基于三相—单相变换器的贯通式同相供电系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统牵引供电系统采取三相-两相分相供电方式,存在着无功、谐波、负序等电能质量的技术难题,并且由于过分相装置的存在,大大制约着机车的运行速度和承载能力。随着高速,重载铁路的发展,该系统面临着严重挑战。
     基于此,本文研究了基于三电平三相—单相二极管钳位变换器的贯通式同相牵引供电系统。利用电力电子技术彻底取消过分相装置,实现三相负荷的对称以及牵引网侧的柔性可控,大大改善了电能质量,提高了系统效率,是一种新型的智能牵引供电系统。
     本文深入分析了贯通式同相供电系统的控制问题,讨论了三相—单相变换器的拓扑结构,研究了三相变换器及单相变换器的控制方法,对于三相变换器采用PI双闭环调节,并对直流电容进行均压控制。对于单相变换器,采用电压前馈并网控制。建立了变换器数学模型,并对控制系统的参数进行了整定,描绘了控制系统开闭环波特图,证明了系统的稳定性。
     建立新型牵引网Carson模型,讨论分析多机并网系统的阻抗分布,环流分布以及下垂性能,得出系统具有下垂特性,可以使用下垂控制实现多组变换器并联运行,选取了双闭环结构,对电流进行解耦,配置了控制系统参数,波特图证明系统达到稳定性要求,并实现了均流控制。
     由于机车作为谐波源会向系统注入大量谐电流,牵引供电系统成为最直接的谐波电流源激励对象,很可能对相关设备造成损害。因此,针对这一新型牵引供电系统进行谐波分析,建立了基于分布式电感电容降阶计算的牵引网阻抗模型,搭建了CRH2机车负载模型,进行了车网耦合仿真,分析了负载牵引网侧、变电所牵引网侧和三相电网输出侧的谐波情况,证明了该系统车网耦合时谐波满足国家标准要求,还分析了极端情况下大谐波电流注入的情况,该系统谐波情况优于现有供电系统,为避免谐波谐振提供相应的理论参考。
     为了验证该系统的相关性能及特性,利用Matlab/Simulink搭建系统仿真模型和谐波分析模型,对于三相-单相变换器单机并网和多机并联并网的情况进行建模和仿真,对于车网耦合的谐波情况进行了仿真。仿真结果表明该贯通式同相供电系统相比于现有的供电系统模型能更好地解决供电电能质量、谐波、无功及三相不平衡电流等问题,相对于现有系统优势明显。
Traditional traction power supply system adopts three-phase to two-phase separation mode of power supply. This system is facing pool quality of power supply such as:reactive, harmonics, and negative sequence. And the phase splitting limits the capability of speed and load. With the development of high-speed, heavy--load railway, the system is facing severe tests.
     This paper introduces a advanced co-phase power supply system based on three level three-phase to single-phase converter, which uses power electronic technology to cancel the neutral-section passing device completely, to achieve the symmetrical of three-phase load and the traction network side flexible controllable.This system improves the quality of electric energy, raises the efficiency of the system and is a new type of smart traction power supply system.
     The control scheme of advanced co-phase traction power supply system is analyzed in this paper. First of all, the topology of three-phase to single-phase converter is discussed. Then the control of three-phase converter and single-phase converter are studied, the three-phase part adopts dual-loop PI control and the DC capacitor voltage balance while the single-phase part adopts voltage feed-forward control. The mathematical model of the converter is established, the control parameters are set and the bode figures of the system are depicting to prove the stability of the system.
     For the multi-substations model, Carson model of the system is established to analyze the impedance distribution and the circulation distribution to verify the droop characteristic of the system. Using droop control based on direct power control to achieve current decoupling, the control parameters are set and the bode figures of the system are depicting to prove the stability of the system, current sharing of substations parallel operation are achieved.
     As harmonic source, the locomotives inject huge harmonic current to the system, the traction power supply system becomes the direct encouraging object, which may cause the damage of equipments. So, it's necessarily to analyze the harmonic impedance of the system based on distributed capacitance and inductance reduction, the locomotive model of CRH2is set up to simulate the locomotive network coupling, the harmonic of load, substations and grid power are analyzed, the results meet the national standard, the extreme case of injection high harmonic current is also taken into consideration, the simulation results shows that the harmonic performance of the system is better than the existing system and provides theoretical reference for avoiding harmonic resonance.
     To verify the performance and characteristics of the system, three-phase to single-phase converter operation, single substation and multi-substations grid-connected simulation model and harmonic analysis model are built in Matlab/Simulink environment. The simulation of locomotive network coupling is carried out. The simulation results show that the advanced co-phase traction power supply system can solve the problem of power quality, harmonic, reactive and three-phase unbalance current better, has the obvious superiority.
引文
[1]李群湛,张进思,贺威俊.中适于重载电力牵引的新型供电系统的研究[J].铁道学报,1988,10(4):23-30.
    [2]李瑞淳,王驿.德国高速列车综述[J].国内外铁道车辆,2005,vol42(6):1-6.
    [3]谢贤良.世界高速铁路现状及其社会经济效益[J]_中国铁路,2003,11:60-64.
    [4]李世琪.世界高速铁路发展的动向[J].铁道技术监督,2007,vol.35,No 1:35-37.
    [5]钱立新.世界高速列车技术的最新进展[J].中国铁道科学,2003,vol.24,No.4:1-10.
    [6]卢组文.高速铁路轨道技术综述[J].铁道工程学报,2007,1:41-54.
    [7]刘建强.国内外高速列车发展概况[J].电力电子,2011,,2:58-63.
    [8]何华武.快速发展的中国高速铁路[J].中国铁路,2006,7:23-31.
    [9]冯晓芳.中国高速铁路的发展与展望[J].科技资讯,2009,No.1:1 29-1 30
    [10]张卫华,王伯铭.中国高速列车的创新发展[J].机车电传动,201 O,No.1:8-12.
    [11]C. shi-lin, R.J.Li,and H.Pao-Hsiang.Traction system unbalance problem-analysis methodologies, Power Delivery[J]. IEEE Transaction on,vol.19, pp.1877-1883, 2004.
    [12]李群湛,牵引变电所供电分析及综合补偿技术[M].北京:中国铁道出版社,2006.
    [13]李群湛.电气化铁道并联综合补偿及其应用[M].北京:中国铁道出版社,1993.
    [14]李群湛.三相牵引变电所不可调并联补偿综合分析[J].铁道学报,1987,9(1).
    [15]谢杰,张秀峰,孙吉.基于Y,d11接线变压器的同相供电技术方案.电网技术.2010,6:149-153.
    [16]魏光.同相供电装置控制策略研究[D].四川:西南交通大学,2009.
    [17]Zeliang Shu, Shaofeng Xie, and Ke Lu. Digital Detection, Control, and Distribution System for Co-phase Traction Power Supply Application[J]. Industrial Electronics, IEEE Transactions on vol.9 pp.1-9,2012.
    [18]Zeliang Shu, Shaofeng Xie, and Qunzhan Li. Single-Phase Back-To-Back Converter for active Power Balancing, Reactive Power Compensation,and Harmonic Filtering in Traction Power System[J]. Power Electronics,IEEE Traction on vol.26, pp.334-343,2011.
    [19]刘星.贯通供电方式下的同相供电装置控制策略[D].四川:西南交通大学.2010.
    [20]Z.L. Shu, S.F. Xie, and K. Lu. Digital Detection, Control, and Distribution System for Co-phase Traction Power Supply Application[J]. IEEE Transactions on Industrial Electronics, vol.9(1), pp.1-9,2012.
    [21]Z.L. Shu, S.F. Xie, and Q.Z. Li. Single-Phase Back-To-Back Converter for active Power Balancing, Reactive Power Compensation, and Harmonic Filtering in Traction Power System[J]. IEEE Traction on Power Electronics, vol.26(2), pp. 334-343,2011.
    [22]Euzeli Cipriano dos Santos,Jr.,Cursino Brandao Jacobina,Gregoey Arthur de Almeida Carlos,and Isaac Soares de Freitas. Component Minimized AC-DC-AC Single-Phase to Three-Phase Four-Wire Converters[J]. Industrial Electronics, IEEE Transactions on vol.58 pp.4624-4635,2011.
    [23]Jinn-Chang Wu,and Yao-Hui Wang. Three-Phase to Single-Phase Power Conversion System, Power Electronics[J]. IEEE Traction on vol.26, pp.453-461, 2011.
    [24]Hui Ouyang,Kai Zhang,Yong Kang,and Jian Xiong. Repetitive Compensation of Fluctuating DC Link Voltage for Railway Traction Drives[J].Power Electronics, IEEE Traction on vol.26, pp.2160-2171,2011.
    [25]Euzeli Cipriano dos Santos,Jr.,Cursino Brandao Jacobina,Jose Artur Alves Dias, and Nady Rocha. Single-Phase to Three-Phase Universal Active Power Filter, Power Delivery[J]. IEEE Traction on vol.26,pp.1361-1371,2011.
    [26]Cursino Brandao Jacobina, Euzeli Cipriano dos Santos,Nady Rocha,and Edgard Luiz Lopes Fabricio. Single-Phase to Three-Phase Drive System Using Two Parallel Single-Phase Rectifiers[J]. Power Electronics,IEEE Traction on vol.25, pp.1285-1295,2010.
    [27]A.A.Boora,F.Zare,A.Ghosh,and G.Ledwich. Applications of power electronics in railway systems[C]. Universities Power Engineering Conference,2007.AUPEC 2007.Australasian,2007, pp.1-9.
    [28]解绍锋,李群湛,,贺建闽.同相供电系统对称补偿装置控制策略研[J].铁道学报,vol.24,pp.109-113,2002.
    [29]桂红云,姚文熙,吕征宇.多电平变换器的拓扑结构和控制策略[J].电源技术应用,2004,7(8):493-497.
    [30]熊健,张凯,陈坚.PWM整流器的控制工程化设计方法[J].电工电能新技术,2002,21(2):44-48.
    [31]Wu R. Wewan S B, Slemon G R. Analysis of an ac to dc voltage source converter usingf PWM with phase and amplitude control[J]. IEEE Trans Ind Appl.1991,27: 355-364.
    [32]冯晓云.电力牵引交流传动及其控制系统[M].北京:高等教育出版社,2009.
    [33]肖勇涛,朱理.基于SVPWM控制的三相三电平逆变器仿真研究[J].科技信息,2010(15): 77-79.
    [34]窦真兰,张同庄,凌禹.三电平NPC整流器空间矢量脉宽调制及中点电位平衡控制[J].电力自动化设备,2008,28(2):65-69.
    [35]T.A.Meynard et al.Modeling of Multilevel Converters.IEEE Trans.ON industrial Electronics,Vol.44,No.3,1997:356-364.
    [36]唐丽娜,倪帅,戴鹏,徐立华.NPC三电平整流器中点电位控制方法的研究[J].电气传动,2012,42(7):41-45.
    [37]杨新华,王佰川.三电平整流器中点电位平衡的研究[J].电气自动化,2011,33(4): 65-67.
    [38]裘锦勇,宋文祥,韩杨,徐琳,陈陈.三电平PWM整流器控制技术研究[.J].水电能源科学,2009,27(2):187-189.
    [39]伍超.三相三电平PWM整流装置控制策略的研究[D].西安理工大学:2008.
    [40]J.Shen,N.Butterworth.Analysis and design of a three-level PWM converter system for railway-traction application.IEEE Pro.Electr.Power Appl,1997,144 (5): 357-371.
    [41]吴学智,刘亚东,黄立培.三电平电压型逆变器空间矢量调制算法的研究[J].电工电能新技术,2002,2 1(4):16-19.
    [42]林渭勋.现代电力电子电路[M].杭州:浙江大学出版社,2002.
    [43]李永东,肖曦,高跃.大容量多电平变换器一一原理·控制·应用[M].北京:浙江大学出版社,2005.
    [44]康劲松,巫影,张烨,陶生 桂.三电平变流器多载波PWM控制技术研究[J].同济大学学报(自然科学版),2010,38(1):124-129.
    [45]张天瑜.新颖单相光伏并网逆变系统的仿真研究[J].长春工业大学学报,2008,29(4): 414-419.
    [46]徐萍.光伏并网逆变器设计[D].山东大学,2006.
    [47]李群湛,贺建闽.牵引供电系统分析[M].成都:西南交通大学出版社,2007:69-75.
    [48]铁道部电气化工程局电气化勘测设计院.电气化铁道设计手册一一牵引供电系统[M].北京:中国铁道出版社,1987.
    [49]李欣然,张广东,朱湘有,等.牵引供电系统综合负荷模型结构[J].电力系统自动化,2009,33(16):71-75,95.
    [50]Shiguo Luo,Z.Ye,R.Lin and Fred C.Lee. A Classification and Evaluation of Parallel Methods for Power Supply Modules[C].1998 VPEC Seminar Record, pp: 221-231.
    [51]蔡宣三.并联开关电源的均流技术[J].电工电能新技术.1995.Vol.3:12-16.
    [52]R. H.Lasseter. Micro-grids[C]. Power Engineering Society Winter Meeting, New York, USA,2002.
    [53]Rubens M.Santos Filho, Paulo F.Seixas, Porfirio C. Cortizo, Leonardo A.B.Torres, Andre F.Souza. Comparison of Three Singe-Phase PLL Algorithms for UPS Applications[J]. IEEE Traction on Industrial Electronics,2008,55(8): 2923-2932.
    [54]Page C.H.Reactive Power in Non-sinusoidal Situations[J].IEEE Trans on IM,1980,29(4):420-423.
    [55]Czarnecki L.S.Considerations on the reactive power in non-sinusoidal situations [JJ.IEEE Trans on Instrum&Meas,1985,34(3):399-404.
    [56]Czarnecki L.S. An orthogonal decomposition of current of non-sinusoidal voltage source applied to nonlinear loads[J].Int J Circuit Theory Appl,1988 (11): 235-239.
    [57]Fryze S. Active,reactive and apparent power in circuits with non-sinusoidal voltage and current(in polish)[J].Przegl Elektrtech,1932(22):673-676.
    [58]Akagi H,Kanazaw Y,Nabac A. Instantaneous reactive power compensators comprising switching devices without energy storage components [J]. IEEE Trans on Industry Application,1984,20(3):625-630.
    [59]林海雪,周胜军.电气化铁路的谐波标准问题[J].中国电力,2008,32(9):55-58.
    [60]GB/T 14539-93《电能质量公用电网谐波》
    [61]林磊.电气化铁路对电力系统影响的分析研究[D].浙江大学,2004.
    [62]Hanmin Lee,Changmu Lee,Gilsoo Jang. Harmonic Analysis of the Korean High-speed Railway Using of the Eight-Port Representation Mode [J]. IEEE Trans. Power Del,VOL.21,NO.2,APRIL,2006:979-986.
    [63]H.Lee,C.Lee,H.Cho,A.Lee,G.Jang,and S.Kwon. Analysis model for harmonic study on Korean railway system[C]. Proc. Int. Conf. Electrical Machines System, Oct.2004, p.406.
    [64]马力,刘渝.固定开关频率电流控制PWM整流器的研究[J].机械与电子,2011,8:13-19.
    [65]宋文胜,刘志敏,冯晓云.四象限变流器控制策略研究与仿真[J].电力机车与城轨车辆,2007,30(2):34-37.
    [66]谢舸.高速列车牵引传动系统仿真分析[D].浙江大学,2011.
    [67]舒泽亮,连级三.三相四线并联型无功补偿与有源滤波装置的研究[J].变流技术与电力牵引,2008(1):56-60.
    [68]刘亚军.三电平逆变器SVPWM控制策略的研究[D].华中科技大学,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700