长江水沙环境变化对鱼类的影响及栖息地数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水利工程在防洪、发电、灌溉等方面发挥着举足轻重的作用,是人类改造自然、利用自然的一大创举;同时,水利工程建设和运行给生态环境带来的不利影响也引起了社会越来越多的关注。通过统计分析、野外调查及数值模拟等手段,探索了水利工程建设对长江鱼类的影响,主要研究成果包括:
     1)从河道栖息地阻隔,江湖连通度降低,水文、泥沙、水温及水质等条件变化几方面分析了水利工程对鱼类栖息地的影响,提出了对河流进行综合治理的原则。
     2)采集了长江中下游的水质、底泥及鱼样,对其重金属含量进行了测试分析。结果表明,底泥中重金属含量是水体中的100-10 000倍,鱼体内重金属含量居于两者之间,底栖鱼类体内重金属含量相对中上层鱼类要高。鱼类食性与体内重金属含量也有密切的关系,底栖肉食性鱼类体内重金属含量最高,浮游植物食性鱼类体内重金属含量最低。
     3)建立了中华鲟栖息地适合度模型,模型由中华鲟栖息地适合度方程和二维水沙数学模型两部分组成。根据实测资料对模型进行了验证,结果表明,栖息地适合度方程形式正确,关键因子的选取和适合度曲线的取值合理;二维水沙模型针对弯道环流和横向输沙的改进,能更准确地模拟实际情况下的水流和泥沙输移情况。将模型运用来计算不同流量级下葛洲坝至宜昌河段中华鲟栖息地模拟发现,流量位于10000 m~3/s~30000 m~3/s时,中华鲟产卵场条件较为适宜,流量过大或过小均对产卵产生不利影响。
     4)建立了“四大家鱼”栖息地适合度方程,将其与一维数学模型结合建立了“四大家鱼”栖息地适合度模型。对1998年宜昌至城陵矶江段栖息地适合度的模拟发现,计算值与实测统计分布吻合较好。不同基准流量下,不同日流量涨幅的家鱼栖息地适合度模拟显示,日涨水幅度在800 m~3/s以上时,家鱼产卵场适合度较高。
Dam construction on rivers and other human activities impact the environment and ecology while they provide flood safety, power generation, irrigation and water resources. This paper studies the environmental and ecological responses of the middle and lower Yangtze River stressed by dams, pollution and other human activities through field investigation, analysis, and numerical modeling. The main results are as follows:
     1) Fish community and fishery harvest are impacted by dam construction and habitats fragmentation. Statistical analysis shows that most fish species like habitats with low velocity. The river training and management should aim at reduce flow velocity.
     2) The concentration of heavy metals (Cr, Cd, Hg, Cu, Fe, Zn, Pb and As) in water, sediment, and fish/invertebrate were investigated in the middle and lower reaches of the Yangtze River during 2006-2007. The concentrations of heavy metals were 100-10,000 times higher in the sediment than in the water. Benthic invertebrates had relatively high concentrations of heavy metals in their tissues due to their proximity to contaminated sediments. The pollutants were accumulated in the food chain. Benthic invertivore fish had moderately high concentrations of heavy metals whereas phytoplanktivore fish, such as the silver carp, accumulated the lowest concentration of heavy metals.
     3) Analysing the life cycle and habitat conditions of Chinese sturgeon, habitat suitability equations are developed and suitability distribution curves are obtained. Twelve groups of survival rate of juvenile Chinese sturgeon under various conditions in 1982 to 1993 are used to test the equation. The calculate result agree well with these data. A two-dimensional sediment mathematical model is developed, which is coupled with a Chinese sturgeon habitat model. The model is used to simulate the Chinese sturgeon spawning sites in the reach from the Gezhouba dam to Yichang in 1999 and 2003. The results show that simulated result coincide with measured data. The model is used to calculate the habitat suitability index for different scenarios, the habitat suitability index value is high for the discharge falls within the range of 10000~30000 m~3/s for Chinese sturgeon to spawn, higher and lower discharges are not so suitable for the Chinese sturgeon to spawn.
     4) This paper also develops a one-dimension habitat suitability model for the four major Chinese carps. They are the black carp (Mylopharyngodon piceus), the grass carp (Ctenop haryngodon idellus), the silver carp (Hypoph thal michthys molitrix) and the big-head carp (Aristichyths nobilis), which are the major fishery species in the Yangtze River. The model is used to simulate the habitat suitability for the four carps in the reach from Yichang to Chenlingji. The simulated results agree with measured data. The modeling results indicate that the four carps will find the reach the best habitat for spawning if the daily-average discharge is in the range 8000~15000m~3/s with an increment of discharge higher than 800m~3/s per day.
引文
[1] Aarts BGW, Van Den Brink FWB, Nienhuis PH. Habitat loss as the main cause of the slow recovery of fish faunas of regulated large rivers in Europe: the transversal floodplain gradient. River Research and Applications. 2004, 20: 3-21.
    [2] Abt S. R., Clary W. P., and Thornton C. I. Sediment deposition and entrapment in vegetated streambeds. J. Irrig, Drain, Eng., 1994, 120(6): 1098-1111.
    [3] Almeida J, Diniz Y, Marques S, et al. The use of oxidative stress responses as biomarkers in Nile tilapia (oreochromis niloticus) exposed to in vivo cadmium contamination. Environment International, 2002, 27: 673-679.
    [4] Anderson R.V. Concentration of cadmium, copper, lead, and zinc in six species of freshwater clams. Bull. Environmental Contamination and Toxicology. 1977, 18:492-496.
    [5] Anderson R.V. Vinikou W.S. and Brower J.E. The distribution of Cd, Cu, Pb, and Zn in the biota of two freshwater sites with different trace metal inputs. Holarctic Ecology 1978,13: 377-384.
    [6] Andrews, E. D. Bed-material entrainment and hydraulic geometry of gravel-bed rivers. Geol. Soc. Am. Bull., 1984, 95: 371-378.
    [7] Barak N. A-E. and Mason C.F. Heavy metals in water, sediment and invertebrates from rivers in eastern England. Chemosphere. 1989,19(10/11):1709-1714.
    [8] Bates P.D. Development and testing of a sub-grid model for moving-boundary hydrodynamic problems in shallow water. Hydrological Processes, 2000, 14:2073-2088.
    [9] Beghart G., Maughan O. E., Twomey K. A., et al. Habitat suitability index models and instream flow suitability curves: Redear sunfish. Report to National Ecology Center Division of Wildlife and Contaminant Research, Fish and Wildlife Service. Washington, DC. 1984.
    [10] Boudreau P. G., Bourgeois M., Leclerc A., et al. Two-dimensional habitat model validation based on spatial fish distribution: Application to juvenile Atlantic Salmon on the Moisie river (Quebec, Canada) in M. Leclerc, H. Capra, S. Valentin, A. Boudreault, and Y. Cote, editors. Proc. 2nd International Symp. on Habitat Hydraulics, Ecohydraulics, 2000, Quebec City, Canada. 1996.
    [11] Bovee K. D. A guide to Stream Habitat Analysis using the Instream Flow Analysis Incremental Methodology. US Fish and Wildlife Service, Fort Collins. 1982: 248.
    [12] Bovee K. D. Development and evaluation of habitat suitability criteria for use inthe instream flow incremental methodology. US Fish and Wildlife Service, Instream Flow Information Paper No. 21, Biologic Report. 1986, 86(7).
    [13] Burrows I.G. and Whitton B.A. Heavy metals in water, sediments and invertebrates from a metal-contaminated river free of organic pollution. Hydrobiologia. 1983,106:263-273.
    [14] Carollo F. G., Ferro V., and Termini D. Flow velocity measurements in vegetated channels. J. Hydraul. Eng., 2002, 128(7): 664-673.
    [15] Cerco C.F., Cole T. Three-dimensional eutrophication model of Chesapeake Bay. Journal of Environmental Engineering, 1993, 119(6): 1006-1025.
    [16] Cerco C.F. Phytoplankton kinetics in the Chesapeake Bay Eutrophication Model. Water Quality and Ecosystems Modeling, 2000,1:5-49
    [17] Chattopadhyay J. Ecological Modeling. 1996, 84: 287-289
    [18] Chang Y.C. Lateral mixing in meandering channels [PhD dissertation]. Department of mechanics and Hydraulics, University of Iowa. 1971.
    [19] Choi K.W., Lee J.H.W. Numerical determination of flushing time for stratified water bodies. Journal of marine systems. 2004, 50: 263-281.
    [20] Corbacho C, Sanchez JM. Patterns of species richness and introduced species in native freshwater fish faunas of a Mediterranean-type basin: the Guadiana River (southwest Iberian Peninsula). Regulated Rivers: Research and Management. 2001, 17: 699-707.
    [21] Crance J. H. Habitat suitability index models and instream flow suitability curves: Inland Stocks of Striped Bass. Report to National Ecology Center Division of Wildlife and Contaminant Research, Fish and Wildlife Service. Washington, DC. 1984.
    [22] Crance J.H. Habitat suitability index models and instream flow suitability curves: Shortnose Sturgeon. Report to National Ecology Center Division of Wildlife and Contaminant Research, Fish and Wildlife Service. Washington, DC. 1986.
    [23] Davis J. C. Minimal dissolved oxygen requirements of aquatic life with emphasis on Canadian species: A review. J. Fish. Res. Board Can. 1975, 32(12):2295-2332.
    [24] Defina A, DAlpaos L, Matticcho B. A new set of equations for very shallow water and partially dry areas suitable to 2D numerical models. In: Modeling Fllow Modelling Flood Propagation Over Initially Dry Areas. Molinaro, P. & Natale, L.(eds), ASCE, New York, 1994:72-81
    [25] Deng Z.L, Xu Y.G and Zhao Y. Anaysis on Acipenser sinensis spawning ground and spawning scales below Gezhouba dam by means of examining the digestive contents of benthic fishes. Bordeaux: CEMAGREF Pub.1991, 243.
    [26] Deluna J. T. and Hallam T. G. Ecological Modeling, 1987, 35: 249-273
    [27] de Vriend H.J. Velocity redistribution in curved rectangular channels. J Fluid Mech, Cambridge, U. K., 2003, 107: 423-439
    [28] de Vriend, H.J. A mathematical model of steady flow in curved shallow channel. J. Hydr. Res. Delft. The Netherlands, 1977, 15(1): 37-54
    [29] DiToro D.M., Sifitzpatric J.J. Documentation for water quality analysis simulation program(WASP) and model verification program(MVP). Duluth, MN: US Environmental Protection Agency, 1983.
    [30] Douben P. E. T., and Koeman J. H. Effect of sediment on cadmium and lead in the stone loach (Noemacheilus barbatulus L.). Aquatic Toxicology 1989, 15(3): 253-268.
    [31] Edwards E.A., Bacteller M. and Maughan O. E. Habitat suitability index models and instream flow suitability curves: Slough Darter. Report to National Ecology Center Division of Wildlife and Contaminant Research, Fish and Wildlife Service. Washington, DC. 1982a.
    [32] Edwards E. A., Kriger D. A., Gebhart, G., et al. Habitat suitability index models and instream flow suitability curves: White Crappie. Report to National Ecology Center Division of Wildlife and Contaminant Research, Fish and Wildlife Service. Washington, DC. 1982b.
    [33] Edwards E.A. and Twomey K. Habitat Suitability Index Models: Common Carp. Biological Services Program and Division of Ecological Services. 1982c:3-4, 13-16.
    [34] Edwards E. A. Habitat suitability index models and instream flow suitability curves: Longnose Dace. Report to National Ecology Center Division of Wildlife and Contaminant Research, Fish and Wildlife Service. Washington, DC. 1983a.
    [35] Edwards E. A. Habitat suitability index models and instream flow suitability curves: Longnose Sucker. Report to National Ecology Center Division of Wildlife and Contaminant Research, Fish and Wildlife Service. Washington, DC. 1983b.
    [36] Edwards E. A., Gebhart G., and Maughan O. E. Habitat suitability index models and instream flow suitability curves: Smallmouth Bass. Report to National Ecology Center Division of Wildlife and Contaminant Research, Fish and Wildlife Service. Washington, DC. 1983c.
    [37] Elliott A. H. Settling of fine sediment in a channel with emergent vegetation. J. Hydraul. Eng., 2000, 126(8): 570-577.
    [38] Enk M.D. and Mathis B.J. distribution of cadmium and lead in a stream ecosystem Hydrobiologia. 1977. 52(2-3):153-158.
    [39] Fang H.W., Rodi W. Three-dimensional calculations of flow and suspended sediment transport in the neighborhood of the dam for the Three Gorges Project (TPG) in the Yangtze River. Journal of Hydraulic Research, 2003, 41(4):379-394
    [40] Galat D.L. and Lipkin R. Restoring ecological integrity of great rivers: historical hydrographs aid in defining reference conditions for the Missouri River. Hydrobiologia. 2000, 29-48.
    [41] Gore J. A. and Petts G.. E. Alternatives in regulated river management. CRC Press. 1989.
    [42] Gray D.H. and Leiser A. T. Biotechnical slope protection. Van Nostrand-Reinhold. New York. 1982.
    [43] Hallam T. G. et al. , J. M ath. Bio l. 1983a, 18: 25- 37
    [44] Hallam T. G. et al. , Eco logical Modelling, 1983b, 18: 291- 304
    [45] Hallam T. G. and De L una J. T. J. Theo r. Bio logy, 1984, 109: 411- 429
    [46] Hardy T.B., and Addley R.C. Vertical integration of spatial and hydraulic data fro improved habitat modeling using geographic information systems. Hares R. J., PhD Thesis, Department of Chemistry, University of Surrey, Guildford, Surrey, 2000. 2001: 65-75.
    [47] Hervouet J. M., Janin J. M, Finite element algorithms for modeling flood propagation. In: Modelling Flood Propagation Over Initially Dry Areas. Molinaro, P. & Natale, L.(eds), ASCE, New York, 1994: 102-113
    [48] Hey R. D. and Thorne C. R. Stable channels with mobile gravel beds. J. Hydraul. Eng., 1986, 112(8): 671-689.
    [49] Hickman T. and Raleigh R. F. Habitat suitability index models and instream flow suitability curves: Cutthroat Trout. Report to National Ecology Center Division of Wildlife and Contaminant Research, Fish and Wildlife Service. Washington, DC. 1982.
    [50] Hirzinger V, Keckeis H, Nemeschkal HL, et al. The importance of inshore areas for adult fish distribution along a free-flowing section of the Danube, Austria. River Research and Applications. 2004, 20: 137-149.
    [51] Hover R.J. Vertical distribution of fishes in the central pool of Eufaula Reservoir, Oklahoma. M.S. thesis, Oklahoma State Univ. Stillwater. 1976: 72.
    [52] Hubert W. A. and Anderson S. H. Habitat suitability index models and instream flow suitability curves: Paddlefish. Report to National Ecology Center Division of Wildlife and Contaminant Research, Fish and Wildlife Service. Washington, DC. 1984.
    [53] Hubert W. A., Helzner R. S., Lee L. A., et al. Habitat suitability index models andinstream flow suitability curves: Arctic Grayling Riverine Populations. Report to National Ecology Center Division of Wildlife and Contaminant Research, Fish and Wildlife Service. Washington, DC. 1985.
    [54] Huet M. Textbook of fish culture: breeding and cultivation of fish. Fishing News (Books) Ltd., London. 1970: 436.
    [55] ICOLD. World Register of Dams. International Commission on Large Dams, Annual Report, Paris. 1988.
    [56] Ikeda S. and Izumi N. Width and depth of self-formed straight gravel river with bank vegetation. Water Resour. Res., 1990, 26(10): 2353-2364.
    [57] Ikedaj S., Izumi N., and Ito R. Effects of pile dikes on flow retardation and sediment transport. J. Hydraul. Eng., 1991, 117(11): 1450-1479.
    [58] Itazawa Y. An estimation of the minimum level of dissolved oxygen in water required for normal life of fish. Bull. Jap. Soc. Sci. Fish. 1971, 37(4): 273-276.
    [59] Johns B, Dube SK, Sinha P C, et al. The simulation of a continuously deforming lateral boundary to problems involving the shallow-water equations. COMPUTERS & FLUIDS, 1982, 10(2):105-116
    [60] Johnson N., Revenga C., and Echeverria. J. Managing Water for People and Nature. Science .2001, 292: 1071- 1072.
    [61] Jones I, Kille P, Sweeney G. Cadmiun delays grouth hormone expression during rainbow trout development. Journey of Fish Biology, 2001, 59: 1015-1022.
    [62] Jorde K. Ecological evaluation of instream flow regulations based on temporal and spatial variability of bottom shear stress and hydraulic habitat quality. proceedings, 2nd International Symposium on Habitat Hydraulics, Ecohydraulics 2000. Quebec City, Canada. B: 1996: 163-174
    [63] June F. C. Reproductive patterns in seventeen species of warmwater fishes in a Missouri River reservoir. Env. Biol. Fish. 1977, 2(3): 285-296.
    [64] JΦrgenson S E. Fundamentals of Ecological Modeling, Elservier, Amsterdam, 1986a: 389
    [65] JΦrgenson S. E. Fundamentals of Ecological Modelling. Elsevier Science Publishing Company Inc., New York, 1986b.
    [66] JΦrgenson S. E. Ecological Modelling, 1994, 75/76: 5-20
    [67] Kallemeyn L. W. and Novotny J. F. Fish and fish food organisms in various habitats of the Missouri River in South Dakota, Nebraska, and Iowa. USDI Fish and Wildl. Serv., FWS/OBS-77/25. 1977: 100.
    [68] Karr J. R., and Dudley D.R. Biological integrity of a headwater stream: Evidence of degradation, prospects for recovery. Environmental Impact of Land Use onWater Quality: EPA-950/9-77-007-D. 1978: 3-25.
    [69] Kemp J L, Harper D M, Crosa G A. Use of“functional habitats”to link ecology with morphology and hydrology in river rehabilitation. Aquatic Conservation: Marine and Freshwater Ecosystems, 1999, 9(1): 159-178.
    [70] Koel TM. Spatial variation in fish species richness of the Upper Mississippi River System. Transactions of the American Fisheries Society. 2004, 133: 984-1003.
    [71] Krieger D. A., Terrell J. W. and Nelson P. C. Habitat suitability index models and instream flow suitability curves: Yellow Perch. Report to National Ecology Center Division of Wildlife and Contaminant Research, Fish and Wildlife Service. Washington, DC. 1983.
    [72] Kuhl D. Fourteen years of artificial grain feeding in the Rhine downstream of the barrage Iffezheim. Proceedings of 5th International Symposium on River Sedimentation, Karlsruhe, Germany, 1992: 1121-1129.
    [73] Leclerc M, Bellemare J. F., Dumas G., et al. A finite element model of estuarian and river flows with moving boundaries. Advances in Water Resources, 1990, 13:158-168
    [74] Lee L. A. and Terrell J. W. Habitat suitability index models and instream flow suitability curves: Flathead Catfish. Report to National Ecology Center Division of Wildlife and Contaminant Research, Fish and Wildlife Service. Washington, DC. 1987.
    [75] Lee S., Fujita K. and Yamamoto K. A scenario of area expansion of stable vegetation in a gravel-bed river based on the upper Tama river case. Ann, J. Hydraul. Eng., JSCE, 1999, 43: 977-982 (in Japaneses).
    [76] Leendertse J.J. A Water-quality Simulation Model for Well-mixed Estuaries and Coastal Seas. Principles of Computation. Rand, Santa Monica, February, 1970, 1,RM-6230-RC.
    [77] Lien H.C., Hsieh T.Y., Yang J.C., et al. Bend-flow simulation using 2D depth-averaged model. Journal of Hydraulic Engineering, 1999, 125 (10) :1097-1108
    [78] Luoma A.N., Bryan G.W. Trace metal bioavailability: modeling chemical and biological interactions of sediment-bound zinc. Reprints of papers pres. at the 176th Nat. Meet. ACS, Div. Bnviron. Chem., Miami Beach, Fla., 1978, 413-414.
    [79] Lynch, Gray. Finite element simulation of fluid in deforming region. Journal of Compute Physics, 1980, 39: 135-153.
    [80] Lytle DA, Poff NL. Adaptation to natural flow regimes. Trends in Ecology and Evolution. 2004, 19: 94-100.
    [81] MacDougall TM, Ryan PA. Walleye in the Grand River, Ontario: An overview of rehabilitation efforts, their effectiveness, and implications for eastern Lake Erie fisheries. Journal of Great Lakes Research. 2007, 33: 103-117
    [82] Maliska C. R., Raithby G. D. A Method for Computing Three Dimensional Flows Using Non-Orthogonal Boundary-Fitted Coordinates. International Journal for Numerical Methods in Fluids. 1984, 4:519-537
    [83] May B.E. and Gloss S.P. Depth distribution of Lake Powell fishes. Utah Div. Wildl. Res. Publ. 1979, 78:1-19.
    [84] McCrimmon H. R. Carp in Canada. Fish Res. Board Can. Bull. 1968, 165: 93.
    [85] McMahon T. E. and Terrell J. W. Habitat suitability index models and instream flow suitability curves:Channel Catfish. Report to National Ecology Center Division of Wildlife and Contaminant Research, Fish and Wildlife Service. Washington, DC. 1982.
    [86] McMahon T. E., Beghart G., Maughan O. E., et al. Habitat suitability index models and instream flow suitability curves: Spotted Bass. Report to National Ecology Center Division of Wildlife and Contaminant Research, Fish and Wildlife Service. Washington, DC. 1984a.
    [87] McMahon T. E., Terrell J. W. and Nelson P. C. Habitat suitability index models and instream flow suitability curves: Walleye. Report to National Ecology Center Division of Wildlife and Contaminant Research, Fish and Wildlife Service. Washington, DC. 1984b.
    [88] McMahon T. E., Gebhart G., Maughan O. E., et al. Habitat suitability index models and instream flow suitability curves: Warmouth. Report to National Ecology Center Division of Wildlife and Contaminant Research, Fish and Wildlife Service. Washington, DC. 1984c.
    [89] Megeer J, Szebedinszky C, McDonald D, et al. Effect of chronic sublethal exposure to waterborne Cu, Cd, or Zn in rainbow trout. 1: Iono-regulatory disturbance and metabolic costs. Aquatic Toxicol, 2000, 50(3): 231-243
    [90] MIKE11. Users & reference manual. Danish Hydraulics Institute, Horsholm, Denmark. 1993.
    [91] MIKE21. User Guide and Reference Manual. Danish Hydraulic Institute, 1996.
    [92] MIKE3. Eutrophication Module, User guide and reference manual, release 2.7. Danish Hydraulic Institute , 1996.
    [93] Mohapatra, S. P. Distribution of heavy metals in polluted creek sediment. Environmental Monitoring and Assessment. 1988, 10(2): 157-163.
    [94] Morita K, Yamamoto S. Effects of habitat fragmentation by damming on thepersistence of stream-dwelling charr populations. Conservation Biology. 2002, 16: 1318-1323.
    [95] Morrissey J.R., Edds D.R. Metal Pollution Associated with a Landfill: Concentrations in Water, Sediment, Crayfish, and Fish. Transactions of the Kansas Academy of Science. 1994, 97(1/2): 18-25.
    [96] Nykanen M, Huusko A. Suitability criteria for spawning habitat of riverine European grayling. Journal of Fish Biology, 2002, 60(5): 1351-1354.
    [97] Orth D.J. Ecological considerations in the development and application of instream flow-habitat models. Regul. Rivers: Res. Mgmt. 1987, 1:171-181.
    [98] Pflieger W. L. The fishes of Missouri. Missouri Dept. Conserv. Jefferson City. 1975: 343.
    [99] Poff N. l., and Ward J. V. Physical habitat template of lotic systems: recovery in the context of historical patterns of spatiotemporal heterogeneity. Environmental Management 1990, 14:629-645.
    [100] Pottle R., and Dadswell M.J. Studies on larval and juvenile shortnose sturgeon. Report to Northeast Utilities Service Co. Hartford, CT. 1979: 87.
    [101] Raleigh R. F. Habitat suitability index models and instream flow suitability curves: Brook Trout. Report to National Ecology Center Division of Wildlife and Contaminant Research, Fish and Wildlife Service. Washington, DC. 1982.
    [102] Raleigh R. F., Hickman T., Solomon R. C., et al. Habitat suitability index models and instream flow suitability curves: Rainbow Trout. Report to National Ecology Center Division of Wildlife and Contaminant Research, Fish and Wildlife Service. Washington, DC. 1984.
    [103] Raleigh R. F. and Nelson P. C. Habitat suitability index models and instream flow suitability curves: Pink Salmon. Report to National Ecology Center Division of Wildlife and Contaminant Research, Fish and Wildlife Service. Washington, DC. 1985.
    [104] Raleigh R. F., Miller W. J., and Nelson P. C. Habitat suitability index models and instream flow suitability curves: Chinook Salmon. Report to National Ecology Center Division of Wildlife and Contaminant Research, Fish and Wildlife Service. Washington, DC. 1986a.
    [105] Raleigh R. F., Zuckerman L. D., and Nelson P. C. Habitat suitability index models and instream flow suitability curves: Brown Trout. Report to National Ecology Center Division of Wildlife and Contaminant Research, Fish and Wildlife Service. Washington, DC. 1986b.
    [106] Reid R.O., Bodine B.R. Numerical model for storm surges in Galveston Bay. J.Waterways Harbors Division, ASCE, 1968, 94:33-57
    [107] Revenga C., Brunner J., Henninger N., et al. Pilot Analysis of Global Ecosystems: Freshwater Systems. World Resources Institute, editor. World Resources Institute, Washington, D.C. 2000: 65.
    [108] Romero J R, Hipsey M R, Antenucci J P. Computational Aquatic Ecosystem Dynamics Model. US: Science Manual,2004: 16-46
    [109] Rozovskii I.L. Flow of water in bends of open channels, Academy of Sciences of Ukrainian S.S.R., Translated from Russian, Israel Program for Science Translation, 1961.
    [110] Santos JM, Maria T., Ferreira MT, et al. Effects of small hydropower plants on fish assemblages in medium-sized streams in central and northern Portugal. Aquatic Conserv: Mar. Freshw. Ecosyst. 2006, 16: 373-388.
    [111] Scruton D A, Heggenesj, Valentin S, et al. Field sampling design and spatial scale in habitat hydraulic modeling: comparison of three models. Fisheries Management and Ecology, 1998, 5(3): 225-240.
    [112] Schmulbach J. C., Gould G. and Groen C. L. Relative abundance and distribution of fishes in the Missouri River. Gavins Point Dam to Rulo, Nebraska. Proc. S. Dak. Acad. Sci. 1975, 54: 194-222.
    [113] Schneider M. and Jorde K. Use of fuzzy logic in fish habitat modeling: A New Approach Incorporation Imprecise Expert Knowledge. River Research and Applications. 2008. (under review)
    [114] Sigler W. F. The ecology and use of carp in Utah. Utah State Univ. Agric. Exp. Sta. Bull. 1958, 405: 63.
    [115] Sigler W. F. An ecological approach to understanding Utah’s carp populations. Utah Acad. Sci. Arts Letters Proc. 1955, 32:95-104.
    [116] Sikora W. B. and Sikora J. P. Habitat suitability index models and instream flow suitability curves: Southern Kingfish. Report to National Ecology Center Division of Wildlife and Contaminant Research, Fish and Wildlife Service. Washington, DC. 1982.
    [117] Statzner B., Gore J. A., and Resh V. H. Hydraulic Stream Ecology: observed Patterns and Potential Applications. J. North American Benthological Society. 1988, 7: 307-360.
    [118] Steffler P., Waddle T. Mesh generation program for River two-dimensional depth averaged finite element: introduction to mesh generation and user’s manual. University of Albert, Edmomton, Canada. 2002: 31.
    [119] Stephen de Mora, Scott W. Fowler, Eric Wyse, Sabine Azemard. Distribution ofheavy metals in marine bivalves, fish and coastal sediments in the Gulf and Gulf of Oman. Marine Pollution Bulletin. 2004, 49: 410-424.
    [120] Stier D. J. and Crance J. H. Habitat suitability index models and instream flow suitability curves: American Shad. Report to National Ecology Center Division of Wildlife and Contaminant Research, Fish and Wildlife Service. Washington, DC. 1986.
    [121] Stuber R. J., Gebhart G., and Maughan O. E. Habitat suitability index models and instream flow suitability curves: Bluegill. Report to National Ecology Center Division of Wildlife and Contaminant Research, Fish and Wildlife Service. Washington, DC. 1982a.
    [122] Stuber R. J., Gebhart G., and Maughan O. E. Habitat suitability index models and instream flow suitability curves: Green Sunfish. Report to National Ecology Center Division of Wildlife and Contaminant Research, Fish and Wildlife Service. Washington, DC. 1982b.
    [123] Stuber R. J., Gebhart G., and Maughan O. E. Habitat suitability index models and instream flow suitability curves: Largemouth Bass. Report to National Ecology Center Division of Wildlife and Contaminant Research, Fish and Wildlife Service. Washington, DC. 1982c.
    [124] Thompson J.F. Numerical grid generation. North Holland, 1982.
    [125] Thorne C.R. Effects of vegetation on river bank erosion and stability. Vegetation and erosion, J. B. Thornes, ed., Wiley, Chichester, U. K., 1990, 125-144.
    [126] Thornton C. I., Abt S. R., Morris C. E., et al. Calculating shear stress at channel-overbank interfaces in straight channel with vegetated floodplains. J. Hydraul. Eng., 2000, 126(12): 929-936.
    [127] Trial J. G., Stanley J. G., Batcheller M., et al. Habitat suitability index models and instream flow suitability curves: Blacknose Dace. Report to National Ecology Center Division of Wildlife and Contaminant Research, Fish and Wildlife Service. Washington, DC. 1983a.
    [128] Trial J. G., Wade C. S., Stanley J. G., et al. Habitat suitability index models and instream flow suitability curves: Common Shiner. Report to National Ecology Center Division of Wildlife and Contaminant Research, Fish and Wildlife Service. Washington, DC. 1983b.
    [129] Twomey K. A., Williamson K. L., and Nelson P. C. Habitat suitability index models and instream flow suitability curves: White Sucker. Report to National Ecology Center Division of Wildlife and Contaminant Research, Fish and Wildlife Service. Washington, DC. 1984.
    [130] UNEP. Sampling of selected marine organisms and sample preparation for theanalysis of chlorinated hydrocarbons. Reference Methods for Marine Pollution Studies No. 12, Rev. 2. UNEP, Nairobi, 1991: 17.
    [131] Vanka S. P., Chen B. C., Sha W. T. A Semi-Implicit Calculation Procedure for Flows Described in Boundary-Fitted Coordinates Systems. Numerical Heat Transfer. 1980, 3:1-19
    [132] Vilizzi L, Copp G.H., Roussel J.M. Assessing variation in suitability curves and electivity profiles in temporal studies of fish habitat use. River Research and Applications, 2004, 20(5): 605-618.
    [133] Waldon L. J. Shear resistance of root-permeated homogeneous and stratified soil. Soil Sci, Soc. Am. J., 1977, 41: 843-849.
    [134] Wang Z. Y., Lee Joseph H. W. and Melching C. S. Integrated river management. Springer Verlag. 2007a.(in press).
    [135] Wang Z.Y., Tian S.M., Yi Y.J., et al. Principles of river training and management. International Journal of Sediment Research. 2007b, 22(4):247-263
    [136] Williamson K. L. and Nelson P. C. Habitat suitability index models and instream flow suitability curves: Gizzard Shad. Report to National Ecology Center Division of Wildlife and Contaminant Research, Fish and Wildlife Service. Washington, DC. 1985.
    [137] Wu W.M., Rodi M., Wenka T. 3D numerical modeling of lfow sediment and transport in open channels. Journal of Hydraulic Engineering, ASCE, 2000, 126(1): 4-15
    [138] Yi Y.J., Wang Z.Y. and Lu Y.J. Habitat Suitability Index Model of Four Major Chinese Carp Species in the Yangtze River. International Conference on Fluvial Hydraulics Sep. 06-08, 2006 (Lisbon, Portugal), River Flow 2006, 2006(1): 2195-2201
    [139] Zauke G, Savinow V, Ritterhoff J, et al. Heavy metals in fish from the Barents Sea(summer 1994). The Science of the Total Environment, 1999, 227: 161-173
    [140] Zhang MK, Ke ZX. Heavy metals, Phosphorus and some other element s in Urban soil of Hangzhou City, China. Pedosphere, 2004, 14(2):177-185.
    [141] 2001年长江三峡工程与生态环境检测公报. http://www.tgenviron.org/monbulletin/pdf/2001monjournal.pdf,国家环境保护总局, 2001.5
    [142] 2002年长江三峡工程与生态环境检测公报. http://www.tgenviron.org/monbulletin/pdf/2002monjournal.pdf,国家环境保护总局, 2002.5
    [143] 2003年长江三峡工程与生态环境检测公报.局, 2003.5
    [144] 2004年长江三峡工程与生态环境检测公报. http://www.tgenviron.org/monbulletin/pdf/2004monjournal.pdf,国家环境保护总局, 2004.5
    [145] GB3838-2002,地表水环境质量标准[S] .
    [146]班璇,李大美.葛洲坝下游中华鲟产卵场的多参数生态水文学模型.中国农村水利水电, 2007a, (6): 8-12
    [147]班璇,李大美.大型水利工程对中华鲟生态水文学特征的影响.武汉大学学报:工学版, 2007b, 40(3): 10-13
    [148]曹凑贵.生态学基础.北京:高等教育出版社, 2002.
    [149]曹文宣,余志堂,许蕴轩.三峡工程对长江鱼类资源影响的初步评价及资源增殖途径的研究, 1987
    [150]常剑波.长江中华鲟繁殖群体结构特征和数量变动趋势研究[博士学位论文].武汉:中国科学院水生生物研究所. 1999.
    [151]常剑波,曹文宣.中华鲟物种保护的历史与前景.水生生物学报, 1999, 12(6): 712-720.
    [152]长江三峡工程对生态与环境影响及其对策研究论文集.中国科学院三峡工程生态与环境科研项目领导小组,北京:科学出版社, 1988.
    [153]长江三峡工程对生态与环境影响及其对策研究论文集.中国科学院三峡工程生态与环境科研项目领导小组,科学出版社, 1987: 2-20.
    [154]长江渔业资源管理委员会办公室.长江三峡工程生态与环境监测系统渔业资源与环境监测重点站技术报告(1996~2003年阶段成果). 2004.
    [155]陈家长,孙正中,瞿建宏等.长江下游重点江段水质污染及对鱼类的毒性影响.水生生物学报. 2002, 26(6): 635-640.
    [156]陈家宽,李博,吴千红.长江流域的生物多样性及其与经济协调发展的对策.生物多样性, 1997, 5(3): 217-219.
    [157]陈渊泉,龚群,黄卫平.长江河口区渔业资源特点、渔业现状及其合理利用的研究.中国水产科学, 1999, 6(5): 48-51.
    [158]程金成,高健,刘健.中华鲟资源状况及其保护对策探讨.渔业现代化, 2005, 3: 3-4.
    [159]程文辉,王船海.用正交曲线网格及“冻结”法计算河道流速场.水利学报, 1988(6): 18-25.
    [160]崔奕波,陈少莲,王少梅.温度对草鱼能量收支的影响.海洋与湖沼, 1995, 26(2): 169-174.
    [161]窦国仁,赵士清,黄亦芬.河道二维全沙数学模型的研究.水利水运科学研究, 1987(2): 1-12.
    [162]窦国仁.河口海岸全沙模型相似理论.水利水运科学研究, 2001(1): 1-12.
    [163]窦希萍,李来,窦国仁.长江口全沙数学模型研究.水利水运科学研究, 1999(2): 136-145.
    [164]范立民,徐东坡.长江徐六泾段渔业水环境现状初步调查.长江大学学报:自然科学版农学卷, 2007, 4(1):36-38
    [165]方春明.考虑弯道环流影响的平面二维水流泥沙数学模型.中国水利水电科学研究院学报, 2003, 1(3): 190-193.
    [166]付小莉,李大美,金国裕.葛洲坝下游中华鲟产卵场流场计算和分析.华中科技大学学报:自然科学版, 2006a, 34(9): 111-113.
    [167]付小莉,李大美,陈永柏.葛洲坝下游中华鲟产卵河段的流场计算和分析.水科学进展, 2006b, 17(5): 700-704.
    [168]高宏.多沙河流污染化学与生态毒理研究.郑州:黄河水利出版社, 2001.
    [169]高拯民.生态科学概论:现代生态学透视.北京:科学出版社, 1990: 5-9
    [170]国家环境保护总局.水和废水监测分析方法(第三版).北京:中国环境科学出版社, 2002.
    [171]国家环境保护总局.环境监测技术规范.北京:海洋出版社, 1987.
    [172]国家环境保护总局,土壤环境质量标准, GB15618-1995.
    [173]国家环境监测总站.中国土壤元素背景值.北京:中国环境科学出版社, 1990: 87- 89.
    [174]国家农业信息化工程技术研究中心.中华鲟的人工繁殖. http://www.nercita.org.cn/sturgeon_zzxt/liulanxx/zhonghuaxun/zhxyangzhi.htm, [2004-9-20a].
    [175]国家农业信息化工程技术研究中心.中华鲟养殖技术. http://www.nercita.org.cn/sturgeon_zzxt/liulanxx/zhonghuaxun/zhxyangzhi.htm, [2004-9-20b]
    [176]郭忠东,连常平.中华鲟小水体养殖试验初报.水产科学, 2001, 20(2): 15-16.
    [177]韩其为,何明民.水库淤积与河床演变的(一维)数学模型.泥沙研究, 1987 (3):14-29.
    [178]何国建.三维水沙及水质数学模型的研究与应用[博士学位论文].北京:清华大学水利系, 2007.
    [179]何力,张真,翟良安,等.长江库区江段鱼体污染状况.中国水产科学, 1998, 5(4): 52-56.
    [180]何明民,韩其为.挟沙能力级配及有效床沙级配的确定.水利学报, 1990, (3):1-12.
    [181]胡德高,柯福恩,张国良.葛洲坝下中华鲟产卵情况初步调查及探讨.淡水渔业, 1983, 13 (3) : 15-18.
    [182]胡德高,柯福恩,张国良,等.葛洲坝下中华鲟产卵场的第二次调查.淡水渔业, 1985, 15 (3) : 22-24, 33.
    [183]胡德高,柯福恩,张国良,等.葛洲坝下中华鲟产卵场的调查研究.淡水渔业, 1992, 22 (5) : 6-10.
    [184]贾敬德.长江渔业生态环境变化的影响因素.中国水产科学, 1999, 6(2): 112-114.
    [185]江建国.让莱茵河重新自然化.《人民日报》1998 ( 980904第7版)http://web.peopledaily.com.cn/english/9809/04/target/newfiles/G104.html
    [186]蒋固政,张先锋,常剑波.长江防洪工程对珍稀水生动物和鱼类的影响.人民长江, 2001, 32(7): 39- 42.
    [187]金忠青. N-S方程的数值解和紊流模型.南京:河海大学出版社, 1989.
    [188]柯福恩,胡德高,张国良.葛洲坝水利枢纽对中华鲟的影响及数量变动调查报告.淡水渔业, 1984, 3: 16-19.
    [189]柯福恩,危起伟,张国良等.中华鲟产卵洄游群体结果和资源量估算的研究.淡水渔业, 1992, 4: 7-11.
    [190]柯福恩,论中华鲟的保护与开发.淡水渔业, 1999, 29(9): 4-7.
    [191]雷衍之,金送笛.关于氨对鱼苗的毒性的初步试验.辽宁淡水渔业, 1979(3): 11.
    [192]李安萍.长江中的鲟鱼及其保护.太原师范专科学校学报, 1999(4): 46-47.
    [193]李典谟,马祖飞.生态模型当前的热点与发展方向.生态学报, 2002, 22(10): 1788-1791.
    [194]李思发.长江重要鱼类生物多样性和保护研究.上海科学技术出版社, 2001.
    [195]李义天,吴伟民.三峡工程变动回水区泥沙数学模型及初步应用报告.武汉大学. 1990.
    [196]李增,宓用宁,罗东翔.大伙房水库生态水质动力学模型研究.中国科技信息, 2008, 1: 261-263.
    [197]梁涛,陶澍,林健枝.鱼体(去鳃)和鱼鳃对不同形态Cu的积累特征.生态学报, 1999, 19(5): 763-766.
    [198]刘成.我国典型河口底泥污染及水污染研究[博士后研究工作报告].北京:中国水利水电科学研究院, 2003.
    [199]刘乐和.长江葛洲坝水利枢纽兴建后对中、上游主要经济鱼类影响的综合评价.淡水渔业, 1991, 3: 3-7.
    [200]刘利民,吴素文.生态学中的数学模型.沈阳农业大学学报, 2000, 31(3):295-299.
    [201]刘绍平,邱顺林,陈大庆等.长江水系四大家鱼种质资源的保护和合理利用.长江流域资源与环境, 1997, 6(2): 127-131.
    [202]刘绍平,陈大庆,段辛斌等.长江中上游四大家鱼资源监测与渔业管理.长江流域资源与环境, 2004, 13(2): 183-186.
    [203]刘绍平,段辛斌,陈大庆等.长江中游渔业资源现状研究.水生生物学报. 2005, 29(6): 708-711
    [204]陆雍森.环境评价.上海:同济大学出版社, 1990.
    [205]罗远忠,张汉华,张良明,等.长江湖北江段四大家鱼资源现状调查(三). 1991, 4: 42-43, 64.
    [206]马知恩.种群生态学的数学建模与研究.合肥:安徽教育出版社, 1994.
    [207]彭虹,张万顺,夏军.河流综合水质生态数值模型.武汉大学学报:工学版, 2002, 35(4): 56-59.
    [208]彭凯,方铎,曹叔尤.在二维流动计算中应用“河床切削”技术处理动边界问题.水动力学研究与进展, 1992, 7(2): 200-205.
    [209]鄱阳湖研究编委会.鄱阳湖研究.上海:上海科学技术出版社, 1988. 39-40.
    [210]钱宁,万兆惠.泥沙运动力学.北京:科学出版社, 1983.
    [211]乔胜英,蒋敬业,向武,等.武汉市湖泊中重金属污染状况.水资源保护, 2007, 23(1): 45-48.
    [212]邱顺林,刘绍平,黄木桂等.长江中游江段四大家鱼资源调查.水生生物学报, 2002, 26(6): 716-718.
    [213]史峰岩,林文心,魏更生.运动侧边界海洋问题的自适应网格模拟方法.海洋学报, 1997, 19(3): 1-9.
    [214]孙英兰,王丽霞.胶州湾环流和污染扩散的数值模拟.青岛海洋大学学报, 1989, 19(1): 57-61.
    [215]陶建华.波浪在岸滩上的爬高和破碎的数学模型.海洋学报, 1984, 6(5): 692-700.
    [216]陶文铨.数值传热学.西安:西安交通大学出版社, 1988.
    [217]陶文铨.计算传热学的近代进展.北京:科学出版社, 2000.
    [218]陶文铨.数值传热学(第2版).西安:交通大学出版社, 2001.
    [219]王彩理,滕瑜,刘丛力,等.中华鲟的繁育特性及开发利用.水产科技情报, 2002, 29(4): 174-176.
    [220]王海英,姚畋,王传胜等.长江中游水生生物多样性保护面临的威胁和压力.长江流域资源与环境, 2004, 13(5): 429-433.
    [221]王琪.影响四大家鱼孵化的主要因素.养殖与饲料, 2003(5): 29-30.
    [222]汪锡钧,吴定安.几种主要淡水鱼类温度基准值的研究.水产学报, 1994,18(2): 93-100.
    [223]王远坤,夏自强,蔡玉鹏.葛洲坝下游中华鲟产卵场流场模拟与分析.水电能源科学, 2007, 25(5): 54-57, 72.
    [224]危起伟,杨德国,柯福恩.长江中华鲟超声波遥测技术.水产学报, 1998, 22(3):211-217.
    [225]危起伟.中华鲟繁殖行为生态学与资源评估[博士学位论文].武汉:中国科学院水生生物研究所, 2003.
    [226]危起伟,陈细华,杨德国,等.葛洲坝截流24年来中华鲟产卵群体结构的变化.中国水产科学, 2005, 12 (4) : 452-457.
    [227]危起伟,班璇,李大美.葛洲坝下游中华鲟产卵场的水文学模型.湖北水力发电, 2007, (2): 4-6.
    [228]魏文礼,刘哲.曲线坐标系下平面二维浅水模型的修正与应用.计算力学学报, 2007, 24(1): 103-106.
    [229]吴国犀,刘乐和,王志玲.葛洲坝水利枢纽坝下宜昌江段鱼类区系和渔获物组成.淡水渔业, 1988, 3: 8-13.
    [230]伍钧,孟晓霞,李昆.铅污染土壤的植物修复研究进展.土壤, 2005, 37(3): 258-264.
    [231]夏家淇主编.土壤环境质量标准详解.北京:中国环境科学出版社, 1996: 84-86.
    [232]邢湘臣.我国珍稀的中华鲟和白鲟.生物学通报, 2003, 38(9): 10-11.
    [233]熊炎成.鱼类营养学知识讲座第九讲鱼类食性类型及其对食物的选择.渔业致富指南, 2003(9): 53-54.
    [234]徐小明,汪德爟.河网水力数值模拟中Newton-Raphson法收敛性的证明.水动力学研究与进展(A辑), 2001a, 16(3): 319-324.
    [235]徐小明,何建京,汪德爟.求解大型河网非恒定流的非线性方法.水动力学研究与进展(A辑), 2001b, 16(1):18-24.
    [236]徐小清,邓冠强,惠嘉玉等.长江三峡库区江段沉积物的重金属污染特征.水生生物学报, 1999, 23(1): 1-10.
    [237]徐永江,柳学周,马爱军.重金属对鱼类毒性效应及其分子机理的研究概况.海洋科学. 2004, 28(10): 67-70.
    [238]颜远义.中华鲟生物学特性及养殖方法.水产科技, 2003, (5): 14-16.
    [239]杨安民.浪漫莱茵河. http://www.cpst.net.cn/dzkjb/2006/0709/4%A3%AD1.htm, 2006.
    [240]杨德国,危起伟,陈细华等.葛洲坝下游中华鲟产卵场的水文状况及其繁殖活动的关系.生态学报, 2007(3): 862-869.
    [241]杨文磊.水温与养鱼的关系.水产养殖, 1996(11): 17.
    [242]杨宇,严忠民,乔晔.河流鱼类栖息地水力学条件表征与评述.河海大学学报:自然科学版, 2007a, 35(2): 125-130
    [243]杨宇,严忠民,常剑波.中华鲟产卵场断面平均涡量计算及分析.水科学进展, 2007b, 18(5): 701-705.
    [244]易伯鲁,梁秩燊.长江家鱼产卵场的自然条件和促使产卵的主要外界因素.水生生物学集刊, 1964, 5(1): 1-15.
    [245]易伯鲁,余志堂,梁秩燊.葛洲坝水利枢纽与长江四大家鱼.武汉:湖北科技出版社, 1988: 116.
    [246]易继舫,常剑波,唐大明,等.长江中华鲟繁殖群体资源现状的初步研究.水生生物学报, 1999, 23 (6) : 554-559.
    [247]易雨君,王兆印,陆永军.长江中华鲟栖息地适合度模型研究.水科学进展, 2007, 18(4): 538-543.
    [248]余志堂,邓中粦,周春生等.长江葛洲坝水利枢纽兴建后鱼类资源变化的预测.鱼类学论文集(第四辑), 1985: 193-196.
    [249]余志堂,许蕴开,邓中粦,等.葛洲坝水利枢纽下游中华鲟繁殖生态的研究.鱼类学论文集(第五辑).北京:科学出版社, 1986: 1-14.
    [250]余志堂.大型水利枢纽对长江鱼类资源影响的初步评价(一).水利渔业, 1988, 2: 38-41
    [251]张大伟,董增川. Preissmann隐式格式在新沂河洪水演进中的应用研究.水利与建筑工程学报, 2004, 2(4):41-43.
    [252]张洁.鲟鱼养殖的技术要点.北京水产, 1998(1): 18-20.
    [253]张建江,范翠红.养鱼要注意水温水质.渔业致富指南, 2004: 27
    [254]郑守仁.三峡工程与生态环境.联合国水电可持续发展研讨会论文集,北京, 2004.
    [255]钟德钰,张红武.考虑环流横向输沙及河岸变形的平面二维扩展数学模型.水利学报, 2004(7): 14-20.
    [256]中国标准出版社总编室.中国国家标准汇编.北京:中国标准出版社, 1994.
    [257]中国标准出版社第一编辑室.无公害食品标准汇编(水产品类),中国标准出版社, GB18406.4-2002, 2002.
    [258]中国标准出版社第二编辑室编.水质分析方法国家标准汇编.北京:中国标准出版社, 1996: 49-55.
    [259]中国环境监测总站编著.土壤元素的近代分析方法.北京:中国环境科学出版社, 1992: 64-73.
    [260]中国环境与发展国际合作委员会生物多样性工作组.开发建设中的生物多样性原则.北京:中国林业出版社, 2001.
    [261]中国科学院水生生物研究所.长江三峡工程生态与环境监测系统水生动物流动监测重点站技术报告(1996~2003年阶段成果).沙市:中国科学院水生生物研究所, 2005.
    [262]中国科学院水生生物研究所.关于长江葛洲坝水利枢纽救鱼对象和措施的意见.中国水利, 1981,(3): 25-29.
    [263]中国水产科学研究院环保室编. 2000年中国渔业环境预测. 1989.
    [264]中国水利史稿编写组(武汉水利电力学院、中国水利水电科学研究院).中国水利史稿.北京:水利电力出版社, 1985.
    [265]周发毅,郭勇,虞和莹.大规模多岛屿海域潮流场的数值模拟.海洋工程, 1995, 13(4): 61-69.
    [266]周永欣,张甫英,周仁珍.氨对草鱼的急性和亚急性毒性.水生生物学报, 1986, 10(1): 32-40
    [267]朱江译,贾志云校.淡水生物多样性危机.世界自然保护联盟通讯(IUCU), 1999, (4): 3-4.
    [268]朱耘,吴圣杰,华丹.氨对草鱼生长的危害.水产学报, 1995, 10(2): 177-179.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700