氧化物纳米材料的合成、结构与气敏特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
经过四十多年的研究发展,传感器工作者已基本解决了金属氧化物半导体气体传感器的灵敏度和选择性问题,使之在可燃气体、有毒有害气体的检测和控制方面取得了广泛地应用。但目前市售的半导体气敏元件还存在选择性偏低、稳定性差的缺点,严重限制了这一具有巨大市场价值的产品的推广应用。本文选择发现最早、应用广泛的氧化锌气敏材料和功耗低、选择性好的氧化铟气敏材料为研究对象,从材料结构控制和气敏机理研究两方面入手,系统地研究了氧化物气敏材料的制备、结构、组成与气敏性能的关系,取得了较好的研究结果。具体如下:
     1.用水热法、溶剂热法合成了结构均匀、分散性好的氧化锌纳米棒、纳米线等一维纳米材料和氧化锌晶须、亚微米棒,用XRD、ED、SEM、TEM、XPS等对这些材料的结构、组成和形貌进行了表征。通过考察添加剂、反应温度、时间等因素对合成材料结构及形貌的影响,给出了氧化锌纳米棒、纳米线和晶须的生长机理。
     2.采用化学沉淀法、微乳液法、超声辐射溶胶-凝胶法、水热法、溶剂热法制备了形状均匀、分散性好的球形、方块形、针形和棒形氧化铟,用XRD、ED、SEM、TEM、XPS、TG-DSC等表征了合成氧化铟的结构、组成和形貌;采用溶剂热法一步合成了立方氧化铟纳米晶;通过考察表面活性剂、助表面活性剂、反应原料及配比等对氧化铟结构和形貌的影响,得知油酸存在是微乳-溶剂热法制备亚稳态六方氧化铟纳米棒的关键因素。
     3.通过静态配气法测试了不同结构氧化锌的气敏性能。与零维纳米颗粒相比,氧化锌纳米棒具有较高的气体灵敏度,氧化锌纳米线则具有较好的气敏稳定性;通过贵金属元素掺杂可显著提高氧化锌一维纳米材料的灵敏度并改善其选择性,使之有可能应用于酒精、硫化氢、液化气、乙醛、苯等气体的检测。
     4.与氧化锌气敏材料相比,氧化铟具有更低的功耗或工作温度;稀土掺杂可明显改善氧化铟对酒精和汽油的气体选择性,提高氧化铟对甲醛的灵敏度;根据氧化铟的电阻-温度曲线、灵敏度-温度曲线、颗粒尺寸对氧化铟灵敏度的影响等结果推断氧化铟的气敏机理为表面吸附氧控制型,化学吸附氧的存在对氧化铟在空气中的阻值和检测气氛中的气体灵敏度起着关键的作用。
     5.通过气敏元件表面分析和比表面测试分析了氧化锌一维纳米材料灵敏度高于零
Since gas sensors based on metal oxide semiconductor had been studied in 1962, researchers have basically resolved the problems of low sensitivity and poor selectivity of gas sensors. Recently, gas sensors have been widely used to detect or control inflammable and toxic gases. However, the commercial gas sensors have some disadvantages to overcome, such as the sensitivity non-high enough and shortage stability which caused a big limit in more spread application of the gas sensors provided with great marketable values. It is well known that zinc oxide is the earliest discovered and widely used gas sensing materials, indium oxide is the most valuable materials employed as gas sensor because of its low power consumption and relative high gas selectivity to toxic gas. Thus, we selected ZnO and In2O3 as our research objects, and systemically studied the synthesis of the materials with nanostructure, the relations of material structure, morphology component and gas sensing properties. Some progresses in improving stability and gas selectivity were gained with a view to the control of crystal shape and particle size as well as investigated results of gas sensing mechanism. The details of our research works are presented as follows:
     1 ZnO one-dimensional nanomaterials included nanorods and nanowires, whiskers and sub-microrods with single crystal structure, satisfactory morphology and high dispersity were synthesized by means of hydrothermal and solvothermal methods. The samples are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray Photoelectron Spectroscopy (XPS), and electron diffraction (ED). The effects of the factors such as additives, reactive temperature, reactive time on the structure and morphology of the samples were studied. The crystal growth mechanisms of ZnO nanorods, nanowires and whiskers were also suggested.
     2 The global, cubic, needle and rods-shaped indium oxide nanomaterials were made by chemical precipitation, micro-emulsion, ultrasonic-assisted sol-gel, hydrothermal and solvothermal processes, respectively. The crystal structures, morphology and composition of the samples are characterized by XRD, ED,SEM, TEM,HRTEM, XPS and TG-DSC. In2O3 nanocrystal can be synthesized one-step without any heating
引文
[1] 曹茂盛,关长斌,徐甲强。纳米材料导论[M]。哈尔滨:哈尔滨工业大学出版社,2003
    [2] 徐甲强,陈玉萍,王焕新。金属氧化物纳米微粒的制备研究进展。郑州轻工业学院学报[J],2004,19(1):1-5
    [3] 徐甲强,矫彩山,王 玪,尹志刚。材料合成化学[M]。哈尔滨:哈尔滨工业大学出版社,2003
    [4] 杨 彧,贾殿增,葛炜炜等?腿裙滔喾从χ票肝藁擅撞牧蟍J]。无机化学学报,2004,20(8):881-888
    [5] Li Feng, Xu Jiaqiang, Yu Xianghua, et al. One-step solid state reaction synthesis and gas sensing property of tin oxide[J]. Sens Actuators, 2002,81(2-3):165-169
    [6] Li Feng, Chen Liying, Xu Jiaqiang, et al. two-step solid state synthesis of tin oxide and its gas sensing property[J]. Mater Chem Phys, 2002,73(2-3):335-338
    [7] 徐甲强,沈嘉年,王焕新,荆熠。CdSnO3 纳米材料的室温固相合成及其气敏特性研究[J]。传感技术学报,2004,2:265-268
    [8] 徐甲强,刘照红,王焕新,沈嘉年。CdFe2O4 纳米粉体的制备及其气敏特性研究[J]。功能材料与器件学报,2004,10(3):387-390
    [9] 张天舒,沈瑜生。ZnSnO3 的制备工艺物相组成对电导及气敏性能的影响[J]。传感技术学报,1993,6(2):44-47
    [10] 徐甲强,陈玉萍,田志壮。纳米气敏粉体的制备技术[J]。传感器世界,1999,5(1):33-35,37
    [11] 徐甲强,王焕新,张建荣,沈嘉年。微波水解制备法制备纳米 ZnO 及其气敏特性研究[J]。无机材料学报,2004,19(6):1441-1445
    [12] Pan, Qingyi,Xu, Jiaqiang; Dong, Xiaowen; Zhang, Jianping. Gas-sensitive properties of nanometer-sized SnO2[J]. Sens Actuators, B, 2000,66(1): 237-239
    [13] Pan, Qingyi, Cheng Zhixuan, Wang Tingfu, Zhang, Jianping. The nano-sized In2O3 powder synthesis by sol-gel method[J]. J Shanghai Univ, 2002,6(4).:353-357
    [14] 朱冬梅,韩建军,徐甲强等。超声辐射溶胶-凝胶法制备纳米氧化铟气敏材料[J]。郑州轻工业学院学报,2004,19(4):34-36
    [15] Xu, Jiaqiang; Pan, Qingyi; Shun, Yu'an; Tian, Zhizhuang. Grain size control and gas sensingproperties of ZnO gas sensor[J]. Sens Actuators, B, 2000, 66(1):277-279
    [16] 潘庆谊,徐甲强,刘洪民等。微乳液法纳米 SnO2 材料的合成、结构与气敏性能[J]。无机材料学报,1999,14(1):83-89
    [17] 徐如人著。无机合成与制备化学[M]。北京:高等教育出版社,2001
    [18] Feng Shouhua, Xu Ruren. New materials in hydrothermal synthesis[J]. Acc Chem Res, 2001,34:239-247
    [19] 钱逸泰,谢毅。非氧化物材料的溶剂热合成[J]。中国科学院院刊,2001,16(1):26-28
    [20] 陈 震,郑 曦,陈日耀等。有机溶剂热生长晶体及其应用[J]。材料研究学报,2001,15(2):151-158
    [21] 李祥生,刘桂华,李幡等。化学络合法制备纳米氧化物粉体研究进展[J]。江苏化工,2001,29(6):27-29
    [22] 殷亚东,张志成,徐相凌等。纳米材料的辐射合成法制备[J]。化学通报,1998,(12):21-25
    [23] 韩顺昌。纳米材料的结构特性及其表征[J]。材料开发与应用,1998,13(1):36-40
    [24] 陈玉萍,徐甲强,方少明。现代测试技术在纳米材料研究中的应用[J]。化学研究与应用,2004,16(5):593-596
    [25] 徐甲强,王晓华,胡 平,杜 娟。近代测试技术在气敏材料研究中的应用[J]。郑州轻工业学院学报,2004,19(4):80-84
    [26] S. Iijima, Helical microtubules of graphitic carbon [J]. Nature, 1991,354 (6348): 56-58.
    [27] 曹茂盛,曹传宝,徐甲强。纳米材料学[M]。哈尔滨:哈尔滨工程大学出版社,2003
    [28] Xia Younan, Yang Peidong, Sun Yugang, et al. One dimensional nanostructure: synthesis, characterization and applications[J]. Adv Mater, 2003,15(5):353-389
    [29] C.N.R.Rao, F.L.Deepak, G.Gundiah, A.Govindaraj. Inorgnic nanowire[J]. Prog Solid State Chem,2003,31:5-147
    [30] A. M. Morales, C. M. Lieber. A laser ablation method for the synthesis of crystalline semiconductor nanowires[J]. Science, 1998, 279 (5348): 208-211.
    [31] W. S. Shi, Y. F. zheng, N. Wang, et, al. A general synthetic route to III-V compound semiconductor nanowires[J]. Adv. Mater. 2001,13 (8): 591-594.
    [32] R. S. Wagner, W. C. Ellis. Vapor-liquid-solid mechanism of single crystal growth[J]. Appl. Phys. Lett. 1964, 4 (5): 89-90
    [33] Y. Y. Wu, P. D Yang. Direct observation of vapor-liquid-solid nanowire growth[J]. J. Am. Chem. Soc. 2001, 123 (13): 3165-3166
    [34] 吴 强,胡 征,王喜章等。孔性氧化铝模板与一维纳米新材料的制备。无机化学学报,2002,18(7):647-653
    [35] 董亚杰,李亚栋。一维纳米材料的合成、组装与器件[J]。科学通报,2002,47(9):641-649
    [36] Xu Congkang, Xu Guoding, Liu Yingkai, et al. A simple and novel route for preparation of ZnO nanorods[J]. Solid State Com, 2002,122:175-179
    [37] Liu Yingkai, Zheng Chenglin, Wang Wenzhong,et al. Preparation of SnO2 nanorods by redox reaction[J]. J Cys Growth, 2001,233:8-12
    [38] Zhan Yongjie, Zheng Chenglin, Liu Yingkai, et al. Synthesis of NiO nanowires by an oxidation route[J]. Mater Lett, 2003,57(21):3265-3268
    [39] Wenzhong, Zhan Yongjie, Wang Xiaoshu, et al. Synthesis and characterization of CuO nanowhiskers by a novel one step, solid state reaction in the presence of a nonionic surfactant[J]. Mater Res Bull,2003,37(6):1093-1100
    [40] 徐甲强,张全法,范福玲。传感器技术(下)[M]。哈尔滨:哈尔滨工业大学出版社,2004
    [41] 徐甲强,陈玉萍,李亚栋,沈嘉年。一维纳米材料在气体传感器中的应用[J]。传感器技术,2005,24(1):4-6
    [42] Kong J, Franklin N.R, Zhou C, et al. Nanotubes molecular wire as chemical sensors[J]. Science, 2000,287:622-625
    [43] Collins P, Bradley K, Ishigani M, and Zettl. Extreme oxygen sensitivity of electronic of carbon nanotubes[J]. Science, 2000,287:1801-1807
    [44] Snow E.S, Perkins F.K, Houser E.T, et al. Chemical detection with a single-walled carbon nanotube capacitor[J]. Science, 2005,307:1942-1945
    [45] E. Comini, G Faglia, G Sberveglieri, et al. Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts[J]. Appl. Phys. Lett., 2002, 81 (10): 1869-1871.
    [46] Wang, Zhong Lin. Nanobelts, nanowires, and nanodiskettes of semiconducting oxides - From materials to nanodevices[J]. Adv. Mater., 2003, 15 (5): 432-436.
    [47] Law, Matt, Kind, Hannes, Messer, Benjamin, et, al. Photochemical sensing of NO2 with SnO2 nanoribbon nanosensors at room temperature[J]. Angewandte Chemie International Edition,2002, 41 (13): 2405-2408.
    [48] Kolmakov Andrei, Zhang, Youxiang; Cheng, Guosheng; et al. Detection of CO and O2 using tin oxide nanowire sensors[J]. Adv. Mater., 2003, 15 (12): 997-1000.
    [49] Zhang Daihua; Li Chao, Liu, Xiaolei, et al. Doping dependent NH3 sensing of indium oxide nanowires[J]. Appl. Phys. Lett., 2003, 83 (9): 1845-1847.
    [50] Zhang D; Li C.; Han S; et al. Ultraviolet photodetection properties of indium oxide nanowires[J]. Appl. Phys. A: Materials Science and Processing, 2003, 77 (1): 163-166.
    [51] Li, Chao, Zhang, Daihua; Liu, Xiaolei. In2O3 nanowires as chemical sensors. Appl. Phys. Lett., 2003, 82 (10): 1613-1615.
    [52] Varghese Oomman K, Gong Dawei, et al. Hydrogen sensing using titania nanotubes. Sensors and Actuators B, 2003, 93 (1-3): 338-344.
    [53] Walter E.C, Penner R.M, Liu, H,et al. Sensors from electrodeposited metal nanowires. Surface and Interface Analysis, 2002, 34 (1): 409-412.
    [54] E. C. Walter, F. Faview, R. M. Penner, et al. Palladium Mesowire Arrays for Fast Hydrogen Sensors and Hydrogen-Actuated Switches. Anal. Chem. 2002, 74 (7):1546-1553.
    [55] C. Z. Li, H. X. He, A. Bogozi, et al. Molecular detection based on conductance quantization of nanowires. Appl. Phys. Lett., 2000, 76 (10):1333-1335.
    [56] Yi Cui, Qingqiao Wei, Hongkun Park,et al. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science, 2001, 293 (17): 1289-1292
    [57] N.Yamazoe, G. Sakai, K. Shimanoe. Oxide gas sensor[J]. Catal Surveys Asia, 2003,7(1):63-75
    [58] N. Yamazoe. Toward innovations of gas sensor technology[J]. Sens Actuators B, 2005,108(1-2):2-14
    [59] F. Patolsky and C. M. Lieber. Nanowire nanosensors[J]. Mater Today, 2005,8(4):20-28
    [60] 陆佩文。无机材料科学基础[M]。武汉:武汉工业大学出版社。1996
    [61] 詹国平,黄可龙,刘素琴。纳米级氧化锌的制备技术与研究进展[J]。化工新型材料,2001,29(7):15-18.
    [62] 梁忠友。 纳米材料的性能及应用展望[J]。 陶瓷研究,1999,14(1):13-15.
    [63] 朱学文,廖烈文,崔英德。 半导体纳米材料的光催化及其应用[J]。 精细化工,2000,17 (8): 476-479.
    [64] 李晓娥,樊安,祖庸. 纳米级氧化锌的研究进展[J]. 现代化工,2000,20(7):23-26
    [65] Lee Woong, Jeong Min Chang, Myoung Jae Min. Fabrication and application potential of ZnO nanowires grown on GaAs(002) substrates by metal–organic chemical vapour deposition [J]. Nanotechnology, 2004, 15 (3): 254-.259
    [66] Y. W. Wang, L. D. Zhang, G. Z. Wang, et al. Catalytic growth of semiconducting zinc oxide nanowires and their photoluminescence properties[J]. J. Crys. Growth, 2002, 234 (1), 171-175.
    [67] C. C. Tang, S.S. Fan, M.L. de la Chapelle, et al. Silica-assisted catalytic growth of oxide and nitride nanowires[J]. Chem. Phys. Lett. 2001, 333 (1-2): 12-15.
    [68] J. J. Wu, S.C. Liu. Low-temperature growth of well-aligned ZnO nanorods by chemical vapor deposition[J]. Adv. Mater, 2002, 14 (3): 215-218.
    [69] Y.C. Kong, D.P. Yu, B. Zhang, et al. Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach [J]. Appl. Phys. Lett. 2001, 78 (4): 407-409.
    [70] Z.W. Pan, Z.R. Dai, Z.L. Wang. Nanobelts of semiconducting oxides[J]. Science, 2001, 291: 1947-1949.
    [71] C. Pacholski, A. Kornowski, H. We11er. Self-Assembly of ZnO: From Nanodots to Nanorods[J]. Angew. Chem. Int. Ed. 2002, 41 (7): 1188-1191.
    [72] Y.C. Wang, I.C. Leu, M.H. Hon. Preparation of nanosized ZnO arrays by electrophoretic deposition[J]. Solid State Lett., 2002, 5 (4): C53-C55.
    [73] X. H. Kong, X. M. Xiao, Y. D. Li. Synthesis of ZnO nanobelts by carbothermal reduction and their photoluminescence properties[J]. Chem. Lett., 2003, 32 (6): 546-547.
    [74] Z. Q. Li, Y. J. Xiong and Y. Xie, Selected-control synthesis of ZnO nanowires and nanorods via a PEG-assisted route [J]. Inorg. Chem., 2003, 42 (24): 8105—8109.
    [75] Z. Q. Li, Y. Xie, Y. J. Xiong, et al. Reverse micelle-assisted route to control diameters of ZnO nanorods by selecting different precursors [J]. Chem. Lett., 2003, 32 (8): 760-761.
    [76] B. Liu, H. C. Zeng. Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm[J]. J. Am. Chem. Soc. 2003, 125 (15): 4430-4431.
    [77] X. M. Sun, X. Chen, Z. X. Deng and Y. D. Li, A CTAB-assisted hydrothermal orientation growth of ZnO nanorods[J]. Mater. Chem. Phys. 2002, 78 (1): 99-104.
    [78] T. Seiyama,A. Kato,et al. A new detector for gaseous components using semiconductive thin films[J].Anal Chem.,1962,34(11): 1502-1504.
    [79] Q. Wan, Q. H. Li, Y. J. Chen, et al. Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors [J]. Appl. Phys. Lett., 2004, 84 (18): 3654-3656.
    [80] 周晓华,徐毓龙,阎西林等。SnO2 气敏元件的阻温特性及其机理讨论[J]。传感技术学报,1992,5(4):23–27.
    [81] 吉林大学化学系. 催化作用基础 [M]. 北京: 科学出版社, 1980. 310.
    [82] B. B. Rao. Zinc oxide ceramic semiconductor gas sensor for ethanol vapour[J]. Mater. Chem. Phys. 2000, 64 (1): 62-65.
    [83] S. Matsushima, Y. Teraoka, N. Miura, et al. Electronic interaction between metal additives and tin dioxide in tin dioxide-based gas sensors[J]. Japanese J. Appl. Phys. 1988, 27 (10):1798—1802.
    [84] M. H. Huang, S. Mao, H. N. Feick, et al. Room-temperature ultraviolet nanowire nanolasers [J]. Science, 2001, 292: 1897-1899.
    [85] P. D. Yang, H. Q. Yan, S. M. Mao,et al. Controlled growth of ZnO nanowires and their optical propertyes[J]. Adv Funct Mater, 2002, 12 (5): 323-331.
    [86] M. J. Zheng, L. D. Zhang, G. H. Li et al. Fabrication and optical properties of large-scale uniform zinc oxide nanowire arrays by one-step electrochemical deposition technique[J]. Chem. Phys. Lett., 2002, 363 (1-2): 123-128.
    [87] Y. W. Wang, L. D. Zhang, G. Z. Wang,et al. Catalytic growth of semiconducting zinc oxide nanowires and their photoluminescence properties [J]. J Crys Growth, 2002, 234 (1): 171-175.
    [88] D. Banerjee, J. Y. Lao, D. Z. Wang, et al, Large-quantity free-standing ZnO nanowires[J]. Appl. Phys. Lett., 2003, 83 (10): 2061-2063.
    [89] W. I. Park, G. C. Yi, J. W. Kim, et al. Schottky nanocontacts on ZnO nanorod arrays [J]. Appl. Phys. Lett. 2003, 82 (24): 4358-4360.
    [90] X. P. Gao, Z. F. Zheng, H. Y. Zhu, et al. Rotor-like ZnO by epitaxial growth under hydrothermal conditions[J]. Chem. Comm., 2004, (12):1428-1429.
    [91] J. Zhang, L. D. Sun, C. S. Liao, et al. A simple route towards tubular ZnO [J]. Chem. Comm., 2002, (3): 262-263.
    [92] Q. Tang, W. J. Zhou, J. M. Shen, et al. A template-freed aqueous route to ZnO nanorod arrays with high optical property [J]. Chem. Comm. 2004, (6): 712-713.
    [93] X. Y. Zhang, J. Y. Dai, H, C. Ong, et al. Hydrothermal synthesis of oriented ZnO nanobelts and their temperature dependent photoluminescence [J]. Chem. Phys. Lett., 2004, 393 (1-3): 17-21.
    [94] 吴华武,来月英. 氧化锌晶须的特点及其应用 [J]. 无机盐工业,1996, 28 (4): 17 -20.
    [95] 幻毕刚,王浩伟,吴人洁. 陶瓷质晶须及其复合材料中的应用[J]. 材料导报,1999,13 (5): 57-58.
    [96] X. H. Kong, Y. D. Li. Well-aligned ZnO whiskers prepared by catalyst-assisted flux method [J]. Chem. Lett., 2003, 32 (9): 838-839.
    [97] J. Q. Hu, Q. Li, N. B. Wong, et al. Synthesis of uniform hexagonal prismatic ZnO whiskers [J]. Chem. Mater., 2002, 14 (3): 1216-1219.
    [98] J. Zhang, L. D. Sun, X. C. Jiang, et al. Shape evolution of one-dimensional single –crystalline ZnO nanostructures in a microemulsion system [J]. Crystal Growth and Design, 2004, 4 (2):309-313.
    [99] B. Cheng, E. T. Samulski. Hydrothermal synthesis of one-dimensional ZnO nanostructures with different aspect ratios [J]. Chem. Comm., 2004, (8): 986-987.
    [100] B. Li, Y. Xie, J. Huang, et al. Synthesis by a solvothermal route and characterization of CuInSe2 nanowhiskers and nanoparticles [J]. Adv. Mater., 1999, 11 (17): 1456-1459.
    [101] W. Yang , K. Tang, C. Wang, et al. PVA-assisted synthesis and characterization of CdSe and CdTe nanowires [J]. J. Phys. Chem. B, 2002, 106 (36): 9227-9230.
    [102] Koudelka L., Horak J.. Morphology of polycrystalline of ZnO and its physical properties[J]. J. Mater. Sci., 1994,29(6):1497~1499
    [103] Pearton S.J, Norton D.P, Ip K, et al. Recent progress in processing and properties of ZnO[J].Prog Mater Sci, 2005,50(3):293-340
    [104] 李 斌,杜芳林。纳米氧化锌的制备与应用[J],无机盐工业,2004,36(3):7-10
    [105] 金钦汉著。 微波化学,第 1 版。北京:科学出版社,1999:110~117
    [106] A.S.Vanetsev, V.K.Ivanov, Yu.V.Kolen,, ko, et al. Synthesis of spherical oxide particles in microwave hydrolysis of Zr,Ce,and Ni solution[J]. Doklady Chem, 2002,385(1-3):175-177
    [107] Daihua Dong, Pinjie Hong, Shushan Dai. Preparation of uniform α-Fe2O3 particles by microwave induced hydrolysis of ferric salt[J]. Mater Res Bull, 1995,30(5):531-535
    [108] Li Q, Wei Y. Study on preparing monodispersed hematite nanoparticles by microwave induced hydrolysis of ferric salts solution[J]. Mater Res Bull, 1998,33(5):779-782
    [109] 朱文会,徐甲强。催化剂对氧化物气敏性能的影响[J]。郑州轻工业学院学报,1994,9(增):188-190
    [110] Wagh M. S. Patil L. A. Seth Tanay, et al. Surface cupricated SnO2-ZnO film as a H2S gas sensor[J]. Mater Chem Phys, 2004,84(2-3):228-233
    [111] Nomura T. Anamoto T. Matsuura Y Kajiyama Y. Development of semiconductor fluorocarbon gas sensor[J]. Sens Actuators B, 1993,13(1-3):486-488
    [112] Xu Jiaqiang Shun Yu/an Pan Qingyi Qin Jianhua. Sensing characteristics of double layer of ZnO[J]. Sens Actuators B,2000,66(1):161-163
    [113] Kang B. S. Heo Y. W. Tien L. C. et al. Hydrogen and Ozone gas sensing using multiple ZnO nanorods[J]. Appl Phys A, Mater Sci Process, 2005,80(5):1029-1032
    [114] Koshizaki Naoton Oyama Toshie. Sensing characteristics of ZnO-based NOx Sensor[J]. Sens Actuators B, 2000,66(1):119-121
    [115] Astan M Chaudhary V.A. Molla I.S. et al. Highly selective ammonia gas sensor using surface-ruthenated zinc oxide[J]. Sens Actuators A, 1999,75(2):162-167
    [116] Ryu Hyum-wook Park Bo-Seok Akbar Sheih A., et al. ZnO sol-gel derived porous film for CO gas sensing[J]. Sens Actuators B, 2003,96(3):717-722
    [117] Xiangfeng Chu Dongli Jiang Djurisic Aleksandra B Leung Yu Hang. Gas sensing properties of thick-film base on ZnO nano-tetrapods[J]. Chem Phys Lett, 2005,401(4-6):426-429
    [118] Gao T. Wang T.H. Synthesis and properties of multipod-shaped ZnO nanorods[J]. Appl Phys A, Mater Sci Process, 2005,80(7):1451-1454
    [119] Hossain M.K. Ghosh S.C. Boontongkong Y. et al. Growth of zinc oxide nanowires and nanobelts for gas sensing application[J]. J Metastab nanocrystal Mater, 2005,23:27-30
    [120] Xu Jiaqiang Chen Yuping Li Yadong Shen Jianian. Gas sensing properties of ZnO nanorods prepared by hydrothermal method[J]. J Mater Sci, 2005, 40:2919-2921
    [121] 宋旭春,徐铸德,陈卫祥,等。氧化锌纳米棒的制备和生长机理研究[J]。2004,20(2):186-189。
    [122] O. Ryoko, S. Shigeguki, S. Yutaka, et al. Indium tin oxide films prepared by dip coating using an ethanol solution of indium oxide and tin chloride[J]. Surf Coat Tech, 2003,169-170(1):521-524
    [123] Cali C, Mosca M, Targia G. Deposition of indium-tin oxided film by laser ablation: processing and characterization[J]. Solid State Electronics, 1998,42(5):877-879
    [124] 王廷富,潘庆谊,程知萱。In2O3 薄膜及纳米颗粒制备进展[J]。材料导报,2001,15(8):45-47
    [125] 葛秀涛,倪受春。Mg 掺杂对 In2O3 电导和气敏性能的影响[J]。化学物理学报,2002,15(2):157-160
    [126] A. Gurlo, N. Barsen, U. Welmar, et al. Polycrystalline well-shaped blocks of indium oxide obtained by sol-gel method and their gas sensing properties[J]. Chem Mater, 2003, 15(23):4377-4383
    [127] Xu Hui Rui, Zhu Gui Sheng, Zhou Hui Ying, Yu Ai Bing. Preparation of monodispersed tin-doped indium oxide nanopowder under moderate conditions[J]. Mater Lett, 2005,59(1):19-21
    [128] 徐甲强,刘艳丽,牛新书。室温固相合成氧化铟及其气敏特性研究[J]。无机材料学报,2002.17(2).367-370
    [129] 刘秉涛,姜安玺,徐甲强。氧化铟气敏材料的制备与特性[J]。稀有金属材料与工程,2004,33(10):1093-1095
    [130] 王惠玲,齐永秀,张景香。粒径均匀的氧化铟粉末的研制[J]。无机盐工业,2002,34(4):9-10
    [131] 徐甲强,沈瑜生。超微粒α-Fe2O3 气敏机理初探[J]。无机材料学报,1992,7(1):32~36
    [132] C Xirouchaki, K Mosechoris, E Chatzitheodoridis, et al. Chemical characterization of as-deposited microcrystalline indium films prepared by reactive dc magnetron sputtering[J]. Appl. Phys A, 1998,67(3):295-301
    [133] H Kim, J S Horwitz, A Pique, et al. Electrical and optical properties of indium tin oxide thin film grown by pulsed laser deposition[J]. Appl. Phys A, 1999,69(suppl):S447-S450
    [134] M Penza, S Cozzi,M A Tagliente. Characterization of transparent and conductive electrodes of indium tin oxide films by sequential reactive evaporation [J]. Thin Solid Film, 1999,349(1-2):71-75
    [135] S S Kim, Y S Chois, C G Park, et al. Transparent conductive ITO thin films through the sol-gel process using metal salts[J]. Thin Solid Film, 1999,347(1-2):155-158
    [136] K L Choy. Chemical vapour deposition of coating [J]. Prog Mater Sci, 2003,48(2):57-170
    [137] Zili Zhan, Denggao Jiang, Jiangqiang Xu. Investigation of a new In2O3-based selective H2 gas sensor with low power consumption[J]. Mater Chem Phys, 2005,90(2-3):250-254
    [138] T Takada. Highly sensitive ozone sensor [J]. Sens and Actuators, B ,1993, 13(1-3): 404-407.
    [139] A K Hattori. Ozone sensor made by dip coating method [J]. Sens and Actuators, 1999,77(2): 120-125
    [140] V Marotta, S Orlando, G P Parisi, et al. Indium and tin oxide polycrystalline thin film as NO gas sensors produced by reactive pulsed laser ablation and deposition[J]. Appl Phys A, 1999,69(suppl):S675-S677
    [141] H Steffes. Enhancement of NO2 sensing properties of In2O3-based thin films using an Au or Ti surface Modification[J]. Sens and Actuators, 2001,B78(2):106-112.
    [142] Wan-young Chung. Gas-sensing properties of spin-coated indium oxide film on various substrates [J]. J Mater Sci, 2001,12(10):591-596
    [143] T V Belysheva, E A Kazachkov, E E Gutman. Gas sensing properties of In2O3 and Au-doped In2O3 films for detecting CO in air[J]. J Anal Chem, 2001,56(7):676-678
    [144] V V Malyshev, A V Pislyakov, I F Kresnikov, et al. Sensitivity of semiconductor gas sensors to Hydrogen and inert gas atmosphere[J]. J Anal Chem, 2001,56(9):864-870
    [145] 程知萱, 潘庆谊, 王廷富等. 溶胶-凝胶法制备的纳米 In2O3 气敏性能研究[J]. 郑州轻工业学院学报,2002,17(4):3-5
    [146] Zili Zhan, Denggao Jiang, Jiangqiang Xu. Enhancement of H2 sensing properties of In2O3-based gas sensor by chemical modification with SiO2[J]. Chin Chem Lett, 2004,15(12):1509-1512
    [147] Chao Li, Daihua Zhang, Bo Li, et al. Surface treatment and doping dependence of In2O3 nanowires as NH3 sensors[J]. J Phys Chem B, 2003,107:12451-12455
    [148] 葛秀涛, 刘杏芹. α-Fe2O3 掺杂对 In2O3 电导和气敏性能的影响[J]. 物理化学学报,2001,17(10):887-891
    [149] 李晶, 陈世柱. 纳米 In2O3 的制备与结构表征[J]. 中国粉体技术, 2003,9(1):33-35
    [150] 全宝富, 刘凤敏, 李爱武等. Sol-gel 法制备低阻 In2O3 膜[J]. 功能材料, 2001,32(4):407-409
    [151] Pan Qingyi, Cheng Zhixuan, Wang Tingfu, Zhang Jianping. The nanosized In2O3 powder synthesis by Sol-gel method[J]. J Shanghai Univ, 2002,6(4):353-357
    [152] Huaming Yang, Aidong Tang, Xiangchao Zhang, et al. In2O3 nanoparticles synthesized by mechanochemical processing[J]. Scripta Mater, 2004,50(4):413-415
    [153] Zhan Zili, Song Wenhui, Jiang Denggao. Preparation of nanometer-sized In2O3 particles by a reverse microemulsion method[J]. J Colliod Interface Sci, 2004,271(2):366-371
    [154] 徐甲强,潘庆谊,孙雨安,李占才。纳米氧化锌的乳液合成、结构表征及气敏特性研究[J]。无机化学学报,1998,14(3):355-359
    [155] Lukaszewicz J.P, Miura N, Yamazoe N. Electronic interaction between metal additives and tin dioxide in tin dioxide-based gas sensor[J]. Japan J Appl Phys, 1988,27(10):1798-1802
    [156] 朱文会, 徐甲强。添加剂对 SnO2 气敏材料敏感特性的影响[J]。应用科学学报,1993,11(2):104-108
    [157] Zhang J, Au K.H, Zhu Z.Q, O/shea S. Sol-gel preparation of PEG doped indium-tin oxide thin films for sensing application[J]. Opt Mater, 2004,26(1):47-55
    [158] Chung Wan Young , Lee Yun Su, Lee Duk Dong. Indium thin film sensor for monitoring produced by a sol-gel process[J]. J Mater Sci Lett, 2003,22(12):907-909
    [159] Chu S.Z, Wada K, Inoue S, Todoroki S. Fabrication of oxide nanostructure on glass by aluminum anidization and sol-gel method[J]. Surf Coat Tech, 2003,169-170(1):190-194
    [160] Su C, Shen T.K, Wan M.A, Chan Y.T, Feng M.C. Preparation and characterization of ITO thin films on glass by a sol-gel process using metal salts[J]. Inter J Nanosci, 2004,3(4-5):447-454
    [161] Teng G, Weger J.R, Hurtt G.J, Soucek M.D. Novel inorganic by hybrid materials based on blown oil with sol-gel precursors[J]. Prog Org Coat, 2001,42(1-2):29-37
    [162] 詹自力,徐甲强,蒋登高。氧化铟气体传感器研究现状[J]. 传感器技术,2003,22(3):1-3
    [163] 张永红,陈明飞,彭天剑,共沸蒸馏制备氧化铟粉体及性能研究[J]. 湖南有色金属,2002,18(4):26-28
    [164] 沈耀亚,赵德志. 功率超声在化工领域中的应用现状和发展趋势[J],现代化工,2000,10(20):14~18
    [165] Ki Young Kim, Seung Bin Park. Preparation and Property control of nanosized indium-oxide tinoxide particle[J]. Mater Chem Phys, 2004,86(1):210-221
    [166] Gonzalez G.B, Mason T.O, Quintana J.P, et al. Defect structure studies of bulk and nano-indium tin oxide[J]. J Appl Phys, 2004,96(7):3912-3920
    [167] 赵谢群。透明导电氧化物薄膜研究现状与产业化发展[J]。电子元件与材料,2002,19(1):40-41
    [168] 张永红,陈明飞,彭天剑。纳米氧化铟粉体制备及其在碱锰电池中的应用[J]。电池工业,2002,7(3-4):193-195
    [169] Yu Dabin, Yu Shuhong, Zhang Shuyuan, et al. Metastable hexagonal In2O3 nanofibers templated from InOOH nanofibers under ambient pressure[J]. Adv Funct Mater, 2003,13(6):497-501.
    [170] H.L. Zhu, K.H. Yao, Y.H. Wo,et al. Hydrothermal synthesis of single crystalline In(OH)3 nanorods and their characterization[J]. Semiconduct. Sci. Tech. 2004,19(8): 1020-1023.
    [171] 徐甲强,闫冬良,王国庆,田志壮。WO3 基硫化氢气敏材料的研究[J]。硅酸盐学报,1999,27 (5):591-596.
    [172] 王成云,苏庆德,钱逸泰等。非水溶剂水热法制备 CeO2 纳米粉[J]。化学研究与应用,2001,13(4):402-405
    [173] Guangyan Sha, Tonghua Wang, Jinbing Xiao, Chenghai Liang. Amild solvothermal route to α-Fe2O3 nanoparticles[J]. Mater Res Bull, 2004,39:1917-1921
    [174] Kaibin Tang, Yitai Qian, Jinghuai Zeng Xiaogang Yang. Solvothermal route to semiconductor nanowires[J]. Adv Mater, 2003,15(5):448-450
    [175] Haiyan Xu, Wenliang He, Hao Wang, Hui Yan. Solvothermal synthesis of K2V3O8 nanorods[J]. J Cry Growth, 2004,260:447-450
    [176] E. Krupicka, A. Reller, A. Weidenkaff. Morphology of nanoscaled LaMO3-particles (M=Mn、Fe、Co、Ni) derived by citrate precursors in aqueous and alcohole solvents[J]. Cry Eng, 2002,5:195-202
    [177] Hu Chunxia, Wu Youshi, Ma Xuejuan, et al. PVA-assisted solvothermal fabrication of tin oxide sub-microrods[J]. J Cry Growth, 2004,265(1-2):235-240
    [178] Demazeau G, Millet J.M, Cros C, Largeleau A. Solvothermal synthesis of microcrystalites of transition metal oxide[J]. J Alloys Compound, 1997,262-263(14):271-174
    [179] Yu S.H. Hydrothermal/solvothermal processing of advanced ceramic materials[J]. J J CeramSoc, 2001,109(1269):S65-S75.
    [180] Yu Dabin, Yu Weichao, Wang Debao, Qian Yitai. Structural,optical, and electrical properties of indium tin oxide films with corundum structure fabricated by a sol-gel route bdsed on solvothermalreaction[J]. Thin Solid Films, 2002 419(1-2):166-172
    [181] Szweda Roy. Metastable Ⅱ - Ⅺ materials for new opto devices[J]. Ⅲ - Ⅴ s Review, 2003,16(8):36-39
    [182] Antsiferov V.N, Smyshlyaeva T.V, Shatsov A.A. frication materials with metastsble structure[J]. Trenie/znos, 2000,21(1):89-95
    [183] Y. Xie, Y. T. Qian. A Benzene-Thermal Synthetic Route to Nanocrystalline GaN [J]. Science. 1996, 272: 1926-1927.
    [184] Q. Li. Solvothermal Growth of Vaterite in the Presence of Ethylene Glycol, 1, 2-Propanediol and Glycerin [J]. J. Crystal Growth. 2002, 236 (1-3): 357-362.
    [185] M. Epifani, P. Siciliano, A. Gurlo, et al. Ambient pressure synthesis of corundum-type In2O3[J]. J. Am. Chem. Soc., 2004, 126 (13): 4078-4079.
    [186] C. T. Prewitt, R. D. Shannon, D. B. Rogers, et al. C rare earth oxide-corundum transition and crystal chemistry of oxides having the corundum structure [J]. Inorg. Chem. 1969, 8 (9): 1985-1993.
    [187] T. Atou, K. Kusaba, K. Fukuoka, et al. Shock-induced phase transition of M2O3 (M = Sc, Y, Sm, Gd, and In)-type compounds[J], J. Solid State Chem. 1990, 89 (2): 378-384.
    [188] X. F. Chu, C. H. Wang, D. L. Jiang, et al. Ethanol sensor based on indium oxide nanowires prepared by carbothermal reduction reaction [J]. Chem. Phys. Lett. 2004, 399 (4-6): 461-464.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700