2004,27:1122-1134
    199赵淑芳,胡东维,程方民.大麦与白粉病菌互作中钙调素的细胞化学定位[J].细胞生物学杂志,2004,6:96-100
    200唐明,陈辉,郭军战等.刺槐丛枝菌根酸性磷酸酶的细胞化学研究[J].华中农业大学学报,2004,1:1-4
    201魏凤菊,张迎迎,侯春燕等.蒜鳞片薄壁细胞衰退过程中酶的细胞化学定位及DNA生化分析[J].实验生物学,2005,5:25-34
    202 Musetti R, Toppi L S, Martini M, et al. Hydrogen peroxide localization and antioxidant status in the recovery of apricot plants from European Stone Fruit Yellows [J]. European Journal of Plant Pathology,2005,112:53-61
    203魏和平,王建波,利容千等.淹水玉米幼苗根尖分生细胞内Ca2+超微细胞化学定位[J].生物学杂志.2005,4:20-23
    204洪健,王卫兵,胡东维等.Rubisco和RCA在青菜叶绿体中的分布及病毒侵染对其细胞定位的影响[J].实验生物学报,2005,1:31-38
    205刘晓云,张学成,朱清华等.枝管藻细胞壁内、外多糖的细胞化学定位研究[J].海洋水产研究,2006,6:60-63
    206韦存虚,钟方旭,李睿等.水稻淀粉型胚乳细胞发育中核的衰退和水解酶的细胞化学定位[J].作物学报,2006,2:298-300+317-318
    207王媛.杨树与溃疡病菌(Botryosphaeria dothidea)互作中的细胞生物学、活性氧代谢及细胞过敏性反应[D].中国林业科学研究院,2007
    208于芬,丁雨龙,尹增芳.毛竹韧皮部结”发育过程中Ca2+-ATP酶的超微定位[J].西北植物学报,2007,4:4645-4650
    209顾玉红,;程朋军,高述民等.文冠果体细胞胚发生中钙的超微细胞化学定位[J].林业科学,2008,8:52-55+159
    210姚瑞玲,王胤,方升佐.盐胁迫下青钱柳幼苗叶片中H+-ATP酶的细胞化学定位和超微结构变化[J].植物生理学通讯,2008,2:206-210
    211梁军,王媛,张星耀.杨树与溃疡病菌互作中过氧化物酶的细胞化学定位[J].北京林业大学学报,2008,6:107-111
    212 YAO R 1, FANG S Z, SHANG X L, et al. Cytochemical localization of ATPase and sub-cellular variation in mesophyll cell of Cyclocarya paliurus seedlings under iso-osmotic stress and calcium regulation [J]. Journal of Forestry Research,2009,20(4):343-348
    213贺俊英,朱云枝,宋小玲等.用超微细胞化学定位技术揭示ATP酶在紫茎泽兰高温适应性中的作用[J].生物安全学报,2011,3:255-259
    214 Tyburski J, Dunajska K, Tretyn A. Reactive oxygen species localization in roots of Arabidopsis thaliana seedlings grown under phosphate deficiency [J]. Plant Growth Regul,2009,59:27-36
    215范玲玲,陈刚,陈义芳等NaHCO,胁迫下星星草根中Ca2+与Ca2+-ATPase的超微细胞化学定位[J].植物学报,2010,3:337-34
    216杨淑娟,郑国琦,章英才等.灵武长枣正常果及裂果中Ca2+的细胞化学定位研究[J].西北植物学报,2011,1:84-88
    217于芬,丁雨龙.毛竹竹秆基本组织发育过程中POD酶的超微定位[J].云南植物研究,2010,12: 127-133
    218于芬,丁雨龙.毛竹竹秆基本组织发育过程中ATP酶的超微定位[J].江西农业大学学报,2011,2: 300-305
    219 Darehshouri A, Lutz-Meind U. H202 localization in the green alga Micrasterias after salt and osmotic stress by TEM-coupled electron energy loss spectroscopy [J]. Protoplasma,2010,239:49-56
    220郭红彦,彭方仁,吴青霞等.银杏枝条营养贮藏蛋白质的免疫细胞化学鉴定[J].林业科学,2011,]:68-72
    221刘文哲,张爱新.大黄蒽醌类化合物的组织化学定位研究[J].西北植物学报,2000,20(6):1082-1085
    222郑艳,徐珞珊,王峥涛.组织化学在药用植物研究中的应用[J].现代中药研究与实践,2007,22(3):61-64
    223 Gersbach P V, Wyllie S. G, Sarafis V. A New Histochemical Method for Localization of the Site of Monoterpene Phenol Accumulation in Plant Secretory Structures [J]. Annals of Botany,2001,88:521-525
    224 Oikawa K, Kasahara M, Kiyosue T, et al. Chloroplast unusual positioningl is essential for proper chlorop last positioning [J]. The Plant Cell,2003, 15(12):2805-2815
    225 Mayandi S, Bunichi E, He Z H, et al. Alumin-induced gene expression and protein localization of a cellwall-associaed receptir kinase in arabidopsis [J]. Plant Physiology,2003,132:2256-2266
    226 Meyer S, Cartelat A, Moya I, et al. UV-induced blue-green and far-red fluorescence along wheat leaves:a potential signature of leaf ageing [J]. Experimental Botany,2003,54 (383):757-769
    227 Corpas F J, Barroso J B, Carreras A, et al. Cellular and subcellular localization of endogenous nitric oxide in young and senescent pea plants [J]. Plant Physiology,2004,136 (1):2722-2733
    228 Lesniewska E, Adrian M, Klinguer A, et al. Cell wall modification ingrape-vine cells in response to UV stress investigated by atomic for cemicroscopy [J]. liltramicroscopy,2004,100:171-178
    229 Poggi M A, Mancosky D G, Bottoraley L A, et al. Atomic for cemicroscopic analysis of hydrogen peroxide bleached kraf t northern black sprucef ibres [J]. J. Microsc, 2005,220:77-83
    230 McIntire T M, Lew E J, Adalsteins A E, et al. Atomic force microscopy of a hybrid high-molecular-weight glutenin subunit from a transgenic hexaploid wheat[J]. Biopolymers,2005,78:53-61
    231 Radotic K, Micic M, Jeremic M. New insight sintothe structural organization of the plant polymer lignin [J]. Ann. N. Y. Acad. Sci,2005,1048:215-229
    232李国平,黄群策,秦广雍.用激光扫描共聚焦显微镜观察雪松花粉和花粉管[J].激光生物学报,2006,(1):1-8
    233 Cenzano A, Abdala G, Hause B. Cytochemical immuno-localization of allene oxide cyclase, a jasmonic acid biosynthetic enzyme, in developing potato stolons[J]. Journal of Plant Physiology,2007,164(11):1449-1456
    234梁彦,汪矛,孙小五等.3属4种罂粟科植物幼苗初生维管系统的结构[J].植物研究,2008,28(2):168-174
    235苏鹏飞,陈智群,王景荣等.用偏光显微镜检测硝化棉的含氮量[J].火炸药学报,2011,34(2):65-68
    236杨美娟,杨德奎,李法曾.中亚滨藜叶对NaCl胁迫的响应[J].河北师范大学学报,2011,35(2):197-203
    237 Scholten O E, Lange W. Breeding for resistance to rhizomania in sugar beet:a review. Euphytica,2000,112:219-231
    238陈贵华.甜菜抗丛根病信号转导机制的研究—着重于SA、Ca2+信号分子的研究[D].内蒙古农业大学,2009
    239董炜博,石延茂,赵志强等.花生感染条纹病毒(PStV)后叶片细胞超微结构研究[J].花生科技,2000,2:1-4
    240王月明.河北省大豆品种对SMV的抗性鉴定及感染后的细胞学研究[D].河北农业大学,2006
    241张仲凯,方琦,魏春红.水稻矮缩病毒云南、浙江分离株侵染水稻植株的细胞病理比较研究[J].西南农业学报,2006,19(4):621-623
    242 Tresnaputra U S, Ehara Y. Election microscopy of Soybean Leaf Cells Infected with Five Strains of Soybean MosaicVirus. Tohoku Journal of Agricul tural Research,1989, 39(2):61-71
    243滕卫丽,李文滨,韩英鹏等.大豆抗感品种(系)接种SMV1叶片细胞超微结构变化的比较[J].作物杂志,2008,1:34-36
    244敖雪,邵世勤,张少英等.甜菜抗(感)丛根病品种苗期某些生理生化特性差异的研究[J].中国甜菜糖业,2005,1:15-17
    245武文琦,李旻, 韩成贵等.影响甜菜坏死黄脉病毒RNA4翻译的序列定位[C].中国植物病理学会2011年学术年会论文集,2011
    246李旻.甜菜坏死黄脉病毒RNAS功能分析及甜菜抗病品种的鉴定[D].中国农业大学,2004
    247张福顺,胡晓航,陈英群.甜菜丛根病根部形态解剖学观察[J].中国甜菜糖业,2006,2:13-15
    248王月明.河北省大豆品种对SMV的抗性鉴定及感染后的细胞学研究[D].河北农业大学,2006
    249洪健,陆关成,李德葆.大蒜病毒原与其寄主细胞病理变化的电镜研究[J].电子显微学报,1990,1:17-23
    250陈贵华,张少英.甜菜细胞壁某些生理特性与抗丛根病的关系[J].作物杂志,2009,1:60-64
    251 Burketova'L, tillerova'K, Feltlova'M. Immunohistological localiz-ation of chitinase and b-1,3-glucanase in rhizomania-diseased and benzothiadiazole treated sugar beet roots [J]. Physiological and Molecular Plant Pathology,2003, 63:47-54
    252李文龙,王月明,侯春燕等.两个不同株系大豆花叶病毒侵染大豆细胞的超微病变比较研究[J].河北农业大学学报,2008,4(31):1-6
    253 Flor H H. Current status of the gene2 for 2 gene concept [J]. Annu Rev Phytopathol, 1971, (9):275-296
    254余朝阁,李天来,杜妍妍等.植物诱导抗病性及其信号转导途径[J].北方园艺,2007,(7):73-76
    255 Mittler R. Oxidative stress, antioxidants and stress tolerance [J]. Trends Plant Sci.,2002,7(9):405-410.
    256 Laloi C, Apell k, Danon A. Reactive oxygen signaling:the latest news [J]. Curr.Opin. Plant Biol.,2004,7:323-328.
    257 Kiraly Z, E1-Zahaby H, Golal A, et al, Effect of oxy free radicals on plant pathogenic bacteria and fungi and on some plant diseases [J]. See Ref,1993,77:9-19
    258 Yanov A A, Lapikova V P, Djawakhia V G. Active oxygen mediates heat-induced resistance of rice plant to blast disease [J]. Plant Sci,1993,
    259 Wu G, Shortt B J, Lawrence E B, et al. Disease resistance conferred by expression of a gene encoding H2O2 generat ing glucose oxidase in transgenic potato plants [J]. Plant Cell,1995,7:1357-1368.
    260 Peng M, Kuc J. Feroxidase-generated hydrogen peroxide as a souce of antifungal activity in vitro and on tobacco leaf disks [J]. Phytopathology,1992,82:696-699.
    261 Bruce R J, West C A, Elicitation of linin biosynthesis and isoperoxidase activity by pectic fragments in suspension cultures of castor bean [J]. Plant Physiol,1989, 91:889-897
    262 Lange B M, Lapierre C, Sandermann H J, Elicitor-induced spruce stress lignin [J]. Plant Physiol,1995,102:1277-1287
    263 Bradley D J, KjellbomP, L amb C J. Elicitor and wound-induced oxidative cross-linking of a prolinerich plant cell wall protein:a novel, rapid defense response[J]. Cell,1992,70:21-30
    264 Brisson L F, Tenhaken R, Lamb C J. The function of oxidative crosslinking of cell wall structural proteins in plant disease resistance [J]. Plant Cell,1994, 6:1703-1712
    265 Apostol I, Heinstein P F, Low P S. Rapid stimulation of an oxidative burst during elicitation of cultured plant cells:Role in defense and signal transduction [J). Plant Physiol,1989,90:109-116
    266 Levine A, Tenhaken R, Dixon R A, Lamb C. H2O2 from the oxidative burst orchestrates the plant hypersensitive response [J]. Cell,1994,79:583-593.
    267 Autrique J E. RFLP mapping of genes associated with different agronomic triaits and disease resistance in wheat [J]. Abstract of international Plaant GenomeⅢ, 1995,8.
    268 Orozco-C a rdenas M L, Narv a ze-V a squez J, Ryan C A. Hydrogen peroxide acts as a second messenger for the induction of defense genes in tomato plants in response to wounding, systemin, and methyl jasmonate[J]. Plant Cell,2001,13:179-191
    269 Thordal-Christensen H, Zhang Z, Wei Y D, et al. Subcellular localization of H202 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildow interaction [J]. Plant J,1997,11:1187-1194
    270 Tada Y, Mori T, Shinogi T, et al. Nitric oxide and reactive oxygen species do not elicit hypersensitive cell death but induce apoptosis in the adjacent cells during the defense response of oat [J]. Mol Plant Microbe Interact,2004,17:245-253
    271王俊斌.甜菜抗(耐)丛根病某些生理生化特性的研究[D].内蒙古农业大学,2004
    272陈贵华,张少英,李国龙.甜菜坏死黄脉病毒对甜菜幼苗膜脂过氧化的影响[J].内蒙古农业大学学报,2010,31(4):40-42
    273林植芳,李双顺,林桂珠等.衰老叶片和叶绿体中H202的积累与膜脂过氧化的关系[J].植物生理学报,1998,14(1):16-22
    274王爱国,罗广华.植物的超氧物自由基与羟胺反应的定量关系[J].植物生理学通讯,1990,(6):55-57
    275 Romero-Puertas M C, Rodriguez-Serrano M, Corpas F J, et al. Cadmium induced subcellular accumulation of O2-and H2O2 in pea leaves [J]. Plant Cell Environ, 2004,27:1122-1134.
    276 Steinbeck M J., Khan A U, Appel W H Jr, et al. The DAB-Mn2+ cytochemical method revisited:Validation of specificity for superoxide [J]. Journal of Histochemistry and Cytochemistry,1993,41:1659-1667
    277刘琼光,和兰娣,张静一等.水稻与基腐病菌互作中的活性氧代谢[J].华中农业大学学报,2007,26(4):451-455
    278张佳娣.活性氧的信号传导途径[J].安徽农业科学,2010,38(16):8283-8285+8287
    279宋莉璐;张荃.植物中参与活性氧调控的基因网络[J].生命科学,2007,19(3):346-352
    280翟又学,朱立煌.植物抗病基因的克隆与分子育种[J].生物工程进展,1996,16(1):17-21
    281 Andreev I M. Functions of the vacuole in higher plant cells. Russ J Plant Physiol, 2001,48(5):672-680
    282安钰.过氧化氢在合作杨苗木诱导防御性反应中的作用[D].北京林业大学,2008
    283 Bestwick C S, Brown I, Bennett M H R, et al. Localization of hydrogen peroxide accumulation during the hypersensitive reaction of lettuce cells to Pseudomonas syringae pv phaseolicola [J]. Plant Cell,1997,9:209-221
    284李欣,于慧春,庞新跃等.水稻白叶枯病菌内源过氧化氢的产生及定位[J].南京农业大学学报,2009,32(3):160-163
    285 Pellinen R, Palva T, Kangasjarvi J. Subcellular localization of ozone-induced hydrogen peroxide production in birch (Betula pendula) leaf cells [J]. The Plant Journal,1999,20:349-356.
    286 Noctor G, Foyer C H. Ascorbate and glutathione:keeping active oxygen under control [J]. Annual Review of Plant Physiology and Plant Molecular Biology,1998, 49:249-279
    287王源超,张正光,李俊等.H2O2,参与棉疫病菌90 kD蛋白激发子诱导的烟草过敏反应和系统获得抗性[J].植物生理与分子生物学学报,2003,29(3):185-191
    288陈利锋,宁玉立,徐雍皋等.抗感赤霉病小麦品种超氧化物歧化酶和过氧化氢酶的活性比较[J].植物病理学报,1997,27(3):209-312
    289阎轶峰,王长春,胡海涛等.白叶枯病对水稻抗病新种质叶片活性氧代谢的影响[J].江苏农业学报,2010,26(1):208-210
    290何冬明,严善春,鲁艺芳.黄檗叶片内保护酶活性的时序变化[J].东北林业大学学报,2011,39(9):37-39
    291王妍,田呈明,王永林.黄梢与轮枝菌互作过程中活性氧及保护酶系的变化[C].中国植物病理学会2011年学术年会论文集,2011
    292 Frame J. Advances in forage legume technology [J]草业学报,2001,10(4):1-17
    293石力伟.茉莉酸处理对甜菜抗丛根病性的作用[D].内蒙古农业大学,2009
    294陈鸿鹏,谭晓风.超氧化物歧化酶(SOD)研究综述[J].经济林研究,2007,25(1):59-65
    295蒋选利,李振岐,康振生.过氧化物酶与植物抗病性研究进展[J].西北农林科技大学学报(自然科学版),2001,29(6):124-129
    296邱兰萍,李光芝,朱天义.心肌细胞内SOD定位的电镜观察[J].电子显微学报[J].1998,17(3):291-294
    297杨洁,许燕,俞亚东.Cu2+对罗氏沼虾体内SOD酶细胞化学定位的影响[J].上海师范大学学报(自然科学版).2009,38(4):418-422
    298杨民和,郑重,LEACH J E水稻受稻瘟病菌侵染后过氧化物酶定位的超微观察[J].中国水稻科学,2002,16(1):57-62.
    299 Catesson A M, Imberty A, Goldberg R, et al. Nature, localization and specificity of peroxidase involved in lignification processes [A].In:Greppin H, Penel C, Gaspar TH, eds. Molecular and physiological aspects of plant peroxidases [C]. Univ. Geneva,1986, pp:189-198
    300高俊凤.植物生理实验指导[M].北京:高等教育出版社,2006
    301贺俊英.紫茎泽兰若干入侵生物学特性的形态解剖学研究[D],南京农业大学,2005
    302郭泽建,李德葆.活性氧与植物抗病性[J].植物学报,2000,42(9):881-891
    303邵金旺等.甜菜抗(耐)丛根病生理基础的研究(Ⅰ)过氧化物酶(POX)、多酚氧化酶(PPO)、苯丙氨酸解氨酶(PAL)与甜菜抗丛根病的关系[J].内蒙古农业大学学报.1999,20(4):1-6
    304陈贵华,张少英.甜菜细胞壁某些生理特性与抗丛根病的关系[J].作物杂志.2009,1:60-64
    305 Abdou, Galal E1-S, Barna A A B. Changes in lipid peroxidation, superoxide dismutase, peroxidase and lipoxygenase enzyme activities in plant/pathogen interactions [J]. Oxygen free radicals and scavengers in the natuural Sciences,1993,29-33
    306 Veech J A. Localization of peroxidase infected tobaccos susceptible and resistant to blank hank [J]. Phytopathol-ogy.1969,59:566-571
    307 Jennings P H, Brannaman B L, Zscheile F P J, et al. Peroxidase and polyphenol oxidase activity associated with Helminthosporium leaf spot of maize [J]. Phytopathology, 1969,59:963-967
    308邢梦玉.稻瘟病病程中的病理解剖学及过氧化物酶的细胞化学研究[D].华南热带农业大学,2003
    309 McLusky S R, Bennett M H, Beale M H, et.al. Cell wall alterations and localized accumulation of feruloyl-3-methoxytyraminein onion epidermis at sites of attempted .penetration by botrytis allii are associated with actin polarization, peroxidase activity and suppression of f lavonoid biosynthesis [J]. Plant Journal,1999,17 (5): 523-534
    310 Anjali S L, Susan R M. Recessive resistance genes and the oryza sativa-Xanthomonas oryzaepv. Oryzae pathosystem [J]. Molecular Plant-Microbe Interations,2007, 20(7):731-739
    311 Marjamaa K, Hildn K, Kukkola B et al. Cloning, characterization and localization of three novel lass III peroxidases in lignifying xylem of Norway spruce(Picea abies) [J]. Plant Molecular Biology.2006,61:719-732
    312 okunaga N, Kaneta T, Sato S, et al. Analysis of expression profiles of three peroxidase genes associated with lignification in Arabidopsis thaliana [J] Physiologia Plantarum,2009,136 (2):237-249
    313 Christensen JH, Bau W G, Welinder K G, et al. Purification and characterization of peroxidases correlated with lignif icat ion in poplar xylem [J]. Plant Physiology, 1998,118(1):125-135
    314 Apel K, Hirt H. Reactive oxygen species:metabolism, oxidative stress, and signal transduction [J]. Annu. Rev. Plant Biol,2004,55:373-399
    315 Foreman J, Demidchik V, Bothwell J H F. Reactive oxygen species produced by NADPH oxidase regulate plant cell growth [J]. Nature,2003,422:442-446
    316 M(?)ller I M. Plant mitochondria and oxidative stress:electron transport, NADPH turnover, and metabolism of reactive oxygen species [J]. Annu Rev Plant Biol,2001, 52:561-591
    317曾永三,王振中.活性氧和超氧化物歧化酶在植物抗病反应中的作用[J].仲恺农业技术学院学报,1999,12(4):55-63
    318 Deepak S, Shailasree S, Kini R K, et al. Role of hydroxyprol ine-rich glycoproteins in resistance of pearl millet against downy mildew pathogen Sclerospora graminicola[J]. Planta.2007,226:323-333
    319 Deepak S, Shailasree S, Sujeeth N, et al. Serodiagnosis of pearl millet resistance to downy mildew by quantitating cell wall P/HRGP using polyclonal antiserum Pab-P/HRGP[J]. Eur J Plant Pathol,2008,121:77-85
    320王国莉.水杨酸对苦瓜叶片白粉病抗性及抗氧化酶活性的影响[J].西北植物学报,2008,28(3):529-534.
    321侯琪,安力,潘多英等.BTH和SA对葡萄植株及采后果实病害控制效果[J].北方园艺,2008(10):166-168
    322姜春艳,黄峰.木质素的研究进展[J].山东林业科技,2006,4:78-81
    323 Basavaraju P, Shailasree S, Shetty N P, et al. Infection induced oxidative cross-linking of hydroxyproline-rich glycoproteins (HRGPs) is associated with restriction of Colletotrichum sublineolum in sorghum [J]. Journal of Plant Interactions.2009,4 (3):179-186
    324王健,朱锦懋,林青青等.小麦茎秆结构和细胞壁化学成分对抗压强度的影响[J].科学通报,2006,51(6):679-685
    325杨涓,许兴,魏玉清等.盐胁迫下枸杞叶片细胞表面糖蛋白的变化[J].西北植物学报,2004,24(11):2053—2056
    326康振生,黄丽丽,BUCHENAUER H等.禾谷镰刀菌在小麦穗部侵染过程的细胞学研究[J].植物病理学报,2004,34(4):329-335
    327 Vorwerk S, Somerville S, Somervil C. The role ofplant cell wall polysaccharide disposition in desease resistance [J]. TRENDS in PlantScience,2004,9:203-209
    328 Hossain A K M Z, Ohno T. Effect of enhanced calcium supply on aluminum toxicity in relation to cellwall properties in the root apex of twowheat cultivars differing in aluminum resistance[J]. Plant and Soi,2005, (276):193-204
    329 Moura J C M S, Bonine C A V, Viana J D 0 F, et al. Abiotic and Biotic Stresses and Changes in the Lignin Content and Composition in Plants[J]. Journal of Integrative Plant Biology,2010,52 (4):360-376
    330 Martin J A, Solla A, Woodward S, Gil L. Detection of differential changes in lignin compos i ti on of elmxyl em tissues inoculated with Ophiostoma novo-ulmi using fourier transform-infrared spectroscopy[J].For. Pathol,2007,37:187-191
    331郭红莲,陈捷.玉米灰斑病抗性反应中酚类物质代谢作用的研究[J].植物病理学报,2003,33(4): 342-346
    332 Mellerowicz E J, Sundberg B. Wood cell walls:biosynthesis, developmental dynamics and their implications for wood properties [J].Curr. Opin. Plant Biol,2008,11, 293-300
    333乃小英,乔昌萍,胡敏等.诱抗处理对甜瓜霜霉病抗性及叶片MDA, HRGP和木质素含量的影响[J].园艺学报,2009,36(增刊):2037
    334刘晶晶,邓泽元.植物细胞壁中的伸展蛋白[J].氨基酸和生物资源,2003,25(3):20-23
    335胡景江,朱玮,文建雷.杨树细胞壁HRGP和木质素的诱导积累与其对溃疡病抗性的关系[J].植物病理学报,1999,29(2):151-156
    336 Bonello P, Blodgett JT. Pinus nigra-Sphaeropsis sapinea as a model pathosystem to investigate local and systemic effects of fungal infection of pines [J]. Physiol. Mol. Plant Pathol.2003,63:249-261
    337赵小钒,忠祥.细胞壁羟脯氨酸的含量与大豆灰斑病抗性关系的研究[J].大豆科学,2000,19(2):146-149
    338郭洋,麻密,彭生斌等.植物细胞壁伸展蛋白积累与大豆抗灰斑病关系的研究[J].植物病理学报.1991,3:59-64

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700