弧形防浪墙水动力特性的试验研究与数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
弧形防浪墙与传统的直立式防浪墙相比,具有能显著减少越浪量、降低防波堤堤顶高程、增强堤防景观效果等优点,因而近年来在港口和海岸工程中得到了广泛的关注。研究成果和工程实践表明,当波浪行进到防波堤前由于受浅水变形和结构物反射作用的影响,已发生较大变形或者破碎,堤前波浪形态十分复杂。目前关于弧形防浪墙的水动力学特性还缺乏系统的研究,开展波浪与弧形防浪墙的相互作用研究具有重要的科学价值和实际意义。
     本文应用物理模型试验和数值模拟相结合的手段,对不同结构型式弧形防浪墙所受到的波浪作用进行了较为系统地研究。
     通过物理模型试验开展了不同参数的波浪对不同结构型式弧形防浪墙的作用研究,分别对不同结构型式的直立堤弧形防浪墙和斜坡堤弧形胸墙所受到的波浪作用的试验数据进行了统计分析,讨论了波浪压强在直立堤弧形防浪墙和斜坡堤弧形胸墙迎浪面的分布特征,以及波浪压强与入射波波高H、波浪周期T的关系;比较了不同结构型式的斜坡堤弧形胸墙上波浪压强的分布特点;分析了入射波相对波高H/d、相对波长L/d、弧形防浪墙结构型式等因素对直立堤弧形防浪墙和斜坡堤弧形胸墙迎浪面所受到的波浪力和波浪力矩的影响;讨论了斜坡坡度对斜坡堤弧形胸墙迎浪面所受到的波浪力和波浪力矩的影响。
     提出了能够求解具有复杂边界形状结构物的强非线性自由表面流动问题的BFC-VOF算法。在贴体坐标系下,以连续方程和雷诺方程为基本控制方程,采用k-ε湍流模型来封闭方程组,修正了基于交错网格的贴体坐标系下的SIMPLE算法来迭代求解压力—速度场,修正了贴体坐标系下的界面跟踪方法,建立了基于BFC-VOF方法求解波浪对弧形防浪墙结构作用的数值计算模型。应用物理模型试验结果对所建立的数值模型进行了验证;通过数值计算对弧形防浪墙结构附近的流场变化特性进行了数值分析,讨论了圆弧半径对弧形防浪墙结构所受波浪力和波浪力矩的影响。
Compared with the solid conventional structure, the arc crown wall, which can reduce significantly overtopping, the crest level of the breakwater and enhancing the landscape of the embankment, is concerned widely in the port and coastal engineering in recent years. Research and engineering practices show that the wave feature in front of the breakwater is very complex and it has large deformations or has broken due to the influence of deformation of wave in shallow water and the reflection of the arc crown wall when the wave reaches the breakwater. In the present study, the hydrodynamic characteristic on the arc crown wall is still rare. So the research on the interactions between waves and the arc crown wall is important and has practical significance.
     This paper presents the experimental investigation of the different arc crown walls, and also the contrastive analysis by the numerical simulation results.
     The experimental investigation of the different arc crown walls is developed in regular wave. The wave pressures on the arc crown walls of vertical and sloping breakwater are systematically analyzed. The distribution characteristics are given for the wave pressures along the surface of the arc crown walls of vertical and sloping breakwater. The relations between wave pressures and the wave height H, the wave period T are presented. The distribution features of wave pressures on the different arc crown walls of sloping breakwater are compared. The effect of the parameters such as the relative height Hid, the relative wave length L/d, the shape of the arc crown wall on the wave force and wave moment on the arc crown walls of vertical and sloping breakwater are analyzed. The impact of the slope on the wave force and wave moment on the arc crown wall of the sloping breakwater is discussed.
     The BFC-VOF method for solving the problems of viscous flows with nonlinear free surfaces and the structure with complicated boundary shape is proposed. In the BFC system, the governing equations contain continuity equation and Reynolds equations. Two equations κ—ε model is used to close the equations. The transformed SIMPLE algorithm in the BFC system based staggered grid is proposed to correct the pressure-velocity field. The transformed VOF method is used to trace the free surface in BFC system. The numerical model based on BFC-VOF method is established to solve the wave force on the arc crown wall. The BFC model is verified by the experimental results. Meanwhile, the numerical analysis on the characteristics of flow fields near the arc crown wall is carried out by the BFC model. The effect of the arc radius on the wave force and wave moment on the arc crown wall is discussed.
引文
[1]合田良实.港工建筑物的防浪设计[M].海洋出版社,1983.
    [2]交通部第一航务工程勘查设计院.海港水文规范[S].1998.
    [3]Martin F L, Losada M A, Medina R. Wave loads on rubble mound breakwater crown walls. Coastal Engineering[J]. Coastal Engineering.1999,37(2):149-174.
    [4]Chen B. The numerical simulation of local scour in front of a vertical-wall breakwater[J]. Journal of Hydrodynamics.2006,18(3):134-138.
    [5]Romanczyk W. Instability of nonlinear standing waves in front of a vertical wall[J]. Journal of Fluids and Structures.2007,23(5):733-753.
    [6]Murakami K, Irie I, Kamikubo Y. Experiments on a non-wave overtopping type seawall [C]. ASCE,USA.1996:1840-1851.
    [7]刘子琪,曲淑媛,王振呈.大连大窑湾一期防波堤工程曲线型防浪墙防浪效果的试验研究[J].中国港湾建设.2005(1):16-20.
    [8]张从联,钟伟强,江洧等.惠来电厂护岸和灰堤波浪特性试验研究[J].水运工程.2005(6):1-4.
    [9]Owen M W, Steele A J J. Effectiveness of recurved wave return walls[R], Report SR 261. HR Wallingford, UK.1991.
    [10]Juhl J. Investigations on the effect of structural measures on wave impact forces and overtopping[C]. Proc.3rd project workshop, MAST I G6-S, Germany,1992.
    [11]Kamikubo Y, Murakami K, Irie I, et al. Reduction of Wave Overtopping and Water Spray with Using Flaring Shaped Seawall[C]. ISOPE, USA.2003:671-676.
    [12]Kamikubo Y, Murakami K, Irie I, et al. Study on practical application of a non-wave overtopping type seawall[C]. Proc 27th Intl. Conf Coastal. Eng. Sydney, Australia. 2000:2215-2228.
    [13]Yamashiro M, Yoshida A, Irie I. Development of non wave-overtopping type seawall in deep water[C]. Proc 29th Intl. Conf Coastal. Eng., USA.2004:4367-4378.
    [14]陈国平,乔树梁,杜金曼等.永兴海堤风浪模型试验研究[J].水利水运科学研究.1999(4):361-367.
    [15]Kortenhaus A, Pearson J, Bruce T, et al. Influence of parapets and recurves on wave overtopping and wave loading of complex vertical walls[C]. Proceedings of Coastal Structures, USA.2003:369-381.
    [16]琚烈红.典型胸墙的波浪力和越浪量物理模型试验与分析[D].南京水利科学研究院,2004.
    [17]琚烈红.斜坡堤防浪墙型式合理性试验研究[J].水运工程.2006(5):1-3.
    [18]王登婷.弧形防浪墙的模型试验[J].水运工程.2004(7):1-5.
    [19]王颖,薛雷平,刘桦.弧形防浪墙波浪力的试验研究[J].水道港口.2007,28(2):81-85.
    [20]王颖.弧形防浪墙波浪力的试验研究[D].上海交通大学,2007.
    [21]吴苏舒,张玮.引导式弧形胸墙返浪效果研究[J].哈尔滨工程大学学报.2008,29(7):668-672.
    [22]顾炜.引导式弧形返浪墙越浪量及波压力试验研究[D].河海大学,2008.
    [23]Murakami K, Kamikubo Y, Kataoka Y. Hydraulic performances of non-wave overtopping type seawall against sea level rise due to global warming[C]. ISOPE, Canada.2008: 706-712.
    [24]Anand K V, Sundar V, Sannasiraj S A. Dynamic pressures on curved front seawall models under random waves[C].9th International Conference on Hydrodynamics, Shanghai, China. 2010:538-544.
    [25]高占学,王芳.深弧型防浪墙在堤防工程中的应用[J].水运工程.2010(3):77-80.
    [26]李玉龙.不同掩护程度弧形胸墙波压力及越浪量试验研究[J].海岸工程.2010,29(2):17-22.
    [27]Kleefsman K M T, Fekken G, Veldman A E P, et al. An improved volume-of-fluid method for wave impact problems[C]. ECCOMAS, France.2004:1-19.
    [28]Ding Z Q, Ren B, Wang Y X, et al. Experimental study of unidiretional irregular wave slamming on the three-dimensional structure in the splash zone[J]. Ocean Engineering. 2008,35(16):1637-1646.
    [29]Ding Z Q, Ren B, Wang Y X. Spectral analysis of unidirectional wave slamming on the three-dimensional structure in the splash zone[C]. ISOPE, Japan:2009:1024-1030.
    [30]Kleefsman K M T, Fekken G, Veldman A E P, et al. The numerical simulationof green water loading including the vessel motions and the incoming wave field [C]. OMAE, Greece, 2005:981-992.
    [31]Hirt C W, Nichols B D. Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries[J]. Journal of Computational Physics.1981,39:201-225.
    [32]Li X Y, Ren B, Wang G Y, et al. Numeical simulation of hydrodymamic characteristics on an arc crown wall using volume of fluid method based on BFC[J]. Journal of Hydrodynamics.2011,23(6):767-776.
    [33]Khayyer A, Gotoh H, Shao S D. Corrected Incompressible SPH method for accurate water-surface tracking in breaking waves[J]. Coastal Engineering.2008,55(3): 236-250.
    [34]Stansberg C T, Kristiansen T. Non-linear scattering of steep surface waves around vertical columns[J]. Applied Ocean Research.2005,27(2):65-80.
    [35]Changhong H, Kashiwagi M. Two_dimwnsional numerical simulation and experiment on strongly nonlinear wave-body interactions[J]. Journal of Marine Science and Technology.2009,14(2):200-213.
    [36]Gong K, Liu H, Wang B L. Water entry of a wedge based on SPH model with an improved boundary treatment[J]. Journal of Hydrodynamics.2009,21(6):750-757.
    [37]Baarholm R, Faltinsen 0 M. Wave impact underneath horizontal deck[J]. Journal of Marine Science and Technology.2004,9(1):1-13.
    [38]Sollitt C K, Cross R H. Wave transmission through permeable breakwaters[C]. ASCE, Canada.1972:1827-1846.
    [39]Sulisz W. Wave reflection and transmission at permeable breakwaters of arbitrary cross-section[J]. Coast Engineering.1985,9(4):371-386.
    [40]Wurjanto A, Kobayashi N. Irregular wave reflection and runup on permeable slopes [J]. Ocean Engineering.1993,119(5):537-557.
    [41]王永学.VOF方法数模直墙式建筑物前的波浪破碎过程[J].自然科学进展.1993(6):553-559.
    [42]王永学.无反射造波数值波浪水槽[J].水动力学研究与进展.1994,9(2):205-214.
    [43]万德成,戴世强.孤立波与潜水台阶相互作用的数值模拟[J].水动力学研究与进展.1998,13(1):95-100.
    [44]万德成,缪国平.数值模拟波浪翻越直立方柱[J].水动力学研究与进展.1998,13(3):363-370.
    [45]Lin P Z, Liu P L F. A numerical study of breaking waves in the surf zone[J]. Journal of Fluid Mechanics.1998,359(1):239-264.
    [46]滕爱国.立面二维波浪变形的数值模拟[D].大连理工大学,2000.
    [47]Garcia N, Lara J L, Losada I J.2-D numerical analysis of near-field flow at low-crested permeable breakwaters[J]. Coastal Engineering.2004,51(10):991-1020.
    [48]Garcia N, Lara J L, Lomonaco P, et al. Flow at low-crested structures under breaking conditions[C]. Proceedings of the 29th International Conference on Coastal Engineering. 2004:4240-4252.
    [49]Lara J L, Garcia N, Losada I J. RANS modelling applied to random wave interaction with submerged permeable structures [J]. Coastal Engineering.2006,53(5-6):395-417.
    [50]周勤俊,王本龙,兰雅梅等.海堤越浪的数值模拟[J].力学季刊.2005,26(4):629-633.
    [51]Madsen P A, Bingham H B, Liu H. A new Boussinesq method for fully nonlinear waves from shallow to deep water[J]. Journal of Fluid Mechanics.2002,462:1-30.
    [52]王本龙,刘桦.一种适用于非均匀地形的高阶Boussinesq水波模型[J].应用数学和力学.2005,26(6):714-722.
    [53]刘亚男,郭晓宇,王本龙等.基于RANS方程的海堤越浪数值模拟[J].水动力学研究与进展.2007,22(6):682-688.
    [54]原娟,陈兵,董敏.破碎立波对直墙建筑物作用机理的研究[J].海洋技术.2009,28(4):107-112.
    [55]王鹏,孙大鹏.基于FLUENT的海堤越浪数值模拟[J].中国水运.2011,11(7):73-75.
    [56]Teertstra P M, Yovanovich M M, Culham J R. Natural convection measurements for a concentric spherical enclosure[J]. Journal of Heat Transfer.2006,128(6):580-587.
    [57]Luo X, Gu Z, Lei K, et al. Solution of N-S equations based on the quadtree cut cell method[J]. Science in China, Series G:Physics, Mechanics and Astronomy.2009,52(6): 877-884.
    [58]Kase K, Teshima Y, Usami S, et al. Volume CAD-CW-complexes based approach[J]. CAD Computer Aided Design.2005,37(14):1509-1520.
    [59]罗昔联,顾兆林,雷康斌等.一种求解N-S方程的自适应直角网格方法[J].西安交通大学学报.2009,43(11):11-17.
    [60]徐明海,陶文铨.一种求解不可压N-S方程的非结构化网格方法[J].西安交通大学学报.2005,39(1):83-86.
    [61]罗昔联,顾兆林,雷康斌等.一种三维切削网格上的N-S方程离散方法[J].西安交通大学学报.2010,44(5):15-20.
    [62]Quirk J J. Alternative to unstructured grids for computing gas dynamic flows around arbitrarily complex two-dimensional bodies[J]. Computers and Fluids.1994,23(1): 125-142.
    [63]Wang Z J. Quadtree-based adaptive Cartesian/Quad grid flow solver for Navier-Stokes equations[J]. Computers & Fluids.1998,27(4):529-549.
    [64]Ren X Z, Wang Y X, Wang G Y. THE WAVE force on the multiple quasi-ellipse caissons [C]. Proceedings of the Fourth International Conference on Asian and Pacific Coasts, China.2007:201-208.
    [65]Wang Y X, Ren X Z, Dong P, et al. Three-dimensional numerical simulation of wave interaction with perforated quasi-ellipse caisson [J]. Water Science and Engineering. 2011,4(1):46-60.
    [66]任孝忠,王永学,王国玉.不规则波作用下准椭圆沉箱单墩的波浪荷载[J].船海工程.2009,38(1):85-89.
    [67]焦颖颖,郭晓宇,王本龙等.规则波中弧形返浪墙的非线性水动力载荷数值模拟[J].水动力学研究与进展.2007,22(4):434-441.
    [68]Lv B, Jin S, Ai C F. A conservative unstructured staggered grid scheme for incompressible Navier-Stokes equations[J]. Journal of Hydrodynamics.2010,22(2): 173-184.
    [69]李雪艳,任冰,王国玉等.基于BFC-VOF方法的弧形防浪墙水动力数值模拟[J].水道港口,2011,32(4):270-275.
    [70]Lei C, Cheng L, Kavanagh K. A finite difference solution of the shear flow over a circular cylinder[J]. Ocean Engineering.2000,27(3):271-290.
    [71]Qin G H, Xin S Q, Lu D, et al. A finite element analysis for the characteristics of cutting parameters in 3D oblique milling process[J]. Advanced Materials Research. 2010(97-101):3010-3013.
    [72]Fevriere C, Angot P, Poullet P. A penalty-projection method using staggered grids for incompressible flows[C]. Large-Scale Scientific Computing 6th International Conference.2008:192-200.
    [73]Tachim Medjo T, Temam R. A two-grid finite difference method for the primitive equations of the ocean[J]. Nonlinear Analysis, Theory, Methods and Applications.2008, 69(3):1034-1056.
    [74]Reijo L. An algebraic boundary orthogonalization procedure for structure grids[J]. International Journal for Numerical Methods in Fluids.2000,32(5):605-618.
    [75]Cheng C H, Wu C Y. An approach combining body-fitted grid generation and conjugate gradient methods for shape design in heat conduction problems[J]. Numerical Heat Transfer Part B:Fundamentals.2000,37(1):69-83.
    [76]Farrashkhalvat M, Miles J P. Basic Structured Grid Generation[M]. india:Laserwords Private Limited press,2003.
    [77]De Kleine D, Van Esch B P M, Kuerten J G M, et al. Calculation of unsteady flow in a centrifugal pump with vaned diffuser using staggered and collocated grid methods[C]. ASME, USA.2009:157-164.
    [78]Anwer S F, Hasan N, Sanghi S, et al. Computation of unsteady flows with moving boundaries using body fitted curvilinear moving grids[J]. Computers and Structures. 2009,87(11-12):691-700.
    [79]Aragon A M, Armando Duarte C, Geubelle P H. Generalized finite element enrichment functions for discontinuous gradient fields[J]. International Journal for Numerical Methods in Engineering.2010,82(2):242-268.
    [80]Gerritsma M, Bouman M, Palha A. Least-squares spectral element method on a staggered grid[C]. Large-Scale Scientific Computing 7th International Conference, Sozopol, Bulgaria.2010:653-661.
    [81]Miao J M, Wu C Y. Numerical approach to hole shape effect on film cooling effectiveness over flat plate including internal impingement cooling chamber[J]. International Journal of Heat and Mass Transfer.2006,49(5-6):919-938.
    [82]Shklyar A, Arbel A. Numerical method for calculation of the incompressible flow in general curvilinear co-ordinates with double staggered grid[J]. International Journal for Numerical Methods in Fluids.2003,41(12):1273-1294.
    [83]Chen H X, Guo J H. Numerical simulation of 3-D turbulent flow in the multi-intakes sump of the pump station[J]. Journal of Hydrodynamics.2007,19(1):42-47.
    [84]Wu B, Gebremedhin K G. Numerical Simulation of Flow Field Around a Cow Using 3-D Body-Fitted Coordinate System[J]. Journal of Thermal Biology,2001,26(6):563-573.
    [85]任冰,李雪艳,王国玉等.基于贴体网格的VOF方法数模流场研究[J].计算力学学报,2011,28(6):872-878.
    [86]Thompson J F, Thames F C, Mastin C W. Automatic numerical generation of body-fitted curvilinear coordinate system for field containing any number of arbitrary two dimensional bodies[J]. J. Comput. Phys.1974,15(3):299-399.
    [87]Hong C P. Computer Modelling of Heat and Fluid Flow in Materials Processing[M]. Institute of Physics Publishing Bristol and Philadelphia,2004.
    [88]Hong C P, Lee S Y, Song K. Development of a new simulation method of mold filling based on a body-fitted coordinate system[J]. ISIJ International.2001,41(9): 999-1005.
    [89]赵建新.基于BFC系统铸件充型过程数值模拟[D].东南大学,2005.
    [90]Huang J T, Carrica P M, Stern F. Coupled ghost fluid/two-phase level set method for curvilinear body-fitted grids[J]. International Journal for numerical Methods in Fluids,2007,55(9):867-897.
    [91]袁明豪,杨燕华,李天舒,等.球体表面强制对流膜态沸腾换热的数值模拟[J].核动力工程.2008,29(3):89-93.
    [92]Yuan M H, Yang Y H, Li T S, et al. Numerical simulation of film boiling on a sphere with a volume of fluid interface tracking method[J]. International Journal of Heat and Mass Transfer.2008,51(7-8):1646-1657.
    [93]Rhie C M, Chow W L. Numerical study of the turbulent flow past an airfoil with trailing edge separation[J]. AIAA Journal.1983,21 (11):1525-1532.
    [94]陈作斌.计算流体力学及应用[M].国防工业出版社,2002.
    [95]Winslow A W, Numerical solution of the quasilinear Poisson equation in a non-uniform triangle mesh[J]. J. Comput. Phys.1966,1 (2):149-172.
    [96]Mastin C W, Thompson J F. Elliptic system and numerical transformations[J]. J. Math Anal. Application,1978,62(1):52-62.
    [97]张长高.脉动速度的分解和脉动应力探讨[J].河海大学学报.1989,17(5):1-8.
    [98]马福喜.三维带自由表明强紊动水流的数值模拟[D].河海大学,1992.
    [99]Ren B, Li X L, Han P, et al. Numerical non-reflecting irregular wave flume based on VOF method[C].OMAE, USA.2009:111-117.
    [100]任冰.随机波浪对不同接岸型式码头上部结构的冲击作用研究[D].大连理工大学,2003.
    [101]Li X L, Ren B, Wang Y X. Numerical study of the irregular wave impacting[C]. ISOPE, Japan,2009:510-517.
    [102]丁兆强.波浪对透空式三维结构物的冲击作用研究[D].大连理工大学,2009.
    [103]陈明伟.波浪与抛石堤的相互作用和弹性海床动力分析[D].长沙理工大学,2007.
    [104]陈智杰.波浪与可渗潜堤的相互作用数值模拟[D].长沙理工大学,2005.
    [105]陶文铨.数值传热学(第2版)[M].西安:西安交通大学出版社,2001.
    [106]张长高.管中紊流新探索[J].河海大学学报.1990,18(1):1-10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700