混合过渡金属氧化物纳米材料的制备及其锂离子电池性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近些年来,纳米尺度的金属化物由于齐相对于石墨能够提供较高的可逆容量(600-1000mAh/g)和能量密度,被广泛认为是一种具有应用潜力的锂离子电池电极材料。这些金属氧化物与锂的反应机制不同于传统的品格嵌入/脱出机制;一般金属氧化物有两种储锂机制:第一类是通过与锂离子的合金/脱合金过程储锂;另外一类则是通过相的转换即金属的还原/氧化过程储锂。属于第一类的典型的金属氧化物为Sn、Zn、In和Sb的氧化物;以Sn02为例,其储锂机制包含SnO2+4Li→Sn+2Li2O和mSn+nLi(?)LinSnm两步反应。而属于第二类的金属氧化物包括Co3O4,NiO,Fe2O3等多数过渡金属氧化物;这一类氧化物通过与Li发生氧化还原反应进行储锂;在放电过程中氧化物被还原为金属单质,而Li则形成无定型的Li2O;此后的循环过程中主要为金属的氧化/还原和Li2O的分解和生成过程。因此,此类氧化物的理论容量取决于参与反应的过渡金属氧化物的氧化态。这类转换反应机制的电极反应式可以被概括为MxO+2Li++2e-→←xM0+Li20。
     但是,金属氧化物自身也存在一定的缺陷从而限制了其应用。比如首次循环不可逆容量过高造成锂离子的损失,较大的塑性形变导致的不可逆容量损失严重,致使其循环稳定性较差等等。针对上述问题,无数科学家对过渡金属氧化物改性方面做了大量工作,比如将氧化物进行纳米化、与碳或者石墨烯进行复合、对氧化物进行贵金属掺杂以提高其导电性等等。最近,期望合成混合过渡金属氧化物,利用两种甚至多种金属的协同储锂和改良活性来提升电极材料性能成为了一种新的受关注的手段。本文中,我们制备了ZnFe2O4、CuFe2O4和MnWO4双金属混合氧化物,来研究其中两种金属的相互作用及其对于电化学性能的提升效果。
     我们以乙酸锌和硫酸亚铁为原料利用一步水热合成方法制备得到了平均粒径约为200nm左右规则的ZnFe2O4八面体纳米颗粒。通过XRD,SEM和HRTEM的分析可以确定,ZnFe2O4(?)内米颗粒的八个面均由{111}晶面闱绕。ZnFe2O4八面体纳米颗粒表现出了优良的电化学性能。在60mA·g-1小电流下,循环80圈以后电池的可逆容量仍然高达910mAh·g-1;其倍率性能以及在大电流下的循环性能也同样出色,1000mA·g-1的大电流下循环300圈以后容量仍然能够保持在730mAh·g-1以上。我们利用非原位HRTEM和SAED对于若干次循环以后的完全充电和放电的电极材料进行了深入分析,发现八面体颗粒在充放电以后发生了巨大的结构重组和形变,内部外部结构都发生了变化;此外我门还结合循环伏安和充放电曲线给出了ZnFe2O4作为电极材料时可能的电极反应
     我们利用简单的一步高温固相反应以草酸铁和乙酸铜为原料选择性合成了具有不同结构和粒径的CuFe2O4纳米颗粒。其中400℃合成的立方相CuFe2O4(c-CuFe2O4400)平均粒径约为50-100nm,800℃合成的立方相CuFe2O4(c-CuFe2O4800)和四方相CuFe2O4(t-CuFe2O4)平均粒径约为800nm左右。我们对比了不同结构CuFe2O4的电化学反应机理,发现两相CuFe2O4的电极反应只有首次放电时表现不同,其中c-CuFe2O4在首次循环时会生成LixCuFe2O4(?)中间状态,而t-CuFe2O4则观察不到这种晶格嵌锂的现象。此外,c-CuFe2O4(400)作为电极材料的电化学性能最为出色,100mA·g-1的电流密度下循环60圈容量仍然能够保持于950mAh·g-1以上;此外,其倍率性能也十分优秀,5000mA·g-1的电流密度下结构仍然能够保持稳定。我们还首次通过非原位HRTEM的分析发现了CuFe2O4的放电产物中不仅有单质Cu和Fe的存在,还有FexCu1-x亚稳相合金结构的存在,这也部分解释了金属Cu加入氧化铁中对于体系的电化学稳定性提高的原因。
     我们还利用一步水热合成方法制备得到了具有密集空洞结构的MnWO4纳米颗粒,样品由大量的颗粒尺寸为20-30nm形貌均一的纳米颗粒组成;颗粒内部的纳米孔洞大小约为5-8nm。MnWO4纳米颗粒的电化学性能优异,其在100mA·g-1的电流密度下循环160圈以后容量仍然保持在600mAh-g"1以上,远高于已经报道类似结构的负极材料。这种独特的内部空洞几何结构可能对于提高其循环能力有着至关重要的作用。
     我们的这些工作为制备混合过渡金属氧化物纳米材料提供了简便可行的方法,并且为这一类有应用潜质的、长寿命高性能锂离子电极材料的实际应用提供了一种可能性。
Metal oxides have long been considered as promising anode materials for lithium-ion batteries (LIB) to improve the graphite anode, because they could gain much higher specific capacity and power density compared with the graphite-based anode. The metal oxides reactions with Li do not via the classical insertion/deinsertion process:the reactions involve in two different mechanisms:one type is based on a Li-alloying/dealloying process; another type involves a displacive phase transition. The typical materials of the first type are Sn, Zn, In and Sb oxides; the oxides irreversibly deoxidized to metal, then the metal could reversibly alloy with lithium to uptake one or more lithium per metal atom. Take SnO2for instance, the reactions routes are SnO2+4Li→Sn+2Li2O, and mSn+nLi(?)LinSnm. The oxides of the second type include Co3O4, NiO, Fe2O3and so on; the reaction process with Li contains the reversibly reduction of the oxide, then the formation and decomposition of Li2O matrix, along with the reduction and oxidation of metal. These oxides could achieve quite high reversible capacity due to the multi-electron redox process; in this case, the specific capacity depends on the oxidation state of the transition metal participate in the reaction. The general equation of conversion reaction is described as MxO+2Li++2e-(?)xM0+Li2O.
     However, there are several drawbacks preventing the transitional-based anodes from being commercial uses, such as the low energy efficiency during the first discharge process large volume changes and poor capacity retention. To overcome these obstacles, intensive researches like tailoring metal oxides materials to the nanoscale, forming nanocomposites with carbon materials and graphene, and doping with novel metal particles have been conducted. Recently, fabricating nanosized mixed metal oxide compounds with superior capability becomes a new strategy to improve the performance. In this paper, we fabricated binary metal oxides like ZnFe2O4, CuFe2O4and Mn WO4to research their electrochemical performance.
     Regular ZnFe2O4octahedrons with an average size of200nm have been synthesized through a one step hydrothermal method by zinc acetate and ferrous chloride. XRD, SEM and HRTEM studies reveal that the products are highly crystallized and uniformly enclosed by{111} facet. Galvanostatic cycling lithium battery anode at60mA·g-1between0.01and3.0V up to80cycles exhibits a high capacity of910mAh·g-1. The ZnFeO4octahedrons also exhibit an excellent rate performance, and deliver stable reversible specific capacity of730inAh·g-1even after300cycles at1000mA·g-1. The reaction mechanism for Li-recyclability is proposed based on the ex-situ HRTEM and SAED analysis of the electrodes after completely discharged and charged together with voltage profile and cyclic voltammetry. The lithium-driven structural reorganization and plasticity deformation of electrode materials are observed and discussed specifically.
     Cubic CuFe2O4(c-CuFe2O4and tetragonal CuFe2O4(t-CuFe2O4) nanoparticles were selectively prepared using a facile one-step solid state reaction route by ferrous oxalate and copper acetate as the reactants. As an anode material for Li-ion batteries, the electrode reactions of the two phases CuFe2O4are similar except the lithium insertion process during the first discharge; the preceding Lithium intercalation occurred and formed intermediate phase LixCuFe2O4when c-CuFe2O4was applied as anode material, but this intermediate phase is hardly observed in the t-CuFe2O4. Compared with c-CuFe2O4and t-CuFe2O4synthesized at800℃, c-CuFe2O4synthesized at400℃with larger surface area exhibited superior discharge capacities with good cycling performance (950mAh·g-1at100mA·g-1after60cycles), and higher rate capability. Through ex-situ HRTEM analysis, we observed the existence of metastable FexCu1-x alloy in the discharged nanocomposition for the first time, which exhibits the interaction of metallic Cu particles with the adjacent iron ions.
     The MnWO4nanobars with dense nanocavities have been synthesized through hydrothermal route; the average particle size of the MnW04nanobars is about20-30nm, and the nanocavities inside are about5-8nm. Galvanostatic cycling of MnWO4lithium battery anode exhibit an excellent rate performance. The improved electrochemical performance could be attributed to the unique geometry nanocavities and improved accommodation of the transformation strains during cycling.
     These works resulted in convenient methods for obtaining mixed metal oxide nanomaterials, and provided an opportunity to further application of these promising materials with the remarkable performance, both in terms of long life span and rate capability.
引文
1. Cheng, Fangyi, Jing Liang, Zhanliang Tao, and Jun Chen, Functional Materials for Rechargeable Batteries. Advanced Materials,2011.23(15):p.1695-1715.
    2. Liu, Chang, Feng Li, Lai-Peng Ma, and Hui-Ming Cheng, Advanced Materials for Energy Storage. Advanced Materials,2010.22(8):p. E28-E62.
    3. Winter, Martin, Jurgen O. Besenhard, Michael E. Spahr, and Petr Novak, Insertion Electrode Materials for Rechargeable Lithium Batteries. Advanced Materials,1998.10(10):p.725-763.
    4. Tarascon, J. M. and M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature,2001.414(6861):p.359-367.
    5. Scrosati, Bruno, Recent advances in lithium ion battery materials. Electrochimica Acta,2000. 45(15-16):p.2461-2466.
    6. Dunn, Bruce, Haresh Kamath, and Jean-Marie Tarascon, Electrical Energy Storage for the Grid:A Battery of Choices. Science,2011.334(6058):p.928-935.
    7. Stashans, A., S. Lunell, R. Bergstrom, A. Hagfeldt, and S. E. Lindquist, Theoretical study of lithium intercalation in rutile and anatase. Physical Review B,1996.53(1):p.159-170.
    8. Goward, G. R., F. Leroux, W. P. Power, G. Ouvrard, W. Dmowski, T. Egami, and L. F. Nazar, On the nature of Li insertion in tin composite oxide glasses. Electrochemical and Solid State Letters,1999.2(8):p.367-370.
    9. Idota, Yoshio, Tadahiko Kubota, Akihiro Matsufuji, Yukio Maekawa, and Tsutomu Miyasaka, Tin-Based Amorphous Oxide:A High-Capacity Lithium-Ion-Storage Material. Science,1997. 276(5317):p.1395-1397.
    10. Hu, Liangbing, Hui Wu, Yifan Gao, Anyuan Cao, Hongbian Li, James McDough, Xing Xie, Min Zhou, and Yi Cui, Silicon-Carbon Nanotube Coaxial Sponge as Li-Ion Anodes with High Areal Capacity. Advanced Energy Materials,2011.1(4):p.523-527.
    11. Thackeray, M. M., J. T. Vaughey, C. S. Johnson, A. J. Kropf, R. Benedek, L. M. L. Fransson, and K. Edstrom, Structural considerations of inter metallic electrodes for lithium batteries. Journal of Power Sources,2003.113(1):p.124-130.
    12. Poizot, P., S. Laruelle, S. Grugeon, L. Dupont, and J. M. Tarascon, Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature,2000. 407(6803):p.496-499.
    13. Thackeray, M. M. and J. Coetzer, A preliminary investigation of the electrochemical performance of a-Fe2O3 and Fe3O4 cathodes in high-temperature cells. Materials Research Bulletin,1981.16(5):p.591-597.
    14. Kaun, T. D., P. A. Nelson, L. Redey, D. R. Vissers, and G. L. Henriksen, High temperature lithium sulfule batteries. Electrochimica Acta,1993.38(9):p.1269-1287.
    15. Besenhard, Jiirgen O. and Martin Winter, Advances in Battery Technology:Rechargeable Magnesium Batteries and Savel Negative-Electrode Materials for Lithium Ion Batteries. Chemphyschem,2002.3(2):p.155-159.
    16. Lou, X. W., L. A. Archer, and Z. C. Yang, Hollow Micro-Nanostructures:Synthesis and Applications. Advanced Materials,2008.20(21):p.3987-4019.
    17. Wen, Z. H., Q. Wang, Q. Zhang, and J. H. Li, In situ growth of mesoporous SnO2 on multiwalled carbon nanolubes:A novel composite with porous-tube structure as anode for lithium batteries. Advanced Functional Materials,2007.17(15):p.2772-2778.
    18. Hu, Y. S., P. Adelhelm, B. M Smarsly, S. Hore, M. Antonietti, and J. Maier, Synthesis of Hierarchically Porous Carbon Monoliths with Highly Ordered Microstructure and Their Application in Rechargeable Lithium Batteries with High-Rate Capability. Advanced Functional Materials,2007.17(12):p.1873-1878.
    19. Li, N. C., C. R. Martin, and B. Scrosati, Nanomaterial-based Li-ion battery electrodes. Journal of Power Sources,2001.97-8:p.240-243.
    20. Sides, C. R., N. C. Li, C. J. Patrissi, B. Scrosati, and C. R. Martin, Nanoscale materials for lithium-ion batteries. Mrs Bulletin,2002.27(8):p.604-607.
    21. Reddy, A. L. M., M. M. Shaijumon, S. R. Gowda, and P. M. Ajayan, Coaxial MnO2/Carbon Nanotuhe Array Electrodes for High-Performance Lithium Batteries. Nano Lett,2009.9(3):p. 1002-1006.
    22. Wang, Y., H. C. Zeng, and J. Y. Lee, Highly reversible lithium storage in porous SnO2 nanotubes with coaxially grown carbon nanotube overlayers. Advanced Materials,2006. 18(5):p.645-+.
    23. Paek, S. M., E. Yoo, and I. Honma. Enhanced Cyclic Performance and Lithium Storage Capacity of SnO2/Graphene Nanoporous Electrodes with Three-Dimensionally Delaminated Flexible Structure. Nano Lett,2009.9(I):p.72-75.
    24. Wu, Z. S., W. C. Ren, L. Wen. L. B. Gao, J. P. Zhao, Z. P. Chen, G. M. Zhou, F. Li. and H. M. Cheng, Graphene Anchored with Co3O4 Nanoparticles as Anode of Lithium Ion Batteries with Enhanced Reversible Capacity and Cyclic Performance. ACS Nano,2010.4(6):p. 3187-3194.
    25. Fu, L. J., H. Liu, C. Li, Y. P. Wu, E. Rahm, R. Holze, and H. Q. Wu. Surface modifications of electrode materials for lithium ion batteries. Solid State Sciences,2006.8(2):p. 113-128.
    26. Park, S. H., K. S. Park. Y. K. Sun, K. S. Nahm, Y. S. Lee. and M. Yoshio, Structural and electrochemical characterization of lithium excess and Al-doped nickel oxides synthesized by the sol-gel method. Electrochimica Acta,2001.46(8):p.1215-1222.
    27. Pasero, D., N. Reeves, and A. R. West, Co-doped Mn3O4:a possible anode material for lithium batteries. Journal of Power Sources,2005. 141(I):p.156-158.
    28. Coustier, F., S. Passerini, and W. H. Smyrl, Dip-coated silver-doped V2O5 xerogels as host materials for lithium intercalation. Solid State Ionics,1997.100(3-4):p.247-258.
    29. Chengchun, Tang, Bando Yoshio, Huang Yang, Zhi Chunyi, Golberg Dmitri, Xu Xuewen, Zhao Jianling, and Li YangXian, Synthesis of nanoporous spheres of cubic gallium oxynitride and their lithium ion intercalation properties. Nanotechnology,2010.21(11):p.115705.
    30. Kim, Youngsik, Haesuk Hwang, Katherine Lawler, Steve W. Martin, and Jaephil Cho, Electrochemical behavior of Ge and GeX2 (X=O, S) glasses:Improved reversibility of the reaction of Li with Ge in a sulfide medium. Electrochimica Acta,2008.53(15):p.5058-5064.
    31. Yang, R., J. Zheng, J. Huang, X. Z. Zhang, J. L. Qu, and X. G. Li, Low-temperature growth of vertically aligned ln2O3 nanoblades with improved lithium storage properties. Electrochemistry Communications,2010.12(6):p.784-787.
    32. Zhou, Yongning, Hua Zhang, Mingzhe Xue, Changliang Wu, Xiaojing Wu, and Zhengwen Fu, The electrochemistry of nanostructured In2O3 with lithium. Journal of Power Sources,2006. 162(2):p.1373-1378.
    33. Aurbach, Doron, Alex Nimberger, Boris Markovsky, Elena Levi, Elena Sominski, and Aharon Gedanken, Nanoparticles of SnO Produced by Sonochemislry as Anode Materials for Rechargeable Lithium Batteries. Chemistry of Materials,2002.14(10):p.4155-4163.
    34. Retoux, R., T. Brousse, and D. M. Schleich, High-resolution electron microscopy investigation of capacity fade in SnO2 electrodes for lithium-ion batteries. Journal of The Electrochemical Society,1999.146(7):p.2472-2476.
    35. Li, Jingze, Hong Li, Zhaoxiang Wang, Xuejie Huang, and Liquan Chen, The interaction between SnO anode and electrolytes. Journal of Power Sources,1999.81-82(0):p.346-351.
    36. Yang, J., Y. Takeda, N. Imanishi, J. Y. Xie, and O. Yamamoto, Morphology modification and irreversibility compensation for SnO anodes. Journal of Power Sources,2001.97-98(0):p. 216-218.
    37. Paek, Seung-Min, EunJoo Yoo. and Itaru Honma, Enhanced Cyclic Performance and Lithium Storage Capacity of SnO2 Graphene Nanoporous Electrodes with Three-Dimensionally Delaminated Flexible Structure Nano Letters,2008.9(1):p.72-75.
    38. Lou, X. W., C. M. Li, and L. A. Archer, Designed Synthesis of Coaxial SnO2@carbon Hollow Nanospheres for Highly Reversible Lithium Storage. Advanced Materials,2009.21(24):p. 2536-+.
    39. Wang, Z. Y., D. Y. Luan, F. Y., C. Boey. and X. W. Lou. Fast Formation of SnO2 Sanoboxes with Enhunced Lithium Storage Capability. J Am Chem Soc,2011.133(13):p.4738-4741.
    40. Hwa, Yoon, Won-Sik Kim. Byeong-Chul Yu, HanSn Kim. Seong-Hyeon Hong, and Hun-Joon Sohn, Reversible storage of Li-ion in lumo-Si SnO2 core-shell natiostructurecl electrode. Journal of Materials Chemistry A,2013.1(11):p.3733-3738.
    41. Guo, Hong, Rui Mao, Xiangjun Yang, Shixiong Wang, and Jing Chen, Hollow nanotubular SnO2 with improved lithium storage. Journal of Power Sources,2012.219(0):p.280-284.
    42. Huang, X. H., X. H. Xia, Y. F. Yuan, and F. Zhou, Porous ZnO nanosheets grown on copper substrates as anodes for lithium ion batteries. Electrochimica Acta,2011.56(14):p. 4960-4965.
    43. Kushima, Akihiro, Xiao Hua Liu, Guang Zhu, Zhong Lin Wang, Jian Yu Huang, and Ju Li, Leapfrog Cracking and Nanoamorphization of ZnO Nanowires during In Situ Electrochemical Lithiation. Nano Letters,2011.11(11):p.4535-4541.
    44. Ahmad, Mashkoor. Shi Yingying, Amjad Nisar. Hongyu Sun, Wanci Shen, Miao Wei, and Jing Zhu, Synthesis of hierarchical flower-like ZnO nanostructures and their functionalization by Au nanoparticles for improved photocatalylic and high performance Li-ion battery anodes. Journal of Materials Chemistry,2011.21(21):p.7723-7729.
    45. Zhou, Yong-Ning, Wen-Jing Li, and Zheng-Wen Fu, Electrochemical reactivity of nanocomposile ZnO Se for lithium-ion batteries. Electrochimica Acta,2012.59(0):p. 435-440.
    46. Grugeon, S., S. Laruelle, L. Dupont, and J. M. Tarascon, An update on the reactivity of nanoparticles Co-based compounds towards Li. Solid State Sciences,2003.5(6):p.895-904.
    47. Poizot, P., S. Laruelle, S. Grugeon, and J.-M. Tarascon, Rationalization of the Low-Potential Reactivity of 3d-Metal-Based Inorganic Compounds toward Li. Journal of The Electrochemical Society,2002.149(9):p. A1212-A1217.
    48. Poizot, P., S. Laruelle, S. Grugeon, L. Dupont, and J. M. Tarascon, Searching for new anode materials for the Li-ion technology:time to deviate from the usual path. Journal of Power Sources,2001.97-98(0):p.235-239.
    49. Badway, F. I. Plitz, S. Grugeon. S. Laruelle, M. Dolle. A. S. Gozdz, and J.-M. Tarascon. Metal Oxides as Negative Electrode Materials in Li-Ion Cells. Electrochemical and Solid-State Letters,2002.5(6):p. A115-A118.
    50. Godshall, N. A., I. D. Raistrick. and R. A. Huggins. Thermodynamic investigations of ternary lithium-transition metal-oxygen cathode materials. Materials Research Bulletin,1980.15(5): p.561-570.
    51. Abraham, K. M., D. M. Pasquariello, and E. B. Willstaedt, Preparation and Characterization of Some Lithium Insertion Anodes for Secondary Lithium Batteries. Journal of The Electrochemical Society,1990.137(3):p.743-749.
    52. Sarradin, J., M. Ribes, A. Guessous, and K. Elkacemi, Study of Fe2O3-based thin film electrodes for lithium-ion batteries. Solid State lonics,1998.112(1-2):p.35-40.
    53. Chen, J., L. Xu, W. Li, and X. Gou, a-Fe2O3 Nanotubes in Gas Sensor and Lithium-Ion Battery Applications. Advanced Materials,2005.17(5):p.582-586.
    54. Reddy, M. V, T. Yu, C. H Sow, Z. X Shen, C. T Lim, G. V SubbaRao, and B. V R Chowdari, a-Fe2O3 Nanqflakes as an Anode Material for Li-Ion Batteries. Advanced Functional Materials,2007.17(15):p.2792-2799.
    55. Kitaura, Hirokazu, Kenji Takahashi, Fuminori Mizuno, Akitoshi Hayashi, Kiyoharu Tadanaga, and Masahiro Tatsumisago, Preparation of a-Fe203 Electrode Materials via Solution Process and Their Electrochemical Properties in All-Solid-State Lithium Batteries. Journal of The Electrochemical Society,2007.154(7):p. A725-A729.
    56. Li, Jing, H. M. Dahn, L. J. Krause, Dinh-Ba Le, and J. R. Dahn, Impact of Binder Choice on the Performance of a-Fe2O3 as a Negative Electrode. Journal of The Electrochemical Society, 2008.155(11):p. A812-A816.
    57. Wang, P. C., H. P. Ding, Tursun Bark, and C. H. Chen, Nanosized a-Fe2O3 and Li-Fe composite oxide electrodes for lithium-ion batteries. Electrochimica Acta,2007.52(24):p. 6650-6655.
    58. Jiao, Feng, Jianli Bao, and Peter G. Bruce, Factors Influencing the Rate of Fe2O3 Conversion Reaction. Electrochemical and Solid-State Letters,2007.10(12):p. A264-A266.
    59. Lin, Yong-Mao, Paul R. Abel, Adam Heller, and C. Buddie Mullins, a-Fe2O3 Nanorods as Anode Material for Lithium Ion Batteries. The Journal of Physical Chemistry Letters,2011. 2(22):p.2885-2891.
    60. Rahman, M. M., Shu-Lei Chou, Chao Zhong, Jia-Zhao Wang, David Wexler, and Hua-Kun Liu, Spray pyrolyzed NiO C nanocomposite as an anode material for the lithium-ion battery with enhanced capacity retention. Solid State lonics,2010.180(40):p.1646-1651.
    61. Liu, Zhaolin and Siok Wei Tay, Direct growth Fe2O3 nanorods on carbon fibers as anode materials for lithium ion batteries. Materials Letters,2012.72(0):p.74-77.
    62. Zhu, Xianjun, Yanwu Zhu, Shanthi Murali, Meryl D. Stoller, and Rodney S. Ruoff, Nanostructured Reduced Graphene Oxide/Fe2O3 Composite As a High-Performance Anode Material for Lithium Ion Batteries. ACS Nano,2011.5(4):p.3333-3338.
    63. Zhang, Jingjing. Yu Yao, Tao Huang, and Aishui Yu, Uniform hollow Fe3O4 spheres prepared by template-free solvothermal melhod as anode material for lithium-ion batteries Electrochimica Acta,2012.78(0):p.502-507.
    64. Tabernn, P. L., S. Mitra, P. Poizot, P. Simon, and J. M. Tarascon. High rale capabilities Fe3O4-based Cu nano-archilectured electrodes for lithium-ion battery applications. Nat Mater,2006.5(7):p.567-573.
    65. Zhang, Qiumei, Zhicong Shi, Yuanfu Deng, Jun Zheng, Guichang Liu, and Guohua Chen, Hollow Fe3O4/C spheres as superior lithium storage materials. Journal of Power Sources, 2012.197:p.305-309.
    66. Li, Lu, Tingting Wang, Lingyu Zhang, Zhongmin Su, Chungang Wang, and Rongshun Wang, Selected-Control Synthesis of Monodisperse Fe3O4@C Core Shell Spheres. Chains, and Rings as High-Performance Anode Materials for Lithium-Ion Batteries. Chemistry-A European Journal,2012.18(36):p.11417-11422.
    67. Zhou, Guangmin, Da-Wei Wang, Feng Li, Lili Zhang, Na Li, Zhong-Shuai Wu, Lei Wen, Gao Qing Lu, and Hui-Ming Cheng, Graphene-Wrapped Fe3O4 Anode Material with Improved Reversible Capacity and Cyclic Stability for Lithium Ion Batteries. Chemistry of Materials, 2010.22(18):p.5306-5313.
    68. Iijima, Takashi, Yoshinori Toyoguchi, Joji Nishimura, and Hiromichi Ogawa, Button-type lithium battery using copper oxide as a cathode. Journal of Power Sources,1980. 5(1):p. 99-109.
    69. Podhajecky, P., B. Klapste, P. Novak, J. Mrha, R. Moshtev, V. Manev, and A. Nassalevska, The influence of preparation conditions on the electrochemical behaviour of CuO in a Li CuO cell. Journal of Power Sources,1985.14(4):p.269-275.
    70. Morales, Julian, Luis Sanchez, Francisco Martin, Jose R. Ramos-Barrado. and Miguel Sanchez, Nanoslructured CuO thin film electrodes prepared by spray pyrolysis:a simple method for enhancing the electrochemical performance of CuO in lithium cells. Electrochimica Acta,2004.49(26):p.4589-4597.
    71. Tarascon, J. M., C. Delacourt, A. S. Prakash, M. Morcrette, M. S. Hegde, C. Wurm, and C. Masquelier, Various strategies to tune the ionic electronic properties of electrode materials. Dalton Transactions,2004.0(19):p.2988-2994.
    72. Grugeon, S., S. Laruelle, R. Herrera-Urbina, L. Dupont, P. Poizot, and J-M. Tarascon. Particle Size Effects on the Electrochemical Performance of Copper Oxides toward Lithium. Journal of The Electrochemical Society.2001.148(4):p. A285-A292.
    73. Kang, Wenpei, Kenglin Liu. Yunlan Su. Dujin Wang, and Qiang Shen, The catanionic surfactant-assisted syntheses of 26-faceted and hexapod-shaped Cu2O and their electrochemical performances. CrystEngComm,2011.13(12):p.4174-4180.
    74. Hasan, Maksudul, Tamjid Chowdhury, and James F. Rohan,Nanotubes of Core Shell Cu, Cu2O as Anode Materials for Li-Ion Rechargeable Batteries. Journal of The Electrochemical Society,2010.157(6):p. A682-A688.
    75. Xu, Chao, Xin Wang, Lichun Yang, and Yuping Wu, Fabrication of a graphene-cuprous oxide composite. Journal of Solid State Chemistry,2009.182(9):p.2486-2490.
    76. Gao, X. P., J. L. Bao, G. L. Pan, H. Y. Zhu, P. X. Huang, F. Wu, and D. Y. Song, Preparation and Electrochemical Performance of Poly crystalline and Single Crystalline CuO Nanorods as Anode Materials for Li Ion Battery. The Journal of Physical Chemistry B,2004.108(18):p. 5547-5551.
    77. Park, Ji Chan, Jeonghan Kim, Hyuksang Kwon, and Hyunjoon Song, Gram-Scale Synthesis of Cu2O Nanocubes and Subsequent Oxidation to CuO Hollow Nanostructures for Lithium-lon Battery Anode Materials. Advanced Materials,2009.21(7):p.803-807.
    78. Sahay, Rahul, Palaniswamy Suresh Kumar, Vanchiappan Aravindan, Jayaraman Sundaramurthy, Wong Chui Ling, Subodh G. Mhaisalkar, Seeram Ramakrishna, and Srinivasan Madhavi, High Aspect Ratio Electrospun CuO Nanofibers as Anode Material for Lithium-Ion Batteries with Superior Cycleability. The Journal of Physical Chemistry C,2012. 116(34):p.18087-18092.
    79. Xiang, J. Y., J. P. Tu, Y. Q. Qiao, X. L. Wang, J. Zhong, D. Zhang, and C. D. Gu, Electrochemical Impedance Analysis of a Hierarchical CuO Electrode Composed of Self-Assembled Nanoplates. The Journal of Physical Chemistry C,2011.115(5):p. 2505-2513.
    80. Wang, Bao, Xing-Long Wu, Chun-Ying Shu, Yu-Guo Guo, and Chun-Ru Wang, Synthesis of CuO/graphene nanocomposite as a high-performance anode material for lithium-ion batteries. Journal of Materials Chemistry,2010.20(47):p.10661-10664.
    81. Thackeray, M. M., S. D. Baker, and J. Coetzer, The electrochemical behaviour of Co3O4 and CoO cathodes in high-temperature cells. Materials Research Bulletin,1982.17(3):p. 405-411.
    82. Thackeray, M. M., S. D. Baker, K. T. Adendorff, and J. B. Goodenough, Lithium insertion into Co3O4:A preliminary investigation. Solid State Ionics,1985.17(2):p.175-181.
    83. Do, Jing-Shan and Chien-Hsiang Weng, Preparation and characterization of CoO used as-anodic material of lithium battery. Journal of Power Sources,2005.146(1-2):p.482-486.
    84. Choi, Hyun Chul, Sang Yun Lee, Seung Bin Kim, Min Gyu Kim, Min Kyu Lee, Hyun Joon Shin, and Jae Sung Lee, Local Structural Characterization for Electrochemical Insertion-Extraction of Lithium into CoO with N-ray Absorption Spectroscopy. The Journal of Physical Chemistry B,2002.106(36):p.9252-9260.
    85. Dedryvere, R., S. Laruelle, S. Grugeon,P. Poizot, D. Gonbcau, and J. M. Tarascon, Contribution of X-ray Photoelectron Spectroscopy to the Study of the Electrochemical Reactivity of CoO toward Lithium. Chemistry of Materials,2004.16(6):p.1056-1061.
    86. Yu, Yan, Chun-Hua Chen, Jiang-Lan Shui, and Song Xie, Xickel-Foam-Supported Relicular CoO Li2O Composite Anode Materials for Lithium Ion Batteries. Angewandte Chemie International Edition,2005.44(43):p.7085-7089.
    87. Shui. J. L., Y. Yu, and C. H. Chen, Deposition conditions in tailoring the morphology of highly porous relicular films prepared by electrostatic spray deposition (ESD) technique. Applied Surface Science,2006.253(5):p.2379-2385.
    88. Yao. Wenli, Jun Yang, Jiulin Wang, and Yanna Nuli, Multilayered Cobalt Oxide Platelets for Negative Electrode Material of a Lithium-Ion Battery. Journal of The Electrochemical Society. 2008.155(12):p. A903-A908.
    89. Liu, Bo, Xinbo Zhang, Hiroshi Shioyama, Takashi Mukai, Tetsuo Sakai, and Qiang Xu, Converting cobalt oxide subunits in cobalt metal-organic framework into agglomerated Co3O4 nanoparticles as an electrode material for lithium ion battery. Journal of Power Sources,2010.195(3):p.857-861.
    90. Li, Yanguang, Bing Tan, and Yiying Wu, Mesoporous Co3O4 Nanowire Arrays for Lithium Ion Batteries with High Copacity and Rate Capability. Nano Lett.2007.8(1):p.265-270.
    91. Chou, Shu-Lei, Jia-Zhao Wang, Hua-Kun Liu, and Shi-Xue Dou, Electrochemical deposition of porous Co3O4 nanostruclured thin film for lithium-ion battery. Journal of Power Sources, 2008.182(1):p.359-364.
    92. Wu. Zhong-Shuai, Wencai Ren, Lei Wen, Libo Gao. Jinping Zhao, Zongping Chen, Guangmin Zhou, Feng Li, and Hui-Ming Cheng, draphene Anchored with Co3O4 Nanoparticles as Anode of Lithium Ion Batteries with Enhanced Reversible Capacity and Cyclic Performance. ACS Nano,2010.4(6):p.3187-3194.
    93. Needham, S. A., G. X. Wang, K. Konstantinov. Y. Tournayre, Z. Lao, and H. K. Liu. Electrochemical performance of Co3O4-C composite anode materials. Electrochemical and Solid State Letters.2006.9(7):p. A315-A319.
    94. Connor. Paul A. and John T. S. Irvine, Combined X-ray study of lithium (tin) cobalt oxide matrix negative electrodes for Li-ion batteries. Electrochimica Acta.2002.47(18):p. 2885-2892.
    95. Meduri, Praveen, Ezra Clark, Jeong H. Kim, Ethirajulu Dayalan, Gamini U. Sumanasekera, and Mahendra K. Sunkara, MoO3 x Nanowire Arrays As Stable and High-Capacity Anodes for Lithium lon Batteries. Nano Lett,2012.12(4):p.1784-1788.
    96. Shi, Yifeng, Bingkun Guo, Serena A. Corr, Qihui Shi, Yong-Sheng Hu, Kevin R. Heier, Liquan Chen, Ram Seshadri, and Galen D. Stucky, Ordered Mesoporous Metallic MoO2 Materials with Highly Reversible Lithium Storage Capacity. Nano Lett,2009.9(12):p. 4215-4220.
    97. Li, Wen-Jing and Zheng-Wen Fu, Nanostructured WO3 thin film as a new anode material for lithium-ion batteries. Applied Surface Science,2010.256(8):p.2447-2452.
    98. Lee, Se-Hee, Yong-Hyun Kim, Rohit Deshpande, Philip A. Parilla, Erin Whitney, Dane T. Gillaspie, Kim M. Jones, A. Harv Mahan, Shengbai Zhang, and Anne C. Dillon, Reversible Lithium-lon Insertion in Molybdenum Oxide Nanoparticles. Advanced Materials,2008. 20(19):p.3627-3632.
    99. Jung, Yoon S., Sangkyoo Lee, Dongjoon Ahn, Anne C. Dillon, and Se-Hee Lee, Electrochemical reactivity of ball-milled MoO3-y as anode materials for lithium-ion batteries. Journal of Power Sources,2009.188(1):p.286-291.
    100. Liu, Xingjiang, Hideo Yasuda, and Masanori Yamachi, Solid solution of nickel oxide and manganese oxide as negative active material for lithium secondary cells. Journal of Power Sources,2005.146(1-2):p.510-515.
    101. Lavela, P., G. F. Ortiz, J. L. Tirado, E. Zhecheva, R. Stoyanova, and Sv Ivanova, High-Performance Transition Metal Mixed Oxides in Conversion Electrodes:A Combined Spectroscopic and Electrochemical Study. The Journal of Physical Chemistry C,2007. 111(38):p.14238-14246.
    102. Sharma, Yogesh, N. Sharma, G. V. Subba Rao, and B. V. R. Chowdari, Lithium recycling behaviour of nano-phase-CuCo2O4 as anode for lithium-ion batteries. Journal Of Power Sources,2007.173(1):p.495-501.
    103. Alcantara, R., M. Jaraba, P. Lavela, J. L. Tirado, J. C. Jumas, and J. Olivier-Fourcade, Changes in oxidation state and magnetic order of iron atoms during the electrochemical reaction of lithium with NiFe2O4. Electrochemistry Communications,2003.5(1):p.16-21.
    104. Exarhos, G. J., C. F. Windisch Jr, K. F. Ferris, and R. R. Owings, Cation defects and conductivity in transparent oxides. Applied Physics A:Materials Science & Processing,2007. 89(1):p.9-18.
    105. Sharma. Yogesh, N. Sharma, G. V. Subba Rao, and B. V. R. Chowdari, Li-storage and cyclability of urea combustion derived ZnFe2O4 as anode for Li-ion batteries. Electrochimica Acta,2008.53(5):p.2380-2385.
    106. NuLi. Yan-Na and Qi-Zong Qin, Nanocrystalline transition metal ferrite thin films prepared by an electrochemical route for Li-ion batteries. Journal Of Power Sources,2005.142(1-2):p. 292-297.
    107. Guo, Xianwei, Xia Lu, Xiangpeng Fang, Ya Mao, Zhaoxiang Wang, Liquan Chen, Xiaoxue Xu, Hong Yang, and Yinong Liu, Lithium storage in hollow spherical ZnFe2O4 as anode materials for lithium ion batteries. Electrochemistry Communications,2010.12(6):p. 847-850.
    108. Wang. Xi, Xing-Long Wu, Yu-Guo Guo, Yeteng Zhong, Xinqiang Cao, Ying Ma, and Jiannian Yao, Synthesis and Lithium Storage Properties of Co3O4 Nanosheet-Assembled Multishelled Hollow Spheres. Advanced Functional Materials,2010.20(10):p.1680-1686.
    109. Jiao, F. and P. G Bruce, Mesoporous Crystalline β-MnO2—a Reversible Positive Electrode for Rechargeable Lithium Batteries. Advanced Materials,2007.19(5):p.657-660.
    110. Deng, Yuanfu, Qiumei Zhang, Shidi Tang, Leiting Zhang, Shengnan Deng, Zhicong Shi, and Guohua Chen, One-pot synthesis of ZnFe2O4/C hollow spheres as superior anode materials for lithium ion batteries. Chemical Communications,2011.47(24).
    111. NuLi, Yan-Na, Yan-Qiu Chu, and Qi-Zong Qin, Nanocrystalline ZnFe[sub 2]O[sub 4]and Ag-Doped ZnFe[sub 2]O[sub 4]Films Used as New Anode Materials for Li-Ion Batteries. Journal of The Electrochemical Society.2004.151(7):p. A1077-A1083.
    112. Kalai Selvan, R., N. Kalaiselvi, C. O. Augustin. C. H. Doh, and C. Sanjeeviraja, CnFe2O4 SnO2 nanocomposites as anodes for Li-ion batteries. Journal of Power Sources, 2006.157(1):p.522-527.
    113. Selvan, Ramakrishnan Kalai, Venkata Krishnan, Chanassery Ouso Augustin, Helmut Bertagnolli, Chul Sung Kim, and Aharon Gedanken, Investigations on the Structural, Morphological, Electrical, and Magnetic Properties of CuFe2O4-NiO Nanocomposites. Chemistry Of Materials,2007.20(2):p.429-439.
    114. Courtel, Fabrice M., Hugues Duncan, Yaser Abu-Lebdeh, and Isobel J. Davidson. High capacity anode materials for Li-ion batteries based on spinel metal oxides AMn2O4 (A=Co, Ni. and Zn). Journal Of Materials Chemistry,2011.21 (27):p.10206-10218.
    115. Deng. Yuanfu. Shidi Tang. Qiumei Zhang, Zhicong Shi, Leiting Zhang, Shuzhong Zhan, and Guohua Chen, Controllable synthesis of spinel nano-ZnMn2O4via a single source precursor route and its high capacity retention as anode material for lithium ion batteries. Journal of Materials Chemistry.2011.21(32):p.11987-11995.
    116. Bai, Zhongchao, Na Fan, Changhui Sun. Zhicheng Ju, Chunli Guo, Jian Yang, and Yitai Qian, Facile synthesis of loaf-like ZnMn2O4 nanorods and their excellent performance in Li-ion batteries. Nanoscale,2013.5(6):p.2442-2447.
    117. Li, Jingfa, Shenglin Xiong, Xiaowei Li, and Yitai Qian, A facile route to synthesize mulliporous MnCo2O4 and CoMn2O4 spinel quasi-hollow spheres with improved lithium storage properties. Nanoscale,2013.5(5):p.2045-2054.
    118. Kim, Haegyeom, Dong-Hwa Seo, Hyungsub Kim, Inchul Park, Jihyun Hong, Kyu-Young Park, and Kisuk Kang, Multicomponent Effects on the Crystal Structures and Electrochemical Properties of Spinel-Structured M3O4 (M=Fe, Mn, Co) Anodes in Lithium Rechargeable Batteries. Chemistry of Materials,2012.24(4):p.720-725.
    1. Deng, H., X. Li.Q-Peng, X. Wang, J. Chen, and Y. Li, Monodisperse magnetic single-crystal ferrile microspheres. Angew Chem Int Ed Engl.2005.44(18):p.2782-5.
    2. Lv. Hongjin, Liang Ma, Peng Zeng, Dingning Ke, and Tianyou Peng, Synthesis of floriated ZnFe2O4 with porous nanorod structures and its photocatalytic hydrogen production under visible light. Journal Of Materials Chemistry,2010.20(18):p.3665-3672.
    3. He, C., B. Zou, Z. Wu, and Y. Nie, Third order optical nonlinearities in ZnFe2O4 nanocrystals. Optics Communications,2008.281(4):p.851-854.
    4. Yao, Changwa, Qiaoshi Zeng, G. F. Goya, T. Torres, Jinfang Liu, Haiping Wu, Mingyuan Ge, Yuewu Zeng, Youwen Wang, and J. Z. Jiang, ZnFe2O4 Nanocrystals:Synthesis and Magnetic Properties. The Journal of Physical Chemistry C,2007.111(33):p.12274-12278.
    5. Zhang, Rongjun, Jiejie Huang. Jiantao Zhao, Zhiqiang Sun, and Yang Wang, Sol-Gel Auto-Combustion Synthesis of Zinc Ferrite for Moderate Temperature Desulfurization. Energy & Fuels,2007.21(5):p.2682-2687.
    6. Sharma, Y., N. Sharma, G. Rao, and B. Chowdari, Li-storage and cyclabilily of urea combustion derived ZnFe2O4 as anode for Li-ion batteries. Electrochimica Acta,2008.53(5): p.2380-2385.
    7. Xu, Tao, Xi Zhou, Zhiyuan Jiang, Qin Kuang, Zhaoxiong Xie, and Lansun Zheng. Syntheses of Nano Submicrosiructured Metal Oxides with All Polar Surfaces Exposed via a Molten Salt Route. Crystal Growth & Design,2008.9(1):p.192-196.
    8. NuLi, Yan-Na, Yan-Qiu Chu, and Qi-Zong Qin, Nanocrystalline ZnFe[sub 2]O[sub 4] and Ag-Doped ZnFe[sub 2]O[sub 4]Films Used as New Anode Materials for Li-Ion Batteries. Journal of The Electrochemical Society,2004.151(7):p. A1077.
    9. Guo, Xianwei. Xia Lu, Xiangpeng Fang, Ya Mao, Zhaoxiang Wang, Liquan Chen, Xiaoxue Xu, Hong Yang, and Yinong Liu. Lithium storage in hollow spherical ZnFe2O4 as anode materials for lithium ion batteries. Electrochemistry Communications,2010.12(6):p. 847-850.
    10. Teh, Pei Fen, Yogesh Sharma, Stevin Snellius Pramana. and Madhavi Srinivasan. Nanoweh anodes composed of one-dimensional, high aspect ratio, size tunable electrospun ZnFe2O4 nanofibers for lithium ion butteries. Journal Of Materials Chemistry,2011.21(38):p. 14999-15008.
    11. Qian, Hai-Sheng, Yong Hu, Zheng-Quan Li, Xing-Yun Yang, Liang-Chao Li, Xian-Ting Zhang, and Rong Xu, ZnO/ZnFe2O4 Magnetic Fluorescent Bifunctional Hollow Nanospheres: Synthesis, Characterization, and Their Optical/Magnetic Properties. The Journal of Physical Chemistry C,2010.114(41):p.17455-17459.
    12. Haetge, Jan, Christian Suchomski, and Torsten Brezesinski, Ordered Mesoporous MFe2O4 (M=Co, Cu, Mg, Ni, Zn) Thin Films with Nanocrystalline Walls, Uniform 16 nm Diameter Pores and High Thermal Stability:Template-Directed Synthesis and Characterization of Redox Active Trevorite. Inorg Chem,2010.49(24):p.11619-11626.
    13. Voorhees, P W, Ostwald Ripening of Two-Phase Mixtures. Annual Review of Materials Science,1992.22(1):p.197-215.
    14. Wang, Z. L., Transmission Electron Microscopy of Shape-Controlled Nanocrystals and Their Assemblies. The Journal of Physical Chemistry B,2000.104(6):p.1153-1175.
    15. Zhou, Z. Y., N. Tian, J. T. Li, I. Broadwell, and S. G. Sun, Nanomaterials of high surface energy with exceptional properties in catalysis and energy storage. Chem Soc Rev,2011. 40(7):p.4167-85.
    16. Li, Hong, Xuejie Huang, and Liquan Chen, Anodes based on oxide materials for lithium rechargeable batteries. Solid State Ionics,1999.123(1-4):p.189-197.
    17. Zhang, Qiumei, Zhicong Shi, Yuanfu Deng, Jun Zheng, Guichang Liu, and Guohua Chen, Hollow Fe3O4/C spheres as superior lithium storage materials. Journal of Power Sources, 2012.197:p.305-309.
    18. Wang, Suqing, Jingying Zhang, and Chunhua Chen, Fe3O4 submicron spheroids as anode materials for lithium-ion batteries with stable and high electrochemical performance. Journal of Power Sources,2010.195(16):p.5379-5381.
    19. Grugeon, S., S. Laruelle, L. Dupont, and J. M. Tarascon, An update on the reactivity of nanoparticles Co-based compounds towards Li. Solid State Sciences,2003.5(6):p.895-904.
    20. Balaya, P., H. Li, L. Kienle, and J. Maier,Fully Reversible Homogeneous and Heterogeneous Li Storage in RuO2 with High Capacity. Advanced Functional Materials.2003.13(8):p. 621-625.
    21. Deng, Y., Q. Zhang, S. Tang, L. Zhang, S. Deng, Z. Shi, and G. Chen, One-pot synthesis of ZnFe2O4/C hollow spheres as superior anode materials for lithium ion batteries. Chem Cummun (Camb), 2011,47(24):p.6828-3..
    22.Poizot, P., S. Laruelle, S. Grugeon. L. Dupont, and J. M. Tarascon. Nano-sized transition-metal oxides as negative-electrode matrials for lithium-ion batteries Nature. 2001. 407(0803): p.496-499.
    23.Zhu, Xianjun, Yanwu Zhu. Shanthi Murali, Meryl D. Stoller, and Rodney S. Ruoff. Nanostructured Reduced Graphene Oxide Fe2O3 Composite As a High-Performance Anode Material for Lithium lon Batteries. ACS Nano, 2011.5(4): p.3333-3338.
    1. Goya, G. F., H. R. Rechenberg, and J. Z. Jiang. Struclural and magnetic properties of hull milled copper fertite. Journal of Applied Physics,1998.84(2):p.1101-1108.
    2. Chen, N. S., X. J. Yang, E. S. Liu, and J. L. Huang, Reducing gas-sensing properties of ferrite compounds MFe2O4 (M Cu, Zn, Cd and Mg). Sensors and Actuators B-Chemical,2000. 66(1-3):p.178-180.
    3. Shangguan, W. F., Y. Teraoka, and S. Kagawa, Promotion effect of potassium on the catalytic-property of CuFe2O4 for the simultaneous removal of NOx and diesel soot particulate. Applied Catalysis B-Environmental,1998.16(2):p.149-154.
    4. Jiang, J. Z., G. F. Goya, and H. R. Rechenberg, Magnetic properties of nanostructured CuFe2O4. Journal of Physics-Condensed Matter,1999.11(20):p.4063-4078.
    5. Goya, G. F., H. R. Rechenberg, and J. Z. Jiang, Magnetic irreversibility and relaxation in CuFe2O4 nanoparticles. Journal of Magnetism and Magnetic Materials,2000.218(2-3):p. 221-228.
    6. Prabhu, D., A. Narayanasamy, K. Shinoda, B. Jeyadeven, J. M. Greneche, and K. Chattopadhyay, Grain size effect on the phase transformation temperature of nanostructured CuFe/suh 2]O[sub 4]. Journal of Applied Physics,2011. 109(1):p.013532-6.
    7. NuLi, Yan-Na and Qi-Zong Qin, Nanocrystalline transition metal ferrite thin films prepared by an electrochemical route for Li-ion batteries. Journal Of Power Sources,2005.142(1-2):p. 292-297.
    8. Kalai Selvan, R., N. Kalaiselvi, C. O. Augustin, C. H. Doh, and C. Sanjeeviraja, CuFe2O4 SnO2 nanocomposites as anodes for Li-ion batteries. Journal of Power Sources, 2006.157(1):p.522-527.
    9. Bomio, M., P. Lavela, and J. L. Tirado, (57)Fe Mossbauer spectroscopy and electron microscopy study of metal extraction from CuFe(2)O(4) electrodes in lithium cells. Chemphyschem,2007.8(13):p.1999-2007.
    10. Jin, Limin, Yongcai Qiu, Hong Deng. Weishan Li, Hong Li, and Shihe Yang, Hollow CuFe2O4 spheres encapsulated in carbon shells as an anode material for rechargeable lithium-ion batteries. Electrochimica Acta,2011.56(25):p.9127-9132.
    11. Gruner, W., J. Thomas, L. Giebeler, H. Ehrenberg. and D. Wadewitz, Interactions of Copper and Iron in Conversion Reactions of Nanosized Oxides with Large I ariations in Iron-Copper Ratio. Journal of The Electrochemical Society.2011.158(12):p. A1383-A1392.
    12. Selvan, R. Kalai, C. O. Augustin, L. John Berchmans. and R. Saraswathi, Combustion synthesis of CuFe2O4. Materials Research Bulletin,2003.38(1):p.41-54.
    13. Ahmed, Y. M. Z., M. M. Hessien, M. M. Rashad, and I. A. Ibrahim, Nano-cystalline copper ferrites from secondary iron oxide (mill scale). Journal of Magnetism and Magnetic Materials, 2009.321(3):p.181-187.
    14. Oak, H. N., K. S. Baek, and S. J. Kim, Mossbauer studies of superexchange interaction in tetragonal CuFe2O4. Physica Status Solidi B-Basic Research,1998.208(1):p.249-255.
    15. Ponhan, Wichaid and Santi Maensiri, Fabrication and magnetic properties of electrospun copper fertile (CuFe2O4) nanofibers. Solid State Sciences,2009.11(2):p.479-484.
    16. Mouallem-Bahout, Mona, Sarah Bertrand, and Octavio Pena, Synthesis and characterization of Znl-xNixFe2O4 spinels prepared by a citrate precursor. Journal of Solid State Chemistry, 2005.178(4):p.1080-1086.
    17. Poizot, P., S. Laruelle, S. Grugeon, L. Dupont, and J. M. Tarascon, Nano-sized transition-metaloxides as negative-electrode materials for lithium-ion batteries. Nature,2000. 407(6803):p.496-499.
    18. Huang, X. H., C. B. Wang, S. Y. Zhang, and F. Zhou, CuO/C microspheres as anode materials for lithium ion batteries. Electrochimica Acta,2011.56(19):p.6752-6756.
    19. Cabana, Jordi, Laure Monconduit, Dominique Larcher, and M. Rosa Palacin, Beyond Intercalation-Based Li-Ion Batteries:The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions. Advanced Materials,2010.22(35):p. E170-E192.
    20. Wang, Jia-Zhao, Chao Zhong, David Wexler, Nurul Hayati Idris, Zhao-Xiang Wang, Li-Quan Chen, and Hua-Kun Liu, Graphene-Encapsulated Fe3O4 Nanoparticles with 3D Laminated Structure as Superior Anode in Lithium Ion Batteries. Chemistry-A European Journal,2011. 17(2):p.661-667.
    21. Larcher, D., C. Masquelier, D. Bonnin, Y. Chabre, V. Masson, J.-B. Leriche, and J.-M. Tarascon, Effect of Particle Size on Lithium Intercalation into a-Fe2O3. Journal of The Electrochemical Society,2003.150(1):p. A133-A139.
    22. Yamakawa, Naoko, Meng Jiang, and Clare P. Grey, Investigation of the Conversion Reaction Mechanisms for Binary Copper(Ⅱ) Compounds by Solid-State NMR Spectroscopy and X-ray Diffraction Chemistry of Materials,2009.21(14):p.3162-3176.
    23. Grugeon, S., S. Laruelle, L. Dupont, and J. M. Tarascon, An update on the reactivity of nanoparticles Co-based compounds towards Li. Solid State Sciences,2003.5(6):p.895-904.
    24. Arico, Antonino Salvatore, Peter Bruce, Bruno Scrosati. Jean-Marie Tarascon, and Walter van Schalkwijk. Nanostructured materials for advanced energy conversion and storage devices. Nat Mater,2005.4(5):p.366-377.
    25. Bruce, Peter G, Bruno Scrosati, and Jean-Marie Tarascon, Nanomaterials for Rechargeable Lithium Batteries. Angewandte Chemie International Edition.2008.47(16):p.2930-2946.
    26. Li, H., P. Balaya, and J. Maier, Li-storage via heterogeneous reaction in selected binary metal fluorides and oxides. Journal of The Electrochemical Society,2004.151(11):p. A1878-A1885.
    27. Reddy, M. V., G. V. Subba Rao, and B. V. R. Chowdari, Metal Oxides and Oxysalts as Anode Materials for Li Ion Batteries. Chemical Reviews,2013.
    28. Pan, P., T. Yang, K. Tao, and B. X. Liu, Metastable Phase Formation in the Fe Cu System by Ion Irradiation and Solid State Interdiffusion. physica status solidi (a),1993.135(1):p. 199-206.
    29. Zhu, Xianjun, Yanwu Zhu, Shanthi Murali, Meryl D. Stoller, and Rodney S. Ruoff, Nanostructured Reduced Graphene Oxide/Fe2O3 Composite As a High-Performance Anode Material for Lithium Ion Batteries. ACS Nano,2011.5(4):p.3333-3338.
    1. Heyer, O., N. Hollmann, I. Klassen, S. Jodlauk, L. Bohaty, P. Becker, J. A. Mydosh, T. Lorenz, and D. Khomskii,A new multiferroic material:MnWO4. Journal of Physics-Condensed Matter,2006.18(39):p. L471-L475.
    2. Qu, W. M., W. Wlodarski, and J. U. Meyer, Comparative study on micromorphology and humidity sensitive properties of thin-film and thick-film humidity sensors based on semiconducting MnWO4. Sensors and Actuators B-Chemical,2000.64(1-3):p.76-82.
    3. Ehrenberg, H., H. Weitzel, C. Heid, H. Fuess, G. Wltschek, T. Kroener, J. vanTol, and M. Bonnet, Magnetic phase diagrams of MnWO4. Journal of Physics-Condensed Matter,1997. 9(15):p.3189-3203.
    4. Zhou, Yu-Xue, Qiao Zhang, Jun-Yan Gong, and Shu-Hong Yu, Surfactant-Assisted Hydrothermal Synthesis and Magnetic Properties of Urchin-like MnWO4 Microspheres. The Journal of Physical Chemistry C,2008.112(35):p.13383-13389.
    5. Zhang, Lei, Canzhong Lu, Yuansheng Wang, and Yao Cheng, Hydrolhermal synthesis and characterization of MnWO4 nanoplates and their ionic conductivity. Materials Chemistry and Physics,2007.103(2-3):p.433-436.
    6. Thongtem, S., S. Wannapop, and T. Thongtem, Characterization of MnWO4 with flower-like clusters produced using spray pyrolysis. Transactions of Nonferrous Metals Society of China, 2009.19:p. S100-S104.
    7. Jang, Meehae, Timothy J. R. Weakley, and Kenneth M. Doxsee, Aqueous Crystallization of Manganese(Ⅱ) Group 6 Metal Oxides. Chemistry of Materials,2001.13(2):p.519-525.
    8. Xing, Yan, Shuyan Song, Jing Feng, Yongqian Lei, Meiye Li, and Hongjie Zhang, Microemulsion-mediated solvothermal synthesis and photoluminescent property of 3D flowerlike MnWO4 micro/nanocomposite structure. Solid State Sciences,2008.10(10):p. 1299-1304.
    9. Yu, S. H., B. Liu, M. S. Mo, J. H. Huang, X. M. Liu, and Y. T. Qian. General Synthesis of Single-Crystal Tungstate Nanorods/Nanowires:A Facile. Low-Temperature Solution Approach. Advanced Functional Materials,2003.13(8):p.639-647.
    10. Chen, Shu-Jian, Xue-Tai Chen, Ziling Xue, Jian-Hao Zhou, Jing Li, Jian-Ming Hong, and Xiao-Zeng You, Morphology control of MnWO4 nanociystals by a solvothermal route. Journal of Materials Chemistry,2003.13(5):p.1132-1135.
    11. Yang, Peidong, Dongyuan Zhao, David I. Margolese, Bradley F. Chmelka, and Galen D. Stucky, Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks. Nature.1998.396(6707):p.152-155.
    12. Han, W. Q., L. J Wu, R. F Klie. and Y. M Zhu, Enhanced Optical Absorption Induced by Dense Nanocarities inside Titania Nanorods. Advanced Materials,2007.19(18):p. 2525-2529.
    13. Kroekenstoel. E. J. A., E. Verhagen, R. J. Walters, L. Kuipers, and A. Polman. Enhanced spontaneous emission rate in annular plasmonic nanocavities. Applied Physics Letters,2009. 95(26):p.263106-3.
    14. Makarova, Maria, Vanessa Sih, Joe Warga, Rui Li, Luca Dal Negro, and Jelena Vuckovic, Enhanced light emission in photonic crystal nanocavities with Erbium-doped silicon nanocrystals. Applied Physics Letters,2008.92(16):p.161107-3.
    15. Evans, J. H., Observations of a Regular Void Array in High Purity Molybdenum irradiated with 2 MeV Nitrogen Ions. Nature,1971.229(5284):p.403-404.
    16. Seel, Heiko and Rolf Brendel, Optical absorption in crystalline Si films containing spherical voids for internal light scattering. Thin Solid Films,2004.451-452(0):p.608-611.
    17. Han, Wei-Qiang and A. Zettl, Nanocrystal cleaving. Applied Physics Letters,2004.84(14):p. 2644-2645.
    18. Xiong, Yujie, Benjamin Wiley, Jingyi Chen, Zhi-Yuan Li, Yadong Yin, and Younan Xia, Corrosion-Based Synthesis of Single-Crystal Pd Nanoboxes and Nanocages and Their Surface Plasmon Properties. Angewandte Chemie International Edition,2005.44(48):p.7913-7917.
    19. Lou, Xiong Wen, Lynden A. Archer, and Zichao Yang, Hollow Micro-Nanostructures: Synthesis and Applications. Advanced Materials,2008.20(21):p.3987-4019.
    20. Poizot, P., S. Laruelle, S. Grugeon, L. Dupont, and J. M. Tarascon, Sano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature,2000. 407(6803):p.496-499.
    21. Julien, C. M., Lithium intercalated compounds:Charge transfer and related properties. Materials Science and Engineering:R:Reports,2003.40(2):p.47-102.
    22. Mai, L. Q, B. Hu, W. Chen, Y. Y Qi, C. S Lao, R. S Yang, Y. Dai, and Z. L Wang, Lithialed MoO3 Nanohelts with Greatly Improved Performance for Lithium Batteries. Advanced Materials,2007.19(21):p.3712-3716.
    23. Binotto, G., D. Larcher, A. S. Prakash, R. Herrera Urbina, M. S. Hegde, and J. M. Tarascon. Synthesis. Characterization, and Li-Electrochemical Performance of Highly Porous Co3O4 Powders. Chemistry of Materials,2007.19(12):p.3032-3040.
    24. Shim. Hyun-Woo, In-Sun Cho, Kug Sun Hong, Ah-Hyeon Lim, and Dong-Wan Kim, Wolframite-type ZnWO4 Nanorods as Sew Anodes for Li-Ion Batteries. The Journal of Physical Chemistry C,2011.115(32):p.16228-16233.
    25. Sharma, N., K. M. Shaju, G. V. Subba Rao, B. V. R. Chowdari, Z. L. Dong, and T. J. White, Carbon-Coated Nanophase CaMoO4 as Anode Material for Li Ion Batteries. Chemistry of Materials,2003.16(3):p.504-512.
    26. Xiao, Wei, Jun Song Chen, Chang Ming Li, Rong Xu, and Xiong Wen Lou, Synthesis. Characterization, and Lithium Storage Capability of AMoO4 (A=Ni, Co) Nanorods(?). Chemistry of Materials,2009.22(3):p.746-754.
    27. Sun, Xiaoming, Junfeng Liu, and Yadong Li, Oxides@C Core-Shell Nanostructures: One-Pot Synthesis, Rational Conversion, and Li Storage Property. Chemistry of Materials, 2006.18(15):p.3486-3494.
    28. Liu, Jun, Fei Liu, Kun Gao, Junshu Wu, and Dongfeng Xue, Recent developments in the chemical synthesis of inorganic porous capsules. Journal of Materials Chemistry,2009. 19(34):p.6073-6084.
    29. Li, J. F., S. L. Xiong, X. W. Li, and Y. T. Qian, A facile route to synthesize multiporous MnCo2O4 and CoMn2O4 spinel quasi-hollow spheres with improved lithium storage properties. Nanoscale,2013.5(5):p.2045-2054.
    30. Jayaprakash, N., J. Shen, S. S. Moganty, A. Corona, and L. A. Archer, Porous Hollow Carbon@Sulfur Composites for High-Power Lithium-Sulfur Batteries. Angewandte Chemie-International Edition,2011.50(26):p.5904-5908.
    31. Zhang, B., X. Qin, G. R. Li, and X. P. Gao, Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres. Energy & Environmental Science, 2010.3(10):p.1531-1537.
    32. Wang, Y. L., Q. L. Sun, Q. Q. Zhao, J. S. Cao, and S. H. Ye, Rechargeable lithium/iodine battery with superior high-rate capability by using iodine-carbon composite as cathode. Energy & Environmental Science,2011.4(10):p.3947-3950.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700