贯通式同相供电系统电能变换设备保护方案研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于牵引供电系统结构和负荷的特殊性,产生了负序、无功和谐波以及存在“过分相”等问题,严重制约了高速、重载铁路的发展。采用基于电能变换设备的贯通式同相供电系统,可以消除负序、补偿无功并实现较小的谐波畸变率,不仅能从根本上解决牵引供电系统的电能质量问题,还取消了线路中的电分相,是一种理想的牵引供电形式。
     首先论文在介绍基于“背靠背”潮流控制器的同相供电系统的基础上,讨论了贯通式同相供电系统的结构原理以及实现方法,分析了其馈线调压和容量优化原理,给出了作为其核心的静止电能变换器的结构和变换原理,并提出了一种可行的贯通式同相供电方式下牵引变电所的主结构方案。
     静止电能变换器的控制可以分解成三相整流单元和单相逆变单元的控制,论文先后讨论了三相整流器和单相逆变器数学模型的建立以及控制系统的设计,并仿真分析了控制策略的正确性和可行性。
     然后对电能变换设备的各种可能故障情况进行了分析,讨论了静止电能变换器对三相整流变压器、单相升压变压器和馈线保护的影响。在此基础上,论文提出了一种能够满足电能变换设备保护选择性的保护方案,并为三相整流变压器、单相升压变压器和静止电能变换器设置了相应的保护配置。
     最后在MATLAB/Simulink中建立了贯通式同相供电系统的仿真模型,对其在纯有功负载、整流型负载、空载、负载突变情况下,以及三相整流变压器低压侧故障、静止电能变换器内部故障、牵引网故障情况下分别进行了仿真分析,仿真结果验证了贯通式同相供电系统的可行性和电能变换设备保护方案的正确性。
The structure of electric traction power supply system and its single-phase load result in problems of negative sequence, reactive power, harmonics and crossing neutral sections, which seriously influence the development of railway high-speed and overloading. The continuous cophase power supply system based on electrical conversion equipment can eliminate negative sequence, compensate reactive power and achieve smaller harmonic distortion, not only fundamentally solve the power quality of traction power supply system, also eliminate neutral sections of the traction network, and is an ideal form of traction power supply.
     First, based on the introduction of cophase power supply system of the two single-phase converters, the composition and implementation of continuous cophase power supply system are discussed, the principle of feeder voltage regulation and capacity optimization are analyzed, the structure and transformation principle of static power converter are studied, and a feasible program of the main structure of traction substation under continuous cophase power supply system is proposed.
     The control of static power converter can be resolved into the control of three-phase rectifier and single-phase inverter, in the paper the establishment of mathematical model and control system design of the three-phase rectifier and single-phase inverter are discussed, then the correctness and feasibility of the control strategy are simulated and analyzed.
     Afterwards, a variety of possible fault to electrical conversion equipment are analyzed, and the influences of static power converter on three-phase rectifier transformers, single-phase stet-up transformer and feeder protection are discussed. Then, a set of protection scheme for electrical conversion equipment is presented, which can satisfy the selectivity of protection, furthermore, a corresponding protection scheme for three-phase rectifier transformer, single-phase stet-up transformer and static power converter is set.
     Finally, under MATLAB/Simulink continuous cophase power supply system is modeled, the operation behaviors of continuous cophase power supply system is simulated and analyzed in many conditions, such as pure active load operation, rectifier load operation, no-load operation, load changing operation, low-voltage side fault of three-phase rectifier transformers, static power converter fault and traction line fault. Simulation results show the feasibility of continuous cophase power supply system and the correctness of protection scheme for electrical conversion equipment.
引文
[1]李群湛.电气化铁道并联综合补偿及其应用[M].北京:中国铁道出版社,1993.
    [2]张秀峰.高速铁路同相AT牵引供电系统研究[D].西南交通大学博士研究生学位论文,2006.
    [3]李群湛.我国高速铁路牵引供电发展的若干关键技术问题[J].铁道学报,2010,32(4):119-124.
    [4]Jian Xie, Andriy Zynovchenko, Feng Li, et al. Converter control and stability of the 110-kV railway grid with the increasing use of the static frequency converters. Power Electronics and Applications,2005 European Conference,2005:P.1-P.8.
    [5]M.Aeberhard, C.Courtois, P.Ladoux. Railway Traction Power Supply from the state of the art to future trends. Power Electronics Electrical Drives Automation and Motion(SPEEDAM),2010:1350-1355.
    [6]Martin Oettmeier, Carsten Heising, Roman Bartelt, et al. Flux-Based Multivariable Control of a Static Converter Feeding a 16.7-Hz Single-Phase Load. Industrial Electronics, 2009,35th Annual Conference of IEEE,2009:492-497.
    [7]Jens Ranneberg. Transformerless Topologies for Future Stationary AC-Railway Power Supply. Power Electronics and Applications,2007 European Conference,2007:1-11.
    [8]谢杰.同相供电变电所设备容量和补偿特性的研究[D].西南交通大学硕士研究生学位论文,2010.
    [9]魏光,李群湛,黄军,等.新型同相牵引供电系统方案[J].电力系统自动化,2008,32(10):80-83.
    [10]吕晓琴,张秀峰.基于有源滤波器的V/x结线的同相牵引供电系统[J].电力系统及其自动化学报,2006,18(6):73-78.
    [11]张秀峰,高仕斌,钱清泉,等.基于阻抗匹配平衡变压器和AT供电方式的新型同相牵引供电系统[J].铁道学报,2006,28(4):32-37.
    [12]张秀峰,连级三.基于斯科特变压器的新型同相AT牵引供电系统[J].机车电传动,2006(4):14-18.
    [13]夏焰坤,李群湛,邹大云.一种基于有源滤波器的同相牵引供电方案[J].电网技术,2010,34(10):131-134.
    [14]韩正庆,刘淑萍,魏昕,等.同相供电设备有功功率差动保护研究[J].电力系统自动化,2011,35(16):82—86.
    [15]魏听.同相供电系统继电保护方案设计[D].西南交通大学硕士学位论文,2011.
    [16]曾国宏,郝荣泰.基于有源滤波器和阻抗匹配平衡变压器的同相牵引供电系统[J].铁道学报,2003,25(3):49—54.
    [17]刘能.同相牵引变电所补偿优化方案研究[D].西南交通大学硕士研究生学位论文,2010.
    [18]魏光.同相供电装置控制策略研究[D].西南交通大学硕士研究生学位论文,2009.
    [19]霍长龙.电铁同相供电系统方案研究[D].西南交通大学硕士研究生学位论文,2010.
    [20]Zeng Guohong, Zheng Qionglin, Hao Rongtai. Topology and Control Strategy of A Novel APF Based Traction Supply System.2002 IEEE Region 10 Conference on Computers, Communications, Control and Power Engineering, Beijing,2002:2087 - 2090.
    [21]Zeng Guohong, Hao Rongtai. Analysis and Design ofAn Active Power Filter for Three-Phase Balanced Electrified Railway Power Supply System. The 5th International Conference on Power Electronics and Drive System, Novotel Apollo Hotel, Singapore,2003: 1510-1513.
    [22]S.T.Senini, P.J.Wolfs. Novel Topology for Correction of Unbalance Load In Single Phase Electric Traction Systems. IEEE 33rd Annual Power Electronics Specialist Conference, Australia,2002:1208-1212.
    [23]Tetsuo UZUKA, Shouji JKEDO, Keiji UEDA. A Static Voltage Fluctuation Compensator for AC Electric Railway. IEEE 35th Annual Power Electronics Specialist Conference, Germany,2004:1869-1873.
    [24]Pee-Chin Tan, RobertE.Morrison, Donald Grahame Holmes. Voltage Form Factor Control and Reactive Power Compensation in a 25-kV Electrified Railway System Using a Shunt Active Filter Based on Voltage Detection. IEEE Transactions on Industry Applications, March-April 2003,39 (2):575 - 580.
    [25]Zhou Sun, Xinjian Jiang, Dongqi Zhu, Guixin Zhang. A Novel Active Power Quality Compensator Topology for Electrified Railway. IEEE Transactions on Power Electronics, July 2004,19 (4):1036-1041.
    [26]张厚升,李素玲,赵艳雷.能馈型双PWM变换器交流电子负载研究[J].电力系统保护与控制,2011,39(14):129-132.
    [27]李芬,邹旭东,王成智,等.基于双PWM变换器的交流电子负载研究[J].高电压技术,2008,34(5):930-934.
    [28]冯金博,解绍锋,刑晓乾,等.电气化铁路同相供电试验系统模拟牵引负载方案研究[J].铁道学报,2010,32(6):29-33.
    [29]韩啸一.基于空间电压矢量控制的三相电压型PWM整流器的研究[D].北京交通大学硕士研究生学位论文,2011.
    [30]毛文喜.城市轨道交通牵引供电系统整流器研究[D].湖南大学硕士研究生学位论文,2007.
    [31]Wu.R, Dewan.S.B. Slemon.G.R. Analysis of an AC to DC voltage source converter using PWM with phase and amplitude control. IEEE Trans Ind Appl,1991,27:355-364.
    [32]Wernekinck.E, Kawamura.A, Hoft.R. A high frequency AC/DC converter with unity power factor and minimum harmonic distortion. IEEE Trans Power Electron,1991,6: 364-370.
    [33]Jiahu Guo, Luhua Zhang, Fujing Deng. Decoupled Control of the Active and Reactive Power in Three-phase PWM converter Based on Inverse System Theory. Proceedings of the IEEE International Conference on Automation and Logistics,2007:18-21.
    [34]Maswood.A.I, Fangrui Liu. A Unity-Power-Factor Converter Using the Synchronous-Reference-Frame-Based Hysteresis Current Control. IEEE Transactions on Industry Applications,2007,43 (2):593-599.
    [35]刘文超.大功率单相逆变器并联控制与保护技术研究[D].华中科技大学硕士研究生学位论文,2009:7-8.
    [36]李鑫,姚勇涛,张逸成.采用电容电流内环的逆变器双闭环控制研究[J].电气传动,2008,2:27-30.
    [37]舒为亮,张昌盛,段善旭,康勇.逆变电源P1双环数字控制技术研究[J].电工电能新技术,2005,24(2):52-54.
    [38]陈万.模块化静止变流器逆变环节研究[D].南京航空航天大学硕士研究生学位论文,2004:19-20.
    [39]蔡昆,李耀华,胜晓松,等.高性能单相电压源逆变器的输出控制[J].电工技术学报,2005,20(1):104-107.
    [40]齐飞.级联型多电平变流器新型载波相移SPWM技术研究[D].燕山大学硕士研究生学位论文,2010:13-15.
    [41]王立乔,王长永,黄玉水,等.基于相移SPWM技术的级联型多电平变流器[J].高电压技术,2002,28(7):17-21.
    [42]苏丹柳.单相级联逆变器研究[D].南京航空航天大学硕士研究生学位论文,2007.
    [43]余运江.单相光伏并网逆变器的研究[D].浙江大学硕士研究生学位论文,2008.
    [44]M.Pradeep, Bhagwat. Generalized Structure of a Multilevel PWM Inverter. IEEE Trans On Industry Applications,1983, IA-19(6):1057-1069.
    [45]D.Rendusara, E.Cengelci, P.Enjeti, et al. Analysis of Common Mode Voltage Neutral Shift in Medium Voltage PWM Adjustable speed Drive(Mv-Asd)System. IEEE Proceeding of PESC '99. Charleston, South Carolina, USA,1999:935-940.
    [46]Y.Kawabata, H.Asai, M.Nasu, et al. High efficiency Drive System of Open-Winding Motor Using Two Space Vector Modulated Inverters. Proceeding of IPEC'00, Tokyo, Japan, 2000:142-146.
    [47]F.Z.Peng, S.Member. A Multilevel Voltage-Source Inverter with Separate DC Sources for static Var Generation. IEEE Transactions on Industry Applications,1996,32(5): 1130-1138.
    [48]M.Leon.Tolbert, F.Z.Peng. Multilevel Converters for Large Electric drives. IEEE Trans On Industry Applications,1999,35(1):35-43.
    [49]F.Z.Peng. A Generalized Multilevel Inverter Topology with Self Voltage Balancing. IEEE Trans on Industry Application,2000,37(2):611-618.
    [50]邹大云,李群湛,黄昌萍,等.三绕组变压器详细模型推导及电铁负序、谐波渗透计算[J].电力系统保护与控制,2011,39(21):17-21.
    [51]刘巍.V/V接线变压器差动保护方案研究[J].电力系统保护与控制,2011,39(10):130-134.
    [52]何兴隆.同相供电变电所继电保护方案研究[D].西南交通大学硕士研究生学位论文,2009.
    [53]张曙光.CRH2型动车组[M].中国铁道出版社,2008,7:166-177.
    [54]刘育红.有源电力滤波器主回路驱动保护电路的研究[D].华北电力大学(北京)硕士研究生学位论文,2002.
    [55]章佳.有源电力滤波器的保护研究[D].华北电力大学硕士研究生论文,2004.
    [56]袁明旭.同相AT供电平衡变换装置保护研究[D].西南交通大学硕十研究生学位论文,2008.
    [57]商少锋.有源电力滤波器的故障分析及主回路保护研究[D].哈尔滨理工大学硕士研究生论文,2005.
    [58]S.Musumeci, R.Pagano, A.Raciti. A New Gate Circuit Performing Fault Protections of IGBTs during Short Circuit Transients. Industry Applications Conference,2002:2614-2621.
    [59]S.Musumeci, OR.Pagano, A.Raciti. A Novel Protection Technique Devoted to the Improvement of the Short Circuit Ruggedness of IGBTs. Industrial Electronics Society, 2003:1733-1738.
    [60]Rosario Pagano, Yang Chen, Keyue Smedley. Short Circuit Analysis and Protection of Power Module IGBTs. Applied Power Electronics Conference and Exposition,2005: 777-783.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700