低维半导体氧化物的合成及气体传感器的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
工业化发展为人类创造财富的同时,对环境也造成了很大的污染。工业生产中使用的气体原料和生产过程中产生气体的种类和数量越来越多,这些气体中,有毒、有害气体不仅污染环境,而且有产生爆炸、火灾和使人中毒的危险。因此,有必要对环境中的大气进行实时检测。基于半导体金属氧化物的电阻型气体传感器,具有灵敏度高、选择性好、稳定性高、易于微型化和自动化等优点,在工业控制和环境监测等领域具有广泛的应用前景。纳米材料,因其具有大的比表面积、高的表面活性,能使半导体金属氧化物的气敏性能显著提高,因此利用纳米合成技术改进气敏材料的性能已成为今后气敏材料发展的主导方向之一; 另外,选择适当的添加剂对气敏材料进行掺杂是提高材料气敏性能的有效方法之一。本论文一方面采用室温固相化学反应法、溶剂热法、有机溶液氧化-还原法等方法合成了一系列纳米半导体金属氧化物,并构建成旁热式气体传感器用于气体的检测; 另一方面,对部分所得纳米颗粒进行贵金属掺杂,利用贵金属良好的催化特性,实现对材料性能的增敏作用。主要完成了以下研究工作:
    1、利用室温固相化学反应法制备了一系列的半导体纳米复合氧化物。室温固相化学反应是指在室温或近室温条件下的固-固相化学反应,该法制备无机纳米材料是一个全新的课题,它不需要溶剂,从根本上消除了溶剂化作用,使反应在一个全新的环境下进行,整个反应过程经历扩散、反应、成核以及核的生长四个步骤,在实验体系中加入适量的无机盐来控制材料的定向生长而得到粒径细小且分布均匀的纳米材料。本论文中,采用价格相对低廉的无机盐作为前驱体,并在体系中加入适量的NaCl以控制所得材料的粒径而得到Mg_2Fe_2O_4、CdSnO_3、NiFe_2O_4等复合氧化物。实验结果表明,该制备方法简化了工艺流程,具有污染小、产率高、节约能源等优点。
    贵金属作为活泼的催化剂,通常被用来作为掺杂剂来提高半导体材料的气敏性能。本论文中,在用室温固相化学反应法制得纳米材料的基础上,采用浸渍法对部分所得纳米材料进行不同贵金属掺杂,并对贵金属影响原材料的气敏性能及机理进行了分析与探讨。
    (1)第二章中,利用该法得到了球形Mg_2Fe_2O_4纳米材料,并将该材料制成旁热式气体传感器元件,检测了该元件对CH_4、H_2S、LPG和酒精气体的灵敏度情况。该元件在工作温度为160 oC时,能实现对低浓度H_2S的有效检测,而在工作温度为335 oC时,能实现对酒精气体的有效检测。相对其它被测气体,其抗干扰性很好。
The development of industry has brought much more treasures to people. However, more and more poisonous gases produced in the development process are not only non-friendly to the environment but also dangerous to people. With the fast development of the society, people need higher efficient methods to detect the poisonous gases. Gas sensors based on metal oxide semiconductors have the advantages of high-sensitivity, nice-selectivity as well as easy miniaturization and automation. They can be applied to a wide range of analytical tasks, such as industrial control and environmental monitoring. On the one hand, nano-crystalline particles, exhibiting a large surface area with diameter less than 100 nm, might be favorable for improving the sensitivity of gas-sensing material. Carrying out researches on the preparation methods of nano-materials is one of the new research directions of current gas sensing materials. On the other hand, surface modification by proper choice of additives or dopants is often used to improve the response of the gas sensing materials for particular applications. According to the above-mentioned directions, a series of investigations including preparation of nano-materials, structural analysis and actual application in gas sensing field have been performed in this dissertation.
     In part one, a series of nano-sized mixed oxides has been obtained by solid-solid chemical reaction at room temperature which is a new direction in preparing inorganic nano-materials. This method doesn’t use solvent and avoids the effect of solvent. There are four steps in a typical proceeding of solid-state reaction: diffusion, reaction, nucleation and growth. The growth of the final particles is inhibited by the inorganic salts added in the reaction system. We have obtained Mg2Fe2O4, CdSnO3 and NiFe2O4 using cheap inorganic salts as precursors. The process used here is a high-yielding, low-cost procedure and environment friendly for the synthesis of the nano-materials above-mentioned.
     Furthermore, the noble metals, well known as active catalysts, have been confirmed to possess the promoting effects on many semiconductor gas sensors. So Pt, Pd and Au are used to better the gas sensing properties of the final materials obtained in this thesis by the impregnation technique.
    In chapter 2, n-type semi-conductive nanometer material MgFe2O4 was
    synthesized by solid state reaction of inorganic reagents MgSO4, Fe(NO3)3?9H2O, and NaOH. Conductance responses of the nanocrystalline MgFe2O4 thick film were measured by exposing the film to reducing gases like methane (CH4), hydrogen sulfide (H2S), liquefied petroleum gas (LPG) and ethanol gas (C2H5OH). It was found that the sensor exhibited various sensing responses to these gases at different operating temperature and the gas sensor can realize the detection of low concentration of H2S and ethanol at 160 oC and 335 oC, respectively. Furthermore, the sensor exhibited a fast response and a good recovery. Successive on and off responses could be repeated without observing major changes in the response signal. In chapter 3, CdSnO3, a semiconducting oxide with perovskite structure, was prepared by solid state reaction of inorganic reagents 3CdSO4?8H2O, SnCl4?5H2O and NaOH. Noble metal additive Pt of different concentrations from 0.1 at.% to 2 at.% was incorporated into CdSnO3 by impregnation technique and the effect of Pt on the gas sensing properties of nano-crystalline CdSnO3 was studied. Conductance responses of the nano-crystalline CdSnO3 thick films were measured by exposing the films to C2H5OH, CO, CH4, C4H10, gasoline and LPG at different operating temperatures. It was found that sensors doped with Pt exhibited good sensitivity and selectivity to the vapor of C2H5OH and the optimum sensitivity is 68.2 obtained with the sensor doped with 1.5 at.% Pt. In chapter 4, ultrafine NiFe2O4 powders were prepared by solid state reaction of inorganic reagents, Ni(Ac)2, Fe(NO3)3, and NaOH. Noble metals such as Au, Pd and Pt with different concentration were incorporated into NiFe2O4 by impregnation technique. The gas sensing characteristic of NiFe2O4 nanopowder with and without different noble metal dopants were investigated. The electrical resistance response to H2S gas of the sensors based on the materials was investigated at different operating temperature and different gas concentrations. The results show that NiFe2O4 is a p-type semiconductor and the gas-sensing response of the doped NiFe2O4 sensors was superior to that of the undoped ones. The sensor response increased linearly with the H2S gas concentration up to 100 ppm. The sensor with the 1.5 at.% Au doped NiFe2O4 showed excellent electrical resistance response towards 5ppm H2S gas and the sensor response was up to 35.8 at 300 oC. The 1.5 at.% Pt doped one was less sensitive to H2S but worked at lower temperature, 240 oC. The gas-sensing behavior of these materials with respect to various reducing gases like LPG, CH4, CO, C4H10 and H2 shows that the H2S gas sensor developed possesses an excellent selectivity. The interaction mechanism and correlations between the electrical
    resistance response and noble metal dopants were discussed. One-dimensional materials such as nanorods and nanowires have attracted much attention due to their specific physical properties and interesting application in nano-devices. The study of one dimensional (1D) materials has become a potential frontier in nanoscience and nanotechnology in the last few years. In part two, nano-sized flower-like ZnO and ZnO nano-rods were synthesized by a simple hydrothermal method and a solvothermal route, respectively (Chapter 5). The two methods are convenient, environment friendly, inexpensive and efficient process. The gas sensors based on the ZnO obtained by these two methods showed excellent responses and selectivity to ethanol gas and the responses and recoveries were both fast. In part three, ZnO nanorods were synthesized by a modified polyol process using inorganic reagents as the precursors (Chapter 6). The synthesis process without requirement of delicate equipments was a convenient, environment friendly, inexpensive and efficient method for preparing ZnO nanorods. Conductance responses of the ZnO nanorod thick film were measured by exposing the film to reducing gases like CH4, LPG, C4H10, H2 and C2H5OH. The results indicate that the device showed nice responses and selectivity to ethanol gas. Furthermore, the sensor exhibited a fast response and a good recovery property. In part four, a compound material of MWNTs coated with SnO2 was synthesized at ambient conditions, and the gas sensing properties of the material were studied (Chapter 7). Conductance responses of the compound materials were measured by exposing to reducing gases like CH4, CO, C4H10, LPG and ethanol gas. It was found that the device exhibited nearly non-sensing responses to CH4, CO and C4H10. While it showed good sensing responses to LPG and C2H5OH. Furthermore, the sensor exhibited a fast response and recovery within seconds and the gas-sensing responses increased linearly with the increment of the gas concentrations of LPG and ethanol. Many preparation methods described and nano-materials obtained in this dissertation aimed on the gas sensing materials. Their potential application area is not, however, limited to this kind of materials. In part five, nano-sized flower-like ZnO synthesized by a simple hydrothermal method was dispersed in the chitosan solution to form a ZnO/chitosan composite matrix for the fabrication of H2O2 biosensor in the complementary part of the thesis (Chapter 8). This composite combined the advantages of inorganic species (ZnO) and organic polymer (chitosan). The parameters affecting the fabrication and experimental conditions of biosensors
    were optimized. Using hydroquinone as the mediator, the biosensor showed a fast response of less than 5 s with the linear range of 1.0×10-5 to 1.8×10-3 mol L-1H2O2 with a correlation coefficient of 0.995 (n =20). The detection limit of the sensor was found to be 2.0 μmol L-1, based on a signal-to-noise ratio of 3. The biosensor exhibited satisfactory reproducibility and stability and retained about 78% of its original response after 40 day storage in a phosphate buffer at 4 °C.
引文
[1] 何金田, 苏运东. 传感器原理与应用. 河南: 科学技术出版社, 1996
    [2] 徐毓龙, G. Heiland. 金属氧化物气敏传感器 (Ⅵ). 传感技术学报, 1997, 3: 79-82
    [3] Watson J. The tin oxide gas sensor and its applications. Sensors and Actuators, 1984, 5(1): 29-42
    [4] Riegel J, Neumann H, Wiedenmann H M. Exhaust gas sensors for automotive emission control. Solid State Ionics, 2002, 152-153: 783-800
    [5] Docquier N, Candel S. Combustion control and sensors: a review. Progress in Energy and Combustion Science, 2002, 28(2): 107-150
    [6] Di Natale C, Macagnano A, Davide F, et al. Electronic nose for food analysis. Sensors and Actuators B, 1997, 44(1-3): 521-526
    [7] 李 平 , 余 萍 , 肖 定 全 . 气 体 传 感 器 的 近 期 进 展 . 功 能 材 料 , 1999, 30(2): 126-128
    [8] Moseley P T. Materials selection for semiconductor gas sensors. Sensors and Actuators B, 1992, 6(1-3): 149-156
    [9] Simon I, Barsan N, Bauer M, et al. Micromachined metal oxide gas sensors: opportunities to improve sensor performance. Sensors and Actuators B, 2001, 73(1): 1-26
    [10] Pasciak G, Prociow K, Mielcarek W, et al. Solid electrolytes for gas sensors and fuel cells applications. Journal of the European Ceramic Society, 2001, 21(10-11): 1867-1870
    [11] Maskell W C. Progress in the development of zirconia gas sensors. Solid State Ionics, 2000, 134(1-2): 43-50
    [12] Spetz A L, Tobias P, Unéus L, et al. High temperature catalytic metal field effect transistors for industrial applications. Sensors and Actuators B, 2000, 70(1-3): 67-76
    [13] Cheeke J D N, Wang Z. Acoustic wave gas sensors. Sensors and Actuators B, 1999, 59(2-3): 146-153
    [14] Khlebarov Z P, Stoyanova A I, Topalova D I. Surface acoustic wave gas sensors. Sensors and Actuators B, 1992, 8(1): 33-40
    [15] Chang S M, Muramatsu H, Nakamura C, et al. The principle and applications of piezoelectric crystal sensors. Materials Science and Engineering: C, 2000, 12(1-2): 111-123
    [16] Werle P, Slemr F, Maurer K, et al. Near-and mid-infrared laser-optical sensors for gas analysis. Optics and Lasers in Engineering, 2002, 37(2-3): 101-114
    [17] Karin P K. Chemical Gas Sensors Based on Organic Semiconductor Polypyrrole. Critical Reviews in Analytical Chemistry, 2002, 32(2): 121-140
    [18] 康昌鹤, 唐省吾. 气、湿敏传感器及其应用, 北京: 科学出版社, 1988
    [19] Seiyama T, Kato A, Fujiishi K, et al. New detector for gaseous components using semiconductive thin films. Analytical Chemistry, 1962, 34(11): 1502-1503
    [20] Seiyama T, Kagawa S. Study on a detector for gaseous components using semiconductive thin films. Analytical Chemistry, 1962, 38(8): 1069-1073
    [21] Goto K S. Solid state electrochemistry and its applications to sensors and electronic device. Mater. Sci. Monograph, 1988, 49: 341-365.
    [22] Aroutiounian V M, Aghababian G S. To the theory of semiconductor gas sensors. Sensors and Actuators B, 1998, 50(1): 80-84
    [23] Geistlinger H. Accumulation layer model for Ga2O3 thin-film gas sensors based on the Volkenstein theory of catalysis. Sensors and Actuators B, 1994, 18(1-3): 125-131.
    [24] Volkenstein F F. The electron theory of catalysis on semiconductors. New York: Macmillan, 1973
    [25] Kiseljov V F, Krilov O V. Electronic phenomena in adsorption and catalysis. New York: Springer, 1986
    [26] Aroutiounian V M, Aghababian G S. On the theory of gas adsorption on semiconductor. J. Contemp. Phys. 1997, 32: 91-97.
    [27] Aroutiounian V M, Aghababian G S. On the theory of the adsorption of a gas on semiconductor. Surface Review and Letters, 1997, 4(5): 1059-1061.
    [28] Geistlinger H. Electron theory of thin film gas sensors. Sensors and Actuators B, 1993, 17(1): 47-60.
    [29] Geistlinger H. Interface and surface statistics for a Schottky-barrier gas sensor. Sensors and Actuators B, 1992, 7(1-3): 619-625
    [30] 宁文生, 杜丕一, 翁文剑, 等. 气敏材料的研究进展. 材料导报, 2002, 16(8): 45-47
    [31] 牛新书, 徐荭, 王新军. 超微粉的制备及气敏掺杂效应研究新进展. 传感技术学报, 2000, 4: 330-335
    [32] Shaver P J. Activated tungsten oxide gas detectors. Applied Physics Letters 1967, 11(8): 255-257
    [33] Korotcenkov G, Brinzari V, Boris Y, et al. Influence of surface Pd doping on gas sensing characteristics of SnO2 thin films deposited by spray pirolysis. Thin Solid Films, 2003, 436(1): 119-126
    [34] Neri1 G, Bonavita1 A, Galvagno S, et al. Preparation, characterization and CO sensing of Au/iron oxide thin films. Journal of Materials Science: Materials in Electronics, 2002, 13(9): 561-565
    [35] Penza M, Martucci C, Cassano G. NOx gas sensing characteristics of WO3 thin films activated by noble metals (Pd, Pt, Au) layers. Sensors and Actuators B, 1998, 50(1): 52-59
    [36] Niranjan R S, Patil K R, Sainkar S R, et al. Morphological and sensing properties of spray-pyrolysed Th: SnO2 thin films. Materials Chemistry and Physics, 2004, 84(1): 37-45
    [37] Comini E, Ferroni M, Guidi V, et al. Effects of Ta/Nb-doping on titania-based thin films for gas-sensing. Sensors and Actuators B, 2005, 108(1-2): 21-28
    [38] Jinkawa T, Sakai G, Tamaki J, et al. Relationship between ethanol gas sensitivity and surface catalytic property of tin oxide sensors modified with acidic or basic oxides. Journal of Molecular Catalysis A, 2000, 155(1-2): 193-200
    [39] Chowdhuri A, Gupta V, Sreenivas K. Fast response H2S gas sensing characteristics with ultra-thin CuO islands on sputtered SnO2. Sensors and Actuators B, 2003, 93(1-3): 572-579
    [40] Park C O, Akbar S A, Hwang J. Selective gas detection with catalytic filter. Materials Chemistry and Physics, 2002, 75(1-3): 56-60
    [41] Yamazoe N, Sakai G, Shimanoe K. Oxide semiconductor gas sensors. Catalysis Surveys from Asia, 2003, 7(1): 63-75
    [42] 王毓德, 吴兴惠, 田子华. 一种实现气敏元件互补增强原理的新结构.云南大学学报 (自然科学版), 1997, 19(1): 25-28
    [43] Shimizu Y, Jono A, Hyodo T, et al. Preparation of large mesoporous SnO2 powder for gas sensor application. Sensors and Actuators B, 2005, 108(1-2): 56-61
    [44] Shimizu Y, Hyodo T, Egashira M. Mesoporous semiconducting oxides for gas sensor application. Journal of the European Ceramic Society, 2004, 24(6): 1389-1398
    [45] Hyodo T, Abe S, Shimizu Y, et al. Gas-sensing properties of ordered mesoporous SnO2 and effects of coatings thereof. Sensors and Actuators B, 2003, 93(1-3): 590-600
    [46] Carney C M, Yoo S, Akbar S A. TiO2-SnO2 nanostructures and their H2 sensing behavior. Sensors and Actuators B, 2005, 108(1-2): 29-33
    [47] Ivanov P, Llobet E, Vilanova X, et al. Development of high sensitivity ethanol gas sensors based on Pt-doped SnO2 surfaces. Sensors and Actuators B, 2004, 99(2-3): 201-206
    [48] Yamazoe N. Toward innovations of gas sensor technology. Sensors and Actuators B, 2005, 108(1-2): 2-14
    [49] Tomchenko A A, Harmer G P, Marquis B T, et al. Semiconducting metal oxide sensor array for the selective detection of combustion gases. Sensors and Actuators B, 2003, 93(1-3): 126-134
    [50] Schaller E, Bosset J O, Escher F. Electronic noses and their application to food. Lebensmittel-Wissenschaft und-Technologie, 1998, 31(4): 305-316
    [51] 张立德. 纳米材料. 北京: 化学工业出版社, 2000
    [52] 曹茂盛, 曹传宝, 徐甲强. 纳米材料学. 哈尔滨:哈尔滨工程大学出版社, 2002
    [53] Tan O K, Cao W, Hu Y, et al. Nano-structured oxide semiconductor materials for gas-sensing applications. Ceramics International, 2004, 30(7): 1127-1133
    [54] Li X L, Lou T J, Sun X M, et al. Highly sensitive WO3 hollow-sphere gas sensors. Inorganic Chemistry, 2004, 43(17): 5442-5449
    [55] Hu Y, Tan O K, Cao W, et al. A low temperature nano-structured SrTiO3 thick film oxygen gas sensor. Ceramics International, 2004, 30(7): 1819-1822
    [56] Iijima S. Helical microtubules of graphitic carbon. Nature, 1991, 354(6348): 56-58
    [57] Comini E, Faglia G, Sberveglieri G, et al. Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts. Applied Physics Letters, 2002, 81(10): 1869-1871
    [58] Walter E C, Faview F, Penner R M, et al. Palladium mesowire arrays for fast hydrogen sensors and hydrogen-actuated switches. Analytical Chemistry, 2002, 74(7): 1546-1553
    [59] Arnold M S, Avouris P, Pan Z W, et al. Field-effect transistors based on single semiconducting oxide nanobelts. Journal of Physical Chemistry B, 2003, 107(3): 659-663
    [60] Kolmakov A, Zhang Y, Cheng G, et al. Detection of CO and O2 using tin oxide nanowire sensors. Advanced Materials, 2003, 15(12): 997-1000
    [61] Wan Q, Li Q H, Chen Y J, et al. Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Applied Physics Letters, 2004, 84(18): 3654-3656
    [62] Zhang D H, Li C, Liu X L, et al. Doping dependent NH3 sensing of indium oxide nanowires. Applied Physics Letters, 2003, 83(9): 1845-1847
    [63] Li C, Zhang D H, Liu X L, et al. In2O3 nanowires as chemical sensors. Applied Physics Letters, 2003, 82(10): 1613-1615
    [64] Varghese O K, Gong D W, Maggie P, et al. Hydrogen sensing using titania nanotubes. Sensors and Actuators B, 2003, 93(1-3): 338-344
    [65] Kong J, Franklin N R, Zhou C, et al. Nanotube molecular wires as chemical sensor. Science, 2000, 287(5453): 622-625
    [66] Kong J, Chapline M G, Dai H J. Functionlized carbon nanotubes for molecular hydrogen sensors. Advanced Materials, 2001, 13(18): 1384-1386
    [67] Varghese O K, Mchamber P D, Gong D, et al. Gas sensing characteristics of multi-wall carbon nanotubes. Sensor and Actuator B, 2001, 81(1): 32-41
    [68] Collins P G, Bradley K, Ishigami M, et al. Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science, 2000, 287(5459): 1801-1804
    [69] Li J, Lu Y, Ye Q, et al. Carbon nanotube sensors for gas and organic vapor detection. Nano Letters, 2003, 3(7): 929-933
    [70] 孙志刚, 胡黎明. 气相法合成纳米颗粒的制备技术进展. 化工进展,1997(2): 21-24
    [71] Chang W, Skandan G, Danforth S C, et al. Chemical vapor processing and applications for nanostructured ceramic powders and whiskers. Nanostructured Materials, 1994, 4(5): 507-520
    [72] Chang W, Skandan G, Hahn H, et al. Chemical vapor condensation of nanostructured ceramic powders. Nanostructured Materials, 1994, 4(3): 345-351
    [73] Pan Z W, Dai Z R, Wang Z L. Nanobelts of semiconducting oxides. Science, 2001, 291(5510): 1947-1949
    [74] Lee J S, Parka K, Kanga M I, et al. ZnO nanomaterials synthesized from thermal evaporation of ball-milled ZnO powders. Journal of Crystal Growth, 2003, 254 (3-4): 423-431
    [75] Dai Z R, Pan Z W, Wang Z L. Gallium oxide nanoribbons and nanosheets. Journal of Physical Chemistry B, 2002, 106(5): 902-904.
    [76] Wang Z L, Pan Z W, Dai Z R. Structures of oxide nanobelts and nanowires. Microscopy and Microanalysis, 2002, 8: 467-474
    [77] Li Q, Wei Y. Study on preparing monodispersed hematite nanoparticles by microwave-induced hydrolysis of ferric salts solution. Materials Research Bulletin, 1998, 33(5): 779-782
    [78] Seema Verma, Joy P A, Khollam Y B, et al. Synthesis of nanosized MgFe2O4 powders by microwave hydrothermal method. Materials Letters, 2004, 58 (6): 1092-1095
    [79] Cirera A, Vilà A, Diéguez A, et al. Microwave processing for the low cost, mass production of undoped and in situ catalytic doped nanosized SnO2 gas sensor powders. Sensors and Actuators B, 2000, 64(1-3): 65-69
    [80] Cushing B L, Kolesnichenko V L, O’Connor C. J. Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chemical Reviews, 2004, 104(9): 3893-3946
    [81] 刘珍, 梁伟, 许并社等. 纳米材料制备方法及其研究进展. 材料科学与工艺, 2000, 8(3): 103-108
    [82] Qian Y T, Su Y, Xie Y, et al. Hydrothermal preparation and characterization of nanocrystalline powder of sphalerite. Materials Research Bulletin, 1995, 30(5): 601-605
    [83] Chang Y, Zeng H C. Controlled synthesis and self-Assembly of single-crystalline CuO nanorods and nanoribbons. Crystal Growth & Design, 2004, 4(2): 397-402
    [84] Li Z Q, Xiong Y J, Xie Y.Selected-control synthesis of ZnO nanowires and nanorods via a PEG-assisted route. Inorganic Chemistry, 2003, 42(24): 8105-8109
    [85] Bischoff B L, Anderson M A. Peptization Process in the sol-gel preparation of porous anatase (TiO2). Chemistry of Materials, 1995, 7(10): 1772-1778
    [86] Liu H, Yang W, Ma Y, et al. Synthesis and characterization of titania prepared by using a photoassisted sol-gel method. Langmuir, 2003, 19(7): 3001-3005
    [87] Wu Z G, Zhao Y X, Xu L P, et al. Preparation of zirconia aerogel by heating of alcohol-aqueous salt solution. Journal of Non-Crystalline Solids, 2003, 330(1-3): 274-277
    [88] Livage J, Henry M, Sanchez, C. Sol-gel chemistry of transition metal oxides. Journal of Solid State Chemistry, 1988, 18(4): 259-341.
    [89] Liu X H, Yang J, Wang L, et al. An improvement on sol-gel method for preparing ultrafine and crystallized titania powder. Materials Science and Engineering A, 2000, 289 (1-2): 241-245
    [90] Zhang J R, Gao L. Synthesis and characterization of nanocrystalline tin oxide by sol-gel method. Journal of Solid State Chemistry, 2004, 177 (4-5): 1425-1430
    [91] Gu F, Wang S F, Song C F, et al. Synthesis and luminescence properties of SnO2 nanoparticles. Chemical Physics Letters, 2003, 372 (3-4): 451-454
    [92] Cerdà J, Arbiol J, Diaz R, et al. Synthesis of perovskite-type BaSnO3 particles obtained by a new simple wet chemical route based on a sol–gel process. Materials Letters, 2002, 56(3): 131-136
    [93] Brinker C J, Hurd A J, Schunk P R, et al. Review of sol-gel thin film formation. Non-crystalline Solids, 1992, (147-148): 424-430
    [94] Chopra S, Sharma S, Goel T C, et al. Electrical and optical properties of sol-gel derived Ca-modified PbTiO3 thin films. Materials Chemistry and Physics, 2005, 91(1): 161-165
    [95] Yamada S, Fukuoka N, Taniguchi T, et al. Characterization of an epitaxial CaRuO3 film prepared via the sol-gel route. Thin Solid Films, 2005, 478(1-2): 1-5
    [96] Atanacio A J, Latella B A, Barbé C J, et al. Mechanical properties and adhesion characteristics of hybrid sol-gel thin films. Surface and Coatings Technology, 2005, 192(2-3): 354-364
    [97] Boutonnet M, Kizling J, Stenius P, et al. The preparation of monodisperse colloidal metal particles from microemulsions. Colloids and Surface, 1982, 5(3): 209-225
    [98] Motte I, Pctn C, Boulanger I et al, Synthesis of cadmium sulfide in situ in cadmium bis(2-ethylhexyl) sulfosuccinate reverse micelle: polydispersity and photochemical reaction. Langmuir, 1992, 8(4): 1049-1053
    [99] Hopwood J D, Mann S. Synthesis of barium sulfate nanoparticles and nanofilaments in reverse micelles and microemulsions. Chemistry of Materials, 1997, 9(8): 1819-1828
    [100] Suslick S K, Hammerton A D, Cline E R. Sonochemical hot spot. Journal of the American Chemical Society, 1986, 108(18): 5641-5642
    [101] Mayers B T, Liu K, Sunderland D, et al. Sonochemical synthesis of trigonal selenium nanowires. Chemistry of Materials, 2003, 15(20): 3852-3858
    [102] Suslick K S, Fang M, Hyeon T. Sonochemical synthesis of iron colloids. Journal of the American Chemical Society, 1996, 118(47): 11960-11961
    [103] Grinstaff M W, Salamon M B, Suslick K S. Magnetic properties of amorphous iron. Physical Review B 1993, 48(1): 269-273
    [104] Zhu J J, Qiu Q F, et al. Synthesis of silver nanowires by a sonoelechemical method. Inorg. Chemical Communications, 2002, 5(4):242
    [105] Janackovic Dj, Jokanovic V, Kostic-Gvozdenovic Lj, et al. Synthesis of mullite nanostructured spherical powder by ultrasonic spray pyrolysis. Nanostructured Materials, 1998, 10(3): 341-348
    [106] Gao T, Li Q, Wang T. Sonochemical Synthesis, Optical properties, and electrical properties of core/shell-type ZnO nanorod/CdS nanoparticle composites. Chemistry of Materials, 2005, 17(4): 887-892
    [107] 朱屯, 王福明, 王习东等. 国外纳米材料技术进展与应用. 北京: 化学工业出版社, 2002
    [108] Silvert P Y, Urbina R H, Duvauchelle N, et al. Preparation of colloidal silver dispersions by the polyol process. Part 1 Synthesis and characterization. Journal of Materials Chemistry, 1996, 6(4): 573-577
    [109] Silvert P Y, Urbina R H, Elhsissena T K. Preparation of colloidal silver dispersions by the polyol process Part 2. Mechanism of particle formation. Journal of Materials Chemistry, 1997, 7(2): 293-299
    [110] Sun Y G, Gates B, Mayers B, et al. Crystalline silver nanowires by soft solution processing. Nano Letters, 2002, 2(2): 165-168
    [111] Sun Y G, Mayers B, Herricks T, et al. polyol synthesis of uniform silver nanowires: a plausible growth mechanism and the supporting evidence. Nano Letters, 2003, 3(7): 955-960
    [112] Wang Y L, Herricks T, Xia Y N. Single crystalline nanowires of lead can be synthesized through thermal decomposition of lead acetate in ethylene glycol. Nano Letters, 2003, 3(8): 1163-1166
    [113] Sun Y G, Yin Y Y, Mayers B T, et al. Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(Vinyl Pyrrolidone). Chemistry of Materials, 2002, 14(11): 4736-4745
    [114] Sun Y G, Xia Y N. Mechanistic study on the replacement reaction between silver nanostructures and chloroauric acid in aqueous medium. Journal of the American Chemical Society, 2004, 126(12): 3892-3901
    [115] Wang Y L, Jiang X, Herricks T, et al. Single crystalline nanowires of lead: large-scale synthesis, mechanistic studies, and transport measurements. Journal of Physical Chemistry B, 2004, 108(25): 8631-8640
    [116] Chen J, Herricks T, Geissler M, et al. Single-crystal nanowires of platinum can be synthesized by controlling the reaction rate of a polyol process. Journal of the American Chemical Society, 2004, 126(35): 10854-10855
    [117] Wang Y, Jiang X, Xia Y. A solution-phase precursor route to polycrystalline SnO2 nanowires that can be used for gas sensing under ambient conditions. Journal of the American Chemical Society, 2003, 125(52): 16176-16177
    [118] Wang Y, Jiang X, Xia Y. A solution-phase precursor route to polycrystalline SnO2 nanowires that can be used for gas sensing under ambient conditions. ChemInform, 2004, 35(14)
    [119] 雷力旭, 忻新泉. 室温固相化学反应与固体结构. 化学通报,1997, 2: 1-7
    [120] Ye X R., Jia D J, Yu J Q, et al. One-step solid-state synthesis of nanomaterials. Advanced Materials, 1999, 11(11): 941-942
    [121] Li F, Zheng H G, Jia D Z, et al. Syntheses of perovskite-type composite oxides nanocrystals by solid-state reactions. Materials Letters, 2002, 53(4-5): 282-286
    [122] 徐甲强, 刘艳丽, 牛新书. 室温固相合成 In2O3 及其气敏性能研究. 无机材料学报, 2002, 17(2): 367-370
    [123] Li F, Xu J Q, Yu X H, et al. One-step solid-state reaction synthesis and gas sensing property of tin oxide nanoparticles. Sensors and Actuators B, 2002, 81(2-3): 165-169
    [124] Jin C F, Yuan X, Ge W W, et al. Synthesis of ZnO nanorods by solid state reaction at room temperature. Nanotechnology, 2003, 14: 667-669
    [125] 苏育志, 龚克成. 纳米结构材料的模板合成方法. 材料科学与工程, 1999, 17(4): 17-21
    [126] Lee S, Jeon C, Park Y. Fabrication of TiO2 tubules by template synthesis and hydrolysis with water vapor. Chemistry of Materials, 2004, 16(22): 4292-4295
    [127] McMillan R A, Howard J, Zaluzec N J, et al. A self-assembling protein template for constrained synthesis and patterning of nanoparticle arrays. Journal of the American Chemical Society, 2005, 127(9): 2800-2801
    [128] Hernandez B A, Chang K S, Fisher E R, et al. Sol-Gel template synthesis and characterization of BaTiO3 and PbTiO3 nanotubes. Chemistry of Materials, 2002, 14(2): 480-482
    [129] Fukuoka A, Araki H, Sakamoto Y, et al. Template synthesis of nanoparticle arrays of gold and platinum in mesoporous silica films. Nano Letters, 2002, 2(7): 793-795.
    [130] Mao G, Dong W, Kurth D G, et al. Synthesis of copper sulfide nanorod arrays on molecular templates. Nano Letters, 2004, 4(2): 249-252
    [131] Jie J S, Wang G Z, Wang Q T, et al. Synthesis and characterization of aligned ZnO nanorods on porous aluminum oxide template. Journal of Physical Chemistry B, 2004, 108(32): 11976-11980
    [132] Cao Y, Hu J C, Hong Z S, et al. Characterization of high-surface-area zirconia aerogel synthesized from combined alcohothermal and supercritical fluid drying techniques. Catalysis Letters, 2002, 81(1-2): 107-112
    [133] Li F, Liu J J, Evans D G, et al. Stoichiometric synthesis of pure MFe2O4 (M = Mg, Co and Ni) spinel ferrites from tailored layered double hydroxide (hydrotalcite-like) precursors. Chemistry of Materials, 2004, 16(8): 1597-1602
    [134] Chinnasamy C N, Narayanasamy A, Ponpandian N, et al. Structure and magnetic properties of nanocrystalline ferrimagnetic CdFe2O4 spinel. Scripta Materialia, 2001, 44(8-9): 1411-1415
    [135] Ammar S, Helfen A, Jouini N, et al. Magnetic properties of ultrafine cobalt ferrite particles synthesized by hydrolysis in a polyol medium. Journal of Materials Chemistry, 2001, 11(1): 186-192
    [136] Gopal Reddy C V, Manorama S V, Rao V J. J. Preparation and characterization of ferrites as gas sensor materials. Materials Science Letters, 2000, 19(9): 775-778
    [137] 牛新书, 刘艳丽, 徐甲强. ZnFe2O4 纳米粉体的室温固相合成及其气敏特性研究. 功能材料, 2002, 33(4): 413-417
    [138] Liu C, Zou B, Rondinone A J, et al. Chemical control of superparamagnetic properties of magnesium and cobalt spinel Ferrite nanoparticles through atomic level magnetic couplings. Journal of the American Chemical Society, 2000, 122(26): 6263-6267
    [139] Willey R J, Noirclerc P, Busca G. Preparation and characterization of magnesium chromite and magnesium ferrite aerogels. Chemical Engineering Communication, 1993, 123(1): 1-16
    [140] Shimizu Y, Arai H, Seiyama T. Theoretical studies on the impedance-humidity characteristics of ceramic humidity sensors. Sensors and Actuators B, 1985, 7(1): 11-22.
    [141] Busca G., Finocchio E, Lorenzelli V, et al. IR study of alkene allylic activation on magnesium ferrite and alumina catalysts. Journal of the Chemical Society Faraday Transactions, 1996, 92(23): 4687-4694.
    [142] Benko F A, Koffyberg F P. The effect of defects on some photoelectrochemical properties of semiconducting MgFe2O4. Materials Research Bulletin, 1986, 21(10): 1183-1188
    [143] Sepelak V, Menzel M, Becker K D, et al. Mechanochemical reduction of magnesium ferrite. Journal of Physical Chemistry B, 2002, 106(26): 6672-6678
    [144] Moustafa S F, Morsi M B. The formation of Mg ferrite by mechanical alloying and sintering. Materials Letters, 1998, 34(3-6): 241–247
    [145] Oliver S A, Willey R J, Hamdeh H H, et al. Structure and magnetic properties of magnesium ferrite fine powders. Scripta Metallurgica et Materialia, 1995, 33(10-11): 1695-1701
    [146] Paik J G, Lee M J, Hyun S H. Reaction kinetics and formation mechanism of magnesium ferrites. Thermochimica Acta, 2005, 425(1-2): 131-135
    [147] Verma S, Joy PA, Khollam Y B, et al. Synthesis of nanosized MgFe2O4 powders by microwave hydrothermal method. Materials Letters, 2004, 58(6): 1092-1095
    [148] Mao Y B, Banerjee S, Wong S S. Large-scale synthesis of single-crystalline perovskite nanostructures. Journal of the American Chemical Society, 2003, 125(51): 15718-15719
    [149] C. Xu, J. Tamaki, N. Miura, et al. Grain size effects on gas sensitivity of porous SnO2-based elements. Sensors and Actuators B, 1991, 3(2): 147-155
    [150] Chu X, Liu X, Meng G. Preparation and gas-sensing properties of nano-CdIn2O4 material. Materials Research Bulletin, 1999, 34(5): 693-700
    [151] Tomchenko A A, Khatko V V, Emelianov I L. WO3 thick-film gas sensors. Sensors and Actuators B, 1998, 46(1): 8-14
    [152] Li F, Chen L Y, Chen Z Q, et al. Two-step solid-state synthesis of tin oxide and its gas-sensing property. Materials Chemistry and Physics, 2002, 73(2-3): 335-338
    [153] 杨彧, 贾殿赠, 葛炜炜, 等. 低热固相反应制备无机纳米材料的方法. 无机化学学报, 2004, 20(8): 881-888
    [154] Stein A, Keller S W, Mallouk T E. Turning down the heat: design and mechanism in solid state synthesis. Science, 1993, 259(5554): 1558-1564
    [155] 周益明, 忻新泉. 低热固相合成化学. 无机化学学报, 1999, 15(3): 273-292
    [156] Li F, Yu X H, Pan H J, et al. Syntheses of MO2 (M = Si, Ce, Sn) nanoparticles by solid-state reactions at ambient temperature. Solid State Sciences, 2000, 2(8): 767-772
    [157] Powder Diffraction File. International Center for Diffraction Data, Newtown Square, PA (formerly Joint Committee on Powder Diffraction Standards, Swarthmore, PA, 1991)
    [158] Ohnishi H, Sasaki H, Matsumoto T, et al. Sensing mechanism of SnO2 thin film gas sensors. Sensors and Actuators B, 1993, 14(1-3): 677-678.
    [159] Chen Z X, Jiang Y S, Chen Y. Comparative study of ABO3 perovskite compounds. 1. ATiO3 (A = Ca, Sr, Ba, and Pb) perovskites. Journal of Physical Chemistry B, 2002, 106(39): 9986-9992
    [160] Urban J J, Yun W S, Gu Q, et al. Synthesis of single-crystalline perovskite nanorods composed of barium titanate and strontium titanate. Journal of the American Chemical Society, 2002, 124(7): 1186-1187
    [161] Ishihara T, Kilner J A, Honda M, et al. Oxygen surface exchange and diffusion in the new perovskite oxide ion conductor LaGaO3. Journal of the American Chemical Society, 1997, 119(11): 2747-2748
    [162] Jayaraman V, Mangamma G, Gnanasekaran T, et al. Evaluation of BaSnO3 and Ba (Zr, Sn)O3 solid solutions as semiconductor sensor materials. Solid State Ionics, 1996, 86-88(Part 2): 1111-1114
    [163] Toan N N, Saukko S, Lantto V. Gas sensing with semiconducting perovskite oxide LaFeO3. Physica B: Condensed Matter, 2003, 327(2-4): 279-282
    [164] Martinelli G., Carotta M C, Ferroni M, et al. Screen-printed perovskite-type thick films as gas sensors for environmental monitoring. Sensors and Actuators B, 1999, 55(2-3): 99-110
    [165] Wu X H, Wang Y D, Liu H L, et al. Preparation and gas-sensing properties of perovskite-type MSnO3 (M=Zn, Cd, Ni). Materials Letters, 2002, 56(5): 732-736
    [166] Zhang T S, Hing P, Li Y, et al. Selective detection of ethanol vapor and hydrogen using Cd-doped SnO -based sensors. Sensors and Actuators B, 1999, 60(2-3): 208-215
    [167] Chen L, Tsang S C, Ag doped WO3-based powder sensor for the detection of NO gas in air. Sensors and Actuators B, 2003, 89 (1-2): 68-75
    [168] Berberich M S, Zheng J G, Weimar U, et al. The effect of Pt and Pd surface doping on the response of nanocrystalline tin dioxide gas sensors to CO. Sensors and Actuators B, 1996, 31 (1-2): 71-75
    [169] Manorama S V, Gopal Reddy C V, Rao V J. X-ray photoelectron spectroscopic studies of noble metal-incorporated BaSnO3 based gas sensors. Applied Surface Science, 2001, 174(2): 93-105
    [170] 北京师范大学, 华中师范大学, 南京师范大学 无机化学教研室. 无机化学. 北京: 高教出版社, 1993
    [171] Klug H P, Alexander L E. X-ray diffraction procedure for polycrystalline and amorphous materials. second ed. New York: Wiley, 1974
    [172] Zhang T S, Shen Y S, Zhang R F. Ilmenite structure-type β-CdSnO3 used as an ethanol sensing material. Materials Letters, 1995, 23(1-3): 69-71
    [173] Schierbaum K D, Weimar U, Gopel W, et al. Conductance, work function and catalytic activity of SnO2-based gas sensors. Sensors and Actuators B, 1991, 3(3): 205-214
    [174] Kohl D. The role of noble metals in the chemistry of solid-state gas sensors. Sensors and Actuators B, 1990, 1(1-6): 158-165
    [175] Kim S T, Park M S, Kim H M. Systematic approach for the evaluation of the optimal fabrication conditions of a H2S gas sensor with Taguchi method. Sensors and Actuators B, 2004, 102(2): 253-260
    [176] Struve M F, Brisbois J N, James R A, et al. Neurotoxicological effects associated with short-term exposure of Spragre-Dawley rats to hydrogen sulfide. Neuro Toxicology, 2001, 22(3): 375-385
    [177] 方国家, 刘祖黎, 吉向东, 等. H2S 气敏材料研究进展. 无机材料学报, 1998, 13(6): 769-773
    [178] 肖志峰, 欧阳自远, 卢焕章. H2S 在海南抱板金矿田成矿流体中的存在及意义. 科学通报, 1993, 38(24): 2273-2275
    [179] NakaharaT, Koda H. In: Chemical Sensor Technology, Ed.Yamazoe N., Kodansha/ Elsevier, Tokyo/Amsterdam, 1991, 3:19-31
    [180] Miura N, Lu G, Yamazoe N. Progress in mixed-potential type devices based on solid electrolyte for sensing redox gases. Solid State Ionics, 2000, 136-137(2): 533-542
    [181] Jiménez I, Arbiol J, Dezanneau G, et al. Crystalline structure, defects and gas sensor response to NO2 and H2S of tungsten trioxide nanopowders. Sensors and Actuators B, 2003, 93(1-3): 475-485
    [182] Li G J, Kawi S. Synthesis, characterization and sensing application of novel semiconductor oxides. Talanta, 1998, 45(4): 759-766
    [183] Kwak M S, Hwang J S, Park C O, et al. NOx sensing properties of Ba2WO5 element at elevated temperature. Sensors and Actuators B, 1999, 56(1-2): 59-64
    [184] Comini E, Ferroni M, Guidi V, et al. Nanostructured mixed oxides compounds for gas sensing applications. Sensors and Actuators B, 2002, 84(1): 26-32
    [185] Zakrzewska K. Mixed oxides as gas sensors. Thin Solid Films, 2001, 391(2): 229-238
    [186] Albuquerque A S, Ardisson J D, Macedo W A A, J. et al. Structure and magnetic properties of nanostructured Ni-ferrite. Journal of Magnetism and Magnetic Materials, Journal of Magnetism and Magnetic Materials, 2001, 226-230(part 2): 1379-1381
    [187] Sousa M H, Hasmonay E, Depeyrot J,et al. NiFe2O4 nanoparticles in ferrofluids: evidence of spin disorder in the surface layer. Journal of Magnetism and Magnetic Materials, 2002, 242-245(part 1): 572-574
    [188] Chinnasamy C N, Narayanasamy A, Ponpandian N, et al. Grain size effect on the Néel temperature and magnetic properties of nanocrystalline NiFe2O4 spinel. Journal of Magnetism and Magnetic Materials, 2002, 238(2-3): 281-287
    [189] Satyanarayana L, Madhusudan K R, Sunkara V M. Nanosized spinel NiFe2O4: A novel material for the detection of liquefied petroleum gas in air. Materials Chemistry and Physics, 2003, 82(1): 21-26
    [190] Gopal Reddy C V, Manorama S V, Rao V J. Semiconducting gas sensor for chlorine based on inverse sponel nickel ferrite. Sensors and Actuators B, 1999, 55(1): 90-95
    [191] Shi Y, Ding J, Shen Z X, et al. Strong uni-directional anisotropy in disordered NiFe2O4. Solid State Communication, 2000, 115(5): 237-241
    [192] Fang G, Liu Z, Liu C, et al. Room temperature H2S sensing properties and mechanism of CeO2-SnO2 sol–gel thin films, Sensors and Actuators B, 2000, 66(1-3): 46-48
    [193] Montmeat P, Marchand J C, Lalauze R, et al. Physico-chemical contribution of gold metallic particles to the action of oxygen on tin dioxide sensors. Sensors and Actuators B, 2003, 95(1-3): 83-89
    [194] Gopal Reddy C V, Manorama S V, Rao V J, et al. Noble metal additive modulation of gas sensitivity of BaSnO3 explained by a work function based model. Thin Solid Films, 1999, 348(1-2): 261-265
    [195] Roy R, Tuttle O F. Investigation under hydrothermal condition, physics and chemistry of the earth. Oxford: Pergamon Press, 1956: 138-180
    [196] Roy R, Crystal chemistry in research on ionic solids, gordon and breach. New York: Science Publishers, 1963: 45-76
    [197] 吴会军, 刘笑笑, 朱冬生, 等. 水热反应法制备纳米粉体的研究进展. 现代化工, 2003, 23: 37-40
    [198] Fujihara S, Naito H, Kimura T. Visible photoluminescence of ZnO nanoparticles dispersed in highly transparent MgF2 thin-films via sol-gel process. Thin Solid Films, 2001, 389(1-2): 227-232
    [199] Degen A, Kosec M. Effect of pH and impurities on the surface charge of zinc oxide in aqueous solution. Joural of the Eruopean Ceramic Society, 2000, 20(6): 667-673
    [200] Look D C, Reynolds D C, Sizelove J R, et al. Electrical properties of bulk ZnO. Solid State Communications, 1998, 105(5): 399-401
    [201] Wrzesinski J, Fr?hlich D. Determination of electronic parameters of ZnO by nonlinear spectroscopy. Solid State Communications, 1998, 105 (5): 301-305
    [202] Sigoli F A, Davolos M R, Jafelicci M. Morphological evolution of zinc oxide originating from zinc hydroxide carbonate. Journal of Alloys and Compounds, 1997, 262-263: 292-295
    [203] Lorenz C, Emmerling A, Fricke J, et al. Aerogels containing strongly photoluminescing zinc oxide nanocrystals. Journal of Non-Crystalline Solids, 1998, 238(1): 1-5
    [204] Yamazaki T, Wada S, Noma T. et al. Gas-sensing properties of ultrathin zinc oxide films. Sensors and Actuators B, 1993, 14(1-3): 594-595
    [205] Lin H M, Tzeng S J, Hsiau P J, et al. Electrode effects on gas sensing properties of nanocrystalline zinc oxide. Nanostructured Materials, 1998, 10(3): 465-477
    [206] Mitra P, Chatterjee A P, Maiti H S. ZnO thin film sensor. Materials Letters, 1998, 35(1-2): 33-38
    [207] Damen T C, Porto S P S, Tell B. Raman effect in zinc oxide. Physical Review, 1966, 142(2): 570-572
    [208] Zheng M J, Zhang L D, Li G H, et al. Fabrication and optical properties of large-scale uniform zinc oxide nanowire arrays by one-step electrochemical deposition technique. Chemical Physics Letters, 2002, 363(1-2): 123-128
    [209] Dobryszycki J, Biallozor S. On some organic inhibitors of zinc corrosion in alkaline media. Corrosion Science, 2001, 43(7): 1309-1319
    [210] Liu X H, Yang J, Wang L, et al. An improvement on sol-gel method for preparing ultrafine and crystallized titania powder. Materials Science and Engineering A, 2000, 289(1-2): 241-245
    [211] Cheng X L, Zhao H, Huo L H, et al. ZnO nanoparticulate thin film: preparation, characterization and gas-sensing property. Sensors and Actuators B, 2004, 102(2): 248-252
    [212] Rao C N R, Deepak F L, Govindaraj A. Inorganic nanowires. Progress in Solid State Chemistry, 2003, 31(1): 5-147
    [213] Giamarchi T. Theoretical framework for quasi-one dimensional systems, Chemical Review, 2004, 104(11): 5037-5056
    [214] Burda C, Chen X, Narayanan R, et al. Chemistry and properties of nanocrystals of different shapes. Chemical Review, 2005, 105(4): 1025-1102
    [215] Fernandez-Garcia M, Martinez-Arias A, Hanson J C, et al. Nanostructured oxides in chemistry: characterization and properties. Chemical Review, 2004, 104(9): 4063-4104
    [216] Frank S, Poncharal P, Wang Z L, et al. Carbon Nanotube Quantum Resistors. Science, 1998, 280(5370): 1744-1746
    [217] Sudan P, Zuttel A, Mauron Ph, et al. Physisorption of hydrogen in single-walled carbon nanotubes. Carbon, 2003, 41 (12): 2377-2383
    [218] Collins P G, Zettl A, Bando H, et al. Nanotube nanodevice, Science, 1997, 278(5335): 100-102
    [219] Kiang C H, Choi J S, Tran T T, et al. Molecular Nanowires of 1 nm Diameter from Capillary Filling of Single-Walled Carbon Nanotubes. Journal of Physical Chemistry B, 1999, 103(35): 7449-7451
    [220] Xu C, Sloan J, Brown G, et al. 1D lanthanide halide crystals inserted into single-walled carbon nanotubes. Chemical Communications, 2000, 24(27): 2427-2428
    [221] Zhang Y, Franklin N W, Chen R J, et al. Metal coating on suspended carbon nanotubes and its implication to metal–tube interaction. Chemical Physics Letters, 2000, 331(1): 35-41
    [222] Ajayan P M, Stephan O, Redlich P, et al. Carbon nanotubes as removable templates for metal oxide nanocomposites and nanostructures. Nature, 1995, 375 (6532): 564-567
    [223] Kim H, Sigmund W. Zinc oxide nanowires on carbon nanotubes Applied Physics Letters, 2002, 81(11): 2085-2087
    [224] Han W Q, Zettle A. Coating single-walled carbon nanotubes with tin oxide. Nano Letters, 2003, 3(5): 681-683
    [225] Horrillo M C, Serventi A, Rickerby D, et al. Influence of tin oxide microstructure on the sensitivity to reductor gases. Sensors and Actuators B, 1999, 58 (1-3): 474-477
    [226] Rickerby D G, Horrillo M C, Santos J P, et al. Microstructural characterization of nanograin tin oxide gas sensors. Nanostructured Materials, 1997, 9(1-8): 43-52
    [227] Mandayo G G, Casta?o E, Gracia F J, et al. Strategies to enhance the carbon monoxide sensitivity of tin oxide thin films. Sensors and Actuators B, 2003, 95(1-3): 90-96
    [228] Rella R, Serra A, Siciliano P, et al. Tin oxide-based gas sensors prepared by the sol-gel process. Sensors and Actuators B, 1997, 44 (1-3): 462-467
    [229] Chen P, Zhang H B, Lin G D. Growth of carbon nanotubes by catalytic decomposition of CH4 or CO on a Ni-MgO catalyst. Carbon, 1997, 35 (10-11): 1495-1501
    [230] Li W, Zhang H, Wang C, et al. Raman characterization of aligned carbon nanotubes produced by thermal decomposition of hydrocarbon vapor. Applied Physics Letters, 1997, 70(20): 2684-2686
    [231] Tan P, Zhang S L, Yue K T, et al. Comparative Raman study of carbon nanotubes prepared by D.C. arc discharge and catalytic methods. Journal of Raman Spectroscopy, 1997, 28(5): 369-372
    [232] Hiura H, Ebbesen T W, Tanigaki K, et al. Raman studies of carbon nanotubes. Chemical Physics Letters, 1993, 202(6): 509-512
    [233] Yu K N, Xiong Y H, Liu Y L, et al. Microstructural change of nano-SnO2 grain assemblages with the annealing temperature. Physical Review B, 1997-II, 55 (4): 2666-2671
    [234] Moscone D, D’Ottavi D, Compagnone D, et al. Construction and analytical characterization of Prussian blue-based carbon paste electrodes and their assembly as oxidase enzyme sensors. Analytical Chemistry, 2001, 73(11): 2529-2535
    [235] Li J, Chia L S, Goh N K, et al. Silica sol-gel immobilized amperometric biosensor for the determination of phenolic compounds. Analytica Chimica Acta, 1998, 362(1): 203-211
    [236] Cosnier S, Lambert F, Stoytcheva M. A composite clay glucose biosensor based on an electrically connected HRP. Electroanalysis, 2000, 12(5): 356-360
    [237] Yang X H, Hua L, Gong H Q, et al. Covalent immobilization of an enzyme (glucose oxidase) onto a carbon sol-gel silicate composite surface as a biosensing platform. Analytica Chimica Acta, 2003, 478(1): 67-75
    [238] Zhao J, Henkens R W, Stonehuerner J G. Direct electron transfer at horseradish peroxidase-colloidal gold modified electrodes. Journal of Electroanalytical Chemistry, 1992, 327(1-2): 109-119
    [239] Crumbliss A L, Perine S C, Stonehuerner J G, et al. Colloidal gold as a biocompatible immobilization matrix suitable for the fabrication of the enzyme electrodes by electrodeposition. Biotechnology and Bioengineering, 1992, 40(5): 483-490
    [240] Stonehuerner J G, Zhao J, O’Daly J P. Comparison of colloidal gold electrode fabrication methods: the preparation of a horseradish peroxidase enzyme electrode. Biosensors and Bioelectronics, 1992, 7(6): 315-321
    [241] Crumbliss A L, Stonehuerner J G, Henkens R W. A carrageenan hydrogel stabilized colloidal gold multi-enzyme biosensor electrode utilizing immobilized horseradish peroxidase and cholesterol oxidase/cholesterol esterase to detect cholesterol in serum and whole blood. Biosensors and Bioelectronics, 1993, 8(6): 331-337
    [242] Bharathi S, Nogami M. A glucose biosensor based on electrodeposited biocomposites of gold nanoparticles and glucose oxidase enzyme. The analyst, 2001, 126(11): 1919-1922
    [243] Liu S Q, Yu J H, Ju H X. Renewable phenol biosensor based on a tyrosinase-colloidal gold modified carbon paste electrode. Journal of Electroanalytical Chemistry, 2003, 540: 61-67
    [244] Liu S Q, Ju H X. Reagentless glucose biosensor based on direct electron transfer of glucose oxidase immobilized colloidal gold modified carbon paste electrode. Biosensors and Bioelectronics, 2003, 19(3): 177-183
    [245] Liu S Q, Ju H X. Electrocatalysis via direct electrochemistry of myoglobin immobilized on colloidal gold nanoparticles. Electroanalysis, 2003, 15(18): 1488-1493
    [246] Liu S Q, Ju H X. Nitrite reduction and detection at a carbon paste electrode containing hemoglobin and colloidal gold. The analyst, 2003, 128(12): 1420-1424
    [247] Xu X X, Liu S Q, Li B. Disposable nitrite sensor based on hemoglobin-colloidal gold nanoparticle modified screen-printed electrode. Analytical Letters, 2003, 36(11): 2427-2442
    [248] Wang G, Xu J J, Chen H Y, et al. Amperometric hydrogen peroxide biosensor with sol-gel/chitosan network-like film as immobilization matrix. Biosensors and Bioelectronics, 2003, 18(4): 335-343
    [249] Kim M A, Lee W Y. Amperometric phenol biosensor based on sol-gel silicate/Nafion composite film. Analytica Chimica Acta, 2003, 479(2): 143-150
    [250] Hu Z, Seliskar C J, Heineman W R. Voltammetry of [Re(DMPE)3]+ at ionomer-entrapped composite-modified electrodes. Analytical Chemistry, 1998, 70(24): 5230-5236
    [251] Gill I, Ballesteros A. Encapsulation of biologicals within silicate, siloxane and hybrid sol-gel polymers: an efficient and generic approach. Journal of the American Chemical Society, 1998, 120(34): 8587-8598
    [252] Wang B Q, Li B, Deng Q, et al. Amperometric glucose biosensor based on sol-gel organic-inorganic hybrid material. Analytical Chemistry, 1998, 70(15): 3170-3174
    [253] Topoglidis E, Cass A E G, O’Regan B, et al. Immobilisation and bioelectrochemistry of proteins on nanoporous TiO2 and ZnO films. Journal of Electroanalytical Chemistry, 2001, 517(1-2): 20-27.
    [254] Deng Q, Dong S J. Mediatorless hydrogen peroxide electrode based on horseradish peroxidase entrapped in poly(o-phenylenediamine). Journal of Electroanalytical Chemistry, 1994, 337(1-2): 191-196
    [255] Razola S S, Ruiz B L, Dize N M, et al. Hydrogen peroxide sensitive amperometric biosensor based on horseradish peroxidase entrapped in a polypyrrole electrode. Biosensors and Bioelectronics, 2002, 17(11-12): 921-928
    [256] Grabar K C, Freeman R G, Hommer M B. Preparation and characterization of Au colloid monolayers, Analytical Chemistry, 1995, 67(4): 735-743
    [257] Huang H, Hu N F, Zeng Y H, et al. Electrochemistry and electrocatalysis with heme proteins in chitosan biopolymer films. Analytical Biochemistry, 2002, 308(1): 141-151
    [258] Liu B H, Cao Y, Chen D D, et al. Amperometric biosensor based on a nanoporous ZrO2 matrix. Analytica Chimica Acta, 2003, 478(1): 59-66
    [259] Yu J H, Ju H X, Preparation of porous titania Sol-Gel matrix for immobilization of horseradish peroxidase by a vapor deposition method. Analytical Chemistry, 2002, 74(14): 3579-3583
    [260] Mello L D, Sotomayor M D P T, Kubota L T. HRP-based amperometric biosensor for the polyphenols determination in vegetables extract. Sensors and Actuators B, 2003, 96(3): 636-645
    [261] Oungpipat W, Alexander P W, Southwell P. A reagentless amperometric biosensor for hydrogen peroxide determination based on asparagus tissue and ferrocene mediation. Analytica Chimica Acta, 1995, 309(1): 35-45

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700