氧化铟基气敏材料的催化性能及敏感机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气体传感器是对气体中所含的特定成分的物理、化学性质做出迅速感应,并将其转化为适当的电信号或光信号,从而对气体种类及浓度做出检测的装置。半导体气体传感器具有灵敏度高、成本低、工艺成熟等优点,使其得到了广泛的应用。In_2O_3作为一种较为新型的气敏材料,有望改善传统气敏材料的选择性、稳定性,降低元件的工作温度;同时,目前对材料敏感机理的研究工作还落后于实际应用,难于从理论上指导气敏材料的开发与设计,对In_2O_3基敏感机理的研究鲜有报道。针对上述问题,本文首次从In_2O_3对目标气体的催化性能和气敏性能的联系这一角度出发,揭示In_2O_3基气敏材料的敏感机理。
     采用微反—气相色谱联用装置,系统地评价了不同粒径In_2O_3对异丁烷和乙醇气体的催化性能;同时采用气敏性能测试设备对不同粒径In_2O_3对异丁烷和乙醇气体的气敏性能(灵敏度)进行评价;结果表明:纳米材料比普通材料有着更高的催化活性和灵敏度,且随着材料粒径的减小,二者均有大幅度的提高,有着良好的对应关系。
     系统地评价了掺杂贵金属及金属氧化物的In_2O_3气敏材料对异丁烷和乙醇气体的催化性能;同时采用气敏性能测试设备对不同掺杂In_2O_3气敏材料对异丁烷和乙醇气体的气敏性能进行评价;结果表明:掺杂贵金属能够提高元件对异丁烷的灵敏度,提高对异丁烷灵敏度的原因是贵金属能够提高材料对异丁烷的催化活性,从而使In_2O_3气敏材料上吸附的负氧离子数量减少;掺杂碱性金属氧化物MgO和La_2O_3能够显著提高乙醇的灵敏度,同时使异丁烷的灵敏度有所降低;提高对乙醇灵敏度的原因在于增加了In_2O_3的催化活性,使乙醇反应速率加快,而同时降低了In_2O_3对异丁烷的催化活性,降低了异丁烷的灵敏度。因此,可以通过掺杂碱性金属氧化物提高乙醇气敏元件的灵敏度和选择性。
     老化是气敏元件制作所必需的一个工艺过程,而对老化现象产生的原因尚未见文献报道。论文首次对老化过程中的乙醇气敏材料的催化性能和灵敏度的变化规律进行了研究,研究表明:材料对乙醇的催化活性和灵敏度均随老化时间的增加而逐步提高,并于七天后达到稳定,有着较好的对应关系。说明元件老化过程
    
    中灵敏度的变化是由于气敏材料催化活性的变化引起的,进一步表明材料的气敏
    性能从本质上依赖于催化性能。
     催化活性与灵敏度有着密切的关系,催化活性低则反应速率低,难以引起材
    料电学性能(电阻)的明显改变,从而灵敏度低;催化活性太高,则仅能引起材
    料表层、而不能引起材料整体的电学性质改变,从而灵敏度也低;而催化活性适
    中时,元件表现出最高的灵敏度。
Gas sensor is a kind of sensor that detects the target gas in the atmosphere, for it can induct the physical and chemical property of the target gases rapidly, and transform the chemical signal into electrical signal. Semiconductor gas sensor is popularly used for the detection of inflammable and toxic gases, because it has high sensitivity, low cost and mature technology. Indium oxide is a new gas sensing material, which can be expected to improve the selectivity, stability and decrease the power consumption of conventional sensing material. On the other hand, the research of gas sensing mechanism has lagged behind the application of gas sensor, so it is difficult to guide the design and development of gas sensing material. At the same time, gas-sensing mechanism of indium oxide is seldom reported. For the reasons above, the relationship between catalytic property and gas sensing performance has been established in this paper and the mechanism of indium oxide has been revealed firstly.
    The catalytic property of different grain size indium oxide to iso-butane and alcohol has been evaluated systematically by micro-reactor and gas chromatography; at the same time, gas-sensing property of the same material to iso-butane and alcohol has also been evaluated systematically by testing apparatus about gas sensing performance. The results show that the catalytic property and gas sensing performance of nanometer material are higher than that of common material; both of them are improved greatly with the decrease of grain size. It also shows that gas-sensing property is closely related to the catalytic property.
    The catalytic property of indium oxide with dopant to iso-butane and alcohol has been evaluated systematically; At the same time, gas sensing property of the same material to iso-butane and alcohol has also been evaluated systematically. The results show that the sensitivity of indium oxide doping noble metal to iso-butane is increased, for the dopant can improve the catalytic property of indium oxide; the sensitivity of indium oxide doping basic oxide(e.g.La203) to alcohol is increased and
    
    
    
    the sensitivity to iso-butane is decreased, because these material can improve the catalytic property to alcohol and decrease the catalytic property to iso-butane. In the light of the research above, the conclusion that doping basic metal oxide can improve the sensitivity and selectivity to alcohol can be drew.
    Aging procedure is a necessary process of gas sensor fabrication, but the reason of this phenomena has not been reported; The catalytic and sensitivity property to alcohol during the aging procedure has also been investigated. The research shows that both of them are improved step by step with the increase of aging time and achieved a stable status in seven days. It also shows that the change of sensitivity is caused by the change of catalytic performance, and the gas-sensing performance is intrinsically depended on the catalytic performance.
    Catalytic property is close related to the sensing property. If the catalytic oxidation activity and reaction velocity are too small, the interaction of the sensing layer with the gas becomes too weak to generate strong response, so the sensitivity is small too. If the catalytic activity is too high, target gas or its reaction intermediates are consumed out at the surface region of gas sensing layer, being unable to induce a change in electrical resistance. Thus, the sensitivity becomes optimum when the element has an appropriate catalytic activity.
引文
[1] 康昌鹤,唐省吾.《气、湿敏感器件及应用》[M].科学出版社.1988
    [2] Teruyuki Jinkawa, Go Sakai, Jun Tamaki et al. Relationship between ethanol gas sensitivity and surface catalytic property of tin oxide modified with acidic or basic oxides[J].Journal of molecular catalysis A: chemical 155(2000): 193-200
    [3] 索辉,向思清,朱玉梅等.纳米晶SnO_2气敏薄膜的制备与表征[J].半导体学报,2000,21(8):774-777
    [4] F. Paraguey D, M. Miki Yoshida, J. Morates et al. Influence of A1, In, Cu, Fe and Sn dopants in the microstructure of zinc oxide thin films obtained by spary pyrolysis[J].Thin Solid films 373(2000): 137-140
    [5] 任先武,金建东.低功耗乙醇气敏元件[J].传感器技术,1998,17(6):42-44
    [6] 冯祖勇.《α-Fe_2O_3基气敏纳米材料的制备及其结构、性能的研究》[D].福州大学硕士研究生论文.2001
    [7] C.V. Gopal Reddy , K. Kalyana Seela, S.V. Manorama. Preparation of γ- Fe_2O_3 by the hydrazine method: Application as an alcohol sensor[J].International Journal of Inorganic Materials. 2(2000): 301-307
    [8] C.V. GopaIReddy , W.Cao, O.K. Tan et al. Preparation of Fe_2O_3(0.9)-SnO_2(0.1) by hydrazine method application as an alcohol sensor [J]. Sensors and Actuators B, 81(2002): 170-175
    [9] 江春昌.纳米CoTiO_3的气敏特性[J].合肥工业大学学报(自然科学版).2000,23(2):271-273
    [10] 储向峰,刘杏芹,孟广耀.氧化铟掺杂对ZnFe_2O_4半导体气敏性能的影响[J].应用化学,1998,15(6):41-44
    [11] 葛秀涛,倪受春.镁掺杂对In_2O_3电导和气敏性能的影响[J].化学物理学报,2002,15(2):157-160
    [12] Malchenko, S.N;Lychkovsky, Y.N;Baykov. In_2O_3-basedgas sensors[J], Sensoes and Actuators B, 13/14(1993): 159-161
    [13] J.C. Loh,特公昭43—28560 (出愿1967)
    [14] A. Galdikas, Z. Martunas, A. Setkus. SnInO-based chlorine gas sensor[J], Sensors and Actuators B7, 1992, 633-636.
    [15] G. Sberveglieri, S. Groppelli, P. Nelli. A novel method for the preparation
    
    of NH_3 sensors based on ZnO-In thin film[I], Sensors and Actuators, B24/25, 1995, 588-590.
    [16] S. N. Malchenko, Y.N. Lychkovsky, M.V. Baykov, In_2O_3-based gas sensors[J], Sensors and actuators, B13/14, 1993, 159-161.
    [17] M. Ivanovskaya, P. Bogdanov. Effect of Ni ions on the properties of In_2O_3-based ceramic sensors[J], Sensors and Actuators, B53, 1998, 44-53.
    [18] C.A. Papadopoulos, D.S. Vlachos, J.N. Avaritsiotis. Effect of surface catalysts on the long-term performance of reactively sputtered tin and indium oxide gas sensors[J] , Sensors and Actuators, B42, 1997, 95-101
    [19] 徐甲强,刘艳丽,牛新书.室温固相合成In_2O_3及其气敏性能研究[J].无机材料学报,17(2)2002,367-370.
    [20] D. Sauter, U. Weimar, G. Noetzel et al. Development of modular ozone sensor system for application in practical use [J].Sensors and Actuators, B69, 2000, 1-9.
    [21] 徐甲强,刘艳丽,牛新书.贵金属催化剂对氧化铟气敏特性的影响[J].功能材料,29(增),1998,627—630.
    [22] 孙良彦,刘正绣.常温振荡式CO气敏元件的研制[J].传感器技术,1,1995,10—13.
    [23] Yamaura Hiroyuki ,Tamaki Jun,MoriyaKoji et al., Highly selective CO sensor using indium oxide doubly promoted by cobalt oxide and gold[J]. Journal of the Electrochemical Society, 144 (6), 1997, L158-L160,
    [24] 全宝富,赵志勇,张彤等.In_2O_3纳米材料的制备及其气敏特性的研究[J].仪表技术及传感器,1,2001,12-15.
    [25] 贺志平,吴文久.KX-60型臭氧消毒柜杀菌效果[J].中国消毒学杂志,11(3),1994,177-178.
    [26] Tadashi Takada, Kengo Suzuki, Masanori Nakane. Highly sensitive ozone sensor[J]. Sensors and Actuators, B13/14, 1993, 404-407.
    [27] Tadashi, Takada, Hiromasa Tanjou, Tatsuo Saito. et al. Aqueous ozone detector using In_2O_3 thin film semiconductor gas sensor [J]. Science and Engineering 20 (6), 1998, 507-512.
    
    
    [28] A. kiyoshi Hattori, Hirokazu Tachibana, Nobuyuki Yoshiike. Ozone sensor made by dip coating method[J]. Sensors and Actuators, 77, 1999, 120-125.
    [29] 牛文成,徐春林,张福海等.用In_2O_3薄膜制备的高感度半导体O_3传感器[J],传感器技术学报,1,1998,7-12.
    [30] M. Ivanovskaya, A. Gurlo, P. Bogdanov. Mechanism of O_3 and NO_2 detection and selectivity of In_2O_3 sensors[J], Sensors and Actuators, B77, 2001, 264-267.
    [31] G. Sberveglieri, S. Groppelli, G. Coccoli. Radio frequency magnetron sputtering growth and characterization of indium-tin oxide (ITO) thin films for NO_2 gas sensors[J]. Sensors and actuators, 15, 1988, 235-242.
    [32] G. Sberveglieri, P. Benussi, G. Coccoli et al. Reactively sputtered indium tin oxide polycrystalline thin film as NO and NO_2 gas sensors[J]. Thin Solid Film, 186, 1990, 349-360.
    [33] C. Cantalini. NO_2 response if In_2O_3 thin film gas sensors prepared by sol-gel and vacuum thermal evaporation techniques[J]. Sensors and Actuators, B65, 2000, 101-104.
    [34] H. Steffes, W. Wlodarski, H.T. Sun et al. Fabrication parameter and NO_2 sensitivity of reactively RF-sputtered In_2O_3 thin film[J].Sensors and Actuators, B68, 2000, 249-253.
    [35] H. Steffes, C. Imawan, P. Fricke et al. New In_xO_yN_z films for the application in NO_2 sensors[J]. Sensors and Actuators, B 77, 2001, 352-358.
    [36] 徐甲将,沈瑜生.化学传感器.1993;13-48
    [37] 李泉,曾广赋,席时权.二氧化锡气敏材料的研究进展[J].应用化学,1994,11(6),4-5
    [38] Jun Tamaki .Sensing properties to dilute chloride gas of indium oxide based thin film sensors prepared by electron beam evaporation[J]. Sensors and Actuators , B 4181 2002 (1-5)
    [39] M. Ivanovskaya. Mechanism of O_3 and NO_2 dection and selectivity of In_2O_3 sensors[J]. Sensors and Actuators B, 77 2001 264-267
    [40] 黄忠宇,孙良彦,平田光寿.NO_2高选择性气敏元件及其表面修饰[J].传感技术学报,
    
    1993,(4):10-13.
    [41] 陆凡.《超细二氧化锡粉体的制备、表征及其在低温气敏材料中的应用》[D].博士学位论文.1996
    [42] G.J. LI, X.-H. Zhang, S. kawi. relationship between sensitiveity, catalytic activity, and surface areas of SnO_2 gas sensors[J]. Sensors and Actuators, B 60 (1999) (64-70)
    [43] Heesook P. Kim, Jeong-Ja Cho, Hae-won cheong et al. Sensors and Actuators, B (64-70)(19933511-512)
    [44] Teruyuki Jinkawa, Go Sakai, Jun Tamaki et al. relationship between ethanol gas sensitivity and surface catalytic property of tin oxide sensors modified with acidic or basic oxide[J].Journal of Molecular catalysis A: Chemical, 155, 2000, 193-200.
    [45] Jiaqiang Xu, Qingyi Pan, Yu' an Sun et al. Crain size control and gas sensing properties of ZnO gas sensor[J], B66, 2000, 277-279.
    [46] 陆凡,陈诵英,彭少逸等,SnO_2超细粉体应用与气敏材料[J],功能材料,26(4),1996,298—299.
    [47] 陆凡,王小平,陈诵英等,低功耗C_2H_5OH气敏元件[J],传感器技术,16(4),1997,21—23.
    [48] A. Bielanski, J. Haber. Oxygen in catalysis on transition metal oxide[J]. Catalysis Reviews-science and Engineering, 19, 1979, 1-41.
    [49] R. Pohl;M. Fleischer, H. Meixner. Infrared emission spectroscopic study of the adsorption of oxygen on gas sensors based on polycrystalline metal oxide films[J] .Sensors and Actuators, B78, 2001, 133-137.
    [50] S. Matsushima, T. Maekawa, J. Tamaki et al. Role of additives on alcohol sensing by semiconductor gas sensor. Chemistry Letters, 1989, 845-848.
    [51] N. Yamazoe, Y. Kurokawa, T. Seiyama. Effects of additive on semiconductor gas sensor[J], sensors and actuators 4, 1983, 283-290.
    [52] 刘杏芹,徐正良,沈瑜生.新型乙醇半导体材料CdFe_2O_4[J].云南大学学报(自然科学版),1997,19(2):147-149
    [53] 莫以豪.《半导体陶瓷及其敏感元件》[M],上海:上海科学技术出版社,1983

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700