基于介孔碳材料的电化学生物传感器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物传感器作为一门涉及化学、生物学、物理学以及电子学等领域的交叉学科,在临床医学、工农业生产和环境保护等诸多领域有着广阔的应用前景。生物传感技术也必将是21世纪知识经济发展中介于信息和生物技术之间的新增长点。在生物传感器的发展进程中,电化学生物传感器是十分重要的一类。它是由生物材料作为敏感元件,电极作为转换元件,以电势、电流或电导等作为特征检测信号的传感器。其研制过程中的一个关键因素是生物分子的固定化。如何在电极表面有效地固定生物分子,无论是对于研究蛋白质等生物分子的性质,还是研制新型电化学生物传感器都至关重要。理想的生物分子的固定方法要求既能促进有效的电子转移,又能保持被固定生物分子的活性。
     碳基纳米材料以其良好的导电性和化学稳定性吸引了越来越多的关注并得到了广泛的研究。然而在典型的氧化还原蛋白质/电极的生物电化学研究中,氧化还原点位同电极表面之间需要通过介体来促进电子转移。当没有介体存在时,仅有少数氧化还原蛋白质在碳纳米管修饰的电极上表现出直接电子转移。因此研究氧化还原蛋白质的直接电子转移对于蛋白质氧化还原性质和生物传感器的基础研究都有重要意义。
     众所周知主要有两个因素影响固定化蛋白质的氧化还原行为和生物活性。一是载体对蛋白质的负载能力;一是载体材料的生物相容性和电催化性能。纳米材料如纳米粒子、碳纳米管、纳米孔金属氧化物等,正由于能够有效固定生物组分,在生物传感器中具有极大的应用潜力,日益引起人们的关注。近年来随着介孔材料的兴起和发展,人们合成出介孔碳材料(CMMs),这种新型的碳纳米材料在催化剂载体、吸附剂及电子器件等方面被广泛应用。CMMs是由具有高度有序排列以及大孔隙率的碳纳米棒所组成,不仅像碳纳米管一样具有良好的电学性质和化学稳定性,也表现出很多独特性质,例如高度有序的孔结构、易于调控的介观结构、狭小的孔径分布、更大的比表面积(高达2000 m~2 g~(-1))和比孔容(可达1.5 cm~3 g~(-1))等。而且还可以通过调控介孔碳材料的孔道尺寸、介观拓扑结构和表面荷电情况来设计适应不同生物分子固定化需求的载体。这都使介孔碳材料在蛋白质固定和生物传感器研究等方面拥有极大的优势和应用前景。此外,CMMs可以很容易的通过硬模板法制备,成本低廉,同时在二氧化硅“模板”被完全刻蚀的情况下无任何杂质污染。然而到目前为止,CMMs很多其他的潜在优势,如生物相容性和电催化性质尤其是在固载蛋白质和制备生物传感器方面的应用报道较少。
     通过将新型纳米材料修饰到电极表面,可以有效地固定生物分子,并促进其氧化还原中心与电极之间的直接电子转移,从而研制新一代的生物传感器及其他生物器件。因此,本课题具有较为重大的理论研究和实际应用意义。
     本论文共分为六个部分:
     第一章,首先对纳米材料和生物传感器的研究现状和发展前景进行了简述。接着在此基础上提出本论文的研究设想,即采用功能纳米材料修饰的电极来固定蛋白质分子,通过电化学方法来研究蛋白质的电子转移、电催化和生物传感应用。着重介绍了基于介孔碳及其纳米掺杂复合物的蛋白质固定化技术。最后,提出了本论文的实验思路和研究意义。
     第二章,研究了基于铂纳米粒子掺杂介孔碳的蛋白质电化学和生物传感应用。铂纳米粒子(Platinum nanoparticles,PtNPs)具有良好的导电性和催化性质,可以有效的提高所制备的纳米复合物的导电性和电催化活性。与未掺杂的二维介孔碳(2D-CMM)相比,分散了铂纳米粒子的介孔碳修饰电极由于两种材料促进电子传递和提高电催化性能方面的协同效应,能促进其固定化酶的氧化还原可逆性。在此以葡萄糖氧化酶为模型,制备了铂纳米粒子掺杂的介孔碳纳米复合物薄膜(Pt-CMM),用来研究固定化酶的准可逆的电子传递,其表观的异相电子传递速率(k_(et)~0)为6.5 s~(-1),高于纯介孔碳固定化酶的3.9 s~(-1)。同时,进一步考察了该传感器的生物催化活性,当铂/介孔碳质量百分比为5%时,传感器具有较好的稳定性,对葡萄糖响应迅速灵敏,且具有更低的检测下限。由于贵金属纳米颗粒掺杂所带来的成本的升高和稀缺资源的消耗,我们接下来将着重从介孔碳的结构调控等方面进行深入的研究。
     第三章,首先考察了基于二维和三维有序介孔碳的蛋白质电化学和生物传感器研究。介孔碳复合物基质既能较好的固定酶分子,又能为固定化的酶分子提供生物相容的微环境以保持其生物活性。同时,由于其固有的高导电性,介孔碳材料有助于促进固定化酶分子与基底电极之间的电子传递。由此设计并制备了二维和三维高度有序的介孔碳用于固定葡萄糖氧化酶分子以研究其准可逆的电子传递,实验测得其异相电子传递速率值分别为3.9和4.2 s~(-1)。此外还进一步研究了传感器的生物催化活性。与二维有序的介孔碳材料相比,三维有序的介孔碳材料对蛋白质表现出更高的负载能力,其固定化的酶分子保持了更高的生物活性,制备的葡萄糖生物传感器具有灵敏度高、线性范围宽和检测限低等特点。
     第四章,研究了基于双连续螺旋介孔碳的蛋白质电化学和生物传感器研究。由于二维有序的介孔碳存在某一个空间维度的无序性,导致了其导电的各向异性比三维有序介孔碳大。故上一章中三维介孔碳比二维介孔碳的表观导电性高,然而这种提高程度还不是非常理想。这是由于合成三维介孔碳的某些氧化硅模板如MCM-48、FDU-5等缺少相互连接的微孔,当模板被刻蚀除去以后会发生碳骨架结构的部分错位,导致空间对称性的下降同时其导电各向异性程度增强,从而使上述碳基材料对蛋白质与电极之间电子转移的促进作用在一定程度上受到限制。而双连续螺旋介孔碳(Bicontinuous gyroidal mesoporous carbon,BGMC)则是一种具有更高有序度更高空间对称性——立方Ia(?)d结构的三维介孔碳,从而具有相对各向同性的石墨化结构和电导能力,因此可以更为有效的促进异相电子转移。为此设计构建了BGMC纳米复合物薄膜固定蛋白质(以葡萄糖氧化酶和肌红蛋白为模型),研究了蛋白质准可逆的电子传递并揭示了其较高的生物催化活性。还进一步设计制备了一系列不同孔径(2-7 nm)的以蔗糖或酚醛树脂(Phenolformaldehyde,PF)作为碳源的BGMC,研究其孔径和碳源对氧化还原蛋白质固定和异相电子传递的影响。实验结果表明BGMC的不同孔径和碳源对蛋白质固定及其电化学性质具有较大影响。这也意味着可以通过调控介孔碳的孔径、拓扑结构等来制备适宜于不同尺度生物分子的固定基质,以促进异相电子转移并提高固定化酶的生物电催化性能。这些性质使BGMC在研究蛋白质直接电化学方面极具价值,同时拓宽了碳基生物传感器的发展途径。
     第五章,研究了基于双连续螺旋介孔碳的NADH的电化学氧化。到目前为止,关于利用三维介孔碳材料进行NADH直接电化学氧化的研究尚无报道。于是本章利用BGMC修饰的玻碳电极来研究NADH的电化学氧化。BGMC所具有的大比表面积和高电子传递能力以及丰富的边片状缺陷位和表面的含氧官能团,对NADH的氧化表现出了较高的电催化性能,将NADH的氧化过电位降低了649mV(与未修饰的裸玻碳电极相比)。BGMC修饰电极实现了NADH在低电位条件下(+0.046 V vs.SCE,pH 7.2)稳定灵敏的响应。检测下限为1.0×10~(-6) M,响应范围较宽(3.0×10~(-6)-1.4×10~(-3) M)。这为基于以NADH为电活性物质的脱氢酶的电流型生物传感器的发展提供了新的研究途径。
     第六章,对全文进行了总结,指出了研究中存在的一些不足,并提出了后续工作的目标和研究思路。
Biosensors,as an interdisciplinary frontier related to chemistry,biology,physics, medical science and electronics,will have broad applications in clinical medicine, industry,agriculture and environment protection.Biosensing technology will also become the new growing point between information technology and biological technology during the development of intelligent economy in 21 century. Electrochemical biosensor is extensively investigated and becomes one of the most practical and prospective devices among all kinds of biosensors.It is composed of the biomaterial as a receptor and an electrode as a transducer,detecting the generated electrical signals.A key factor in biosensor development is the immobilization of biomolecules.It is very significant to find a reliable strategy to immobilize biomolecules,retaining their high activity and meanwhile allowing the effective electron-transfer(ET) between the redox centers and the electrode surface.
     Carbon based nanomaterials have drawn increasing attention because of their good conductivity and chemical stability.However,bioelectrochemical studies of redox proteins/electrode typically require mediators to promote ET between the redox sites and the electrode surface.Hence,when no mediators present,only a few redox proteins performed direct ET on electrodes modified with carbon nanotubes(CNTs). Thus it is important for the understanding on protein properties and the development of bioelectrochemical devices to study the direct ET of redox proteins.
     It is well known that two factors seriously affect the redox behavior and bio-activity of the immobilized proteins.One is the protein-loading capability of the material;the other is the biocompatibility and the electro-catalytic performance of the matrix.Nanomaterials,such as nanoparticles,CNTs,nanoporous metal oxides and so on,can immobilize bio-components effectively and have great potentials in the application of biosensors,arousing increasing research interest.Carbon mesoporous materials(CMMs),a new type of nanostructured carbon materials,have recently shown many unique properties and attracted growing interest in diverse fields from catalyst carriers,absorbents to electronic devices.CMMs are composed of carbon nanorods with highly ordered arrays.Thus CMMs not only have good conductivity and chemical stability like CNTs,but also show many unique properties,such as highly-ordered and tailored mesostructures,much narrow pore size distributions,large surface areas(up to ca.2000 m~2 g~(-1)) and large porosity(up to ca.1.5 cm~3 g~(-1)).That means it is possible to design the selectivity of substrates for biomolecule immobilization,by varying the pore diameter,mesoscopic topology and charge of CMMs.All of these advantages make them greatly promising in the realm of protein immobilization and heterogeneous ET.Besides,CMMs can be easily prepared via the hard templating strategy with low cost and free from any impurities if silica 'mold' is fully etched away.While up to now,many other potential advantages of CMMs,e.g. biocompatibility and eletrocatalytic properties,have rarely been addressed,especially for its applications in immobilizing proteins and fabricating biosensors.
     The electrode modification with novel nanomaterials can immobilize biomolecules effectively and promote the direct ET between redox centers and electrodes,thus develop a new generation of biosensors and other bio-devices. Therefore,this issue is of great theoretical and practical significance.
     This dissertation includes six chapters as follows:
     In Chapter One,we introduced the research and development of nanomaterials and biosensors,respectively.Then we proposed a scheme of functional nanomaterials-modified electrodes for protein immobilization and research on ET, electro-catalysis and biosensing.Finally we outlined the experimental ideas and the research purposes of this thesis.
     In Chapter Two,we studied the electrochemistry and biosensing of glucose oxidase(GOx) based on Pt-dispersed CMM.Platinum nanoparticles(PtNPs) provided with excellent conductivity and catalytic properties can effectively enhance conductive and electrocatalytic performance of the prepared nanocomposite. Compared with the pure two dimensional(2D-) CMM,CMM dispersed with PtNPs enhances the electron communication and redox reversibility of redox enzyme at the modified electrode,due to the cooperative effect of PtNPs and CMM on the ET promotion and electrocatalytic activity.Based on Pt-CMM nanocomposite film,the quasi-reversible electron transfer for GOx is probed and the apparent heterogeneous electron transfer rate constant(k_(et)~0) is 6.5 s~(-1),lager than 3.9 s~(-1) based on pure CMM. In addition,the associated biocatalytic activity is revealed.The prepared biosensor offers a more stable and sensitive amperometric detection of glucose with a lower detection limit under the optimal Pt/CMM weight ratio of 5 wt.%.Considering the high cost and resource consumption when doping noble metal nanopaticles,we focused on the deep study in the mesostructure adjustment in the following work.
     In Chapter Three,we investigate the electrochemistry and biosensing of GOx based on CMMs with different spatially-ordered dimensions.As discussed in Chapter Two,the CMM composite matrix is provided with both the ideal immobilization ability for enzymes and the biocompatible microenvironment for preserving the bioactivity of enzyme molecules.Meanwhile,due to their inherent good conductivity, the CMMs can promote the electron communication between the immobilized enzyme molecules and the underlying electrode,realizing fast electron transfer between the enzymes and the modified electrode surface.Thus we designed and prepared highly ordered two-dimensional(2D-) and three-dimensional(3D-) CMMs to immobilize GOx.The quasi-reversible ET of the redox enzyme is probed,and the apparent heterogeneous electron transfer rate constants(k_(et)~0) are 3.9 and 4.2 s~(-1) respectively.Furthermore,the associated biocatalytic activity was also revealed. Highly ordered 3D-CMM exhibited larger adsorption capacity for proteins and the immobilized enzymes retained a higher bioactivity compared with 2D-CMM.The mediated glucose biosensor based on 3D-CMM showed a high sensitivity,broad linear response range,and low detection limit.
     In Chapter Four,we studied the electrochemistry and biosensing of proteins based on bicontinuous gyroidal mesoporous carbon(BGMC).Because 2D-CMM has a disordered dimension,resulting in its conductivity anisotropy higher than that of 3D-CMM,3D-CMM exhibits a higher apparent conductivity than 2D-CMM. However,such enhancing degree is not very ideal.Because some silica templates of 3D-CMM,such as MCM-48 and FDU-5,are lack of interconnected micropores,the partial displacement of the carbon frameworks occurs after the removal of the silica template,leading to the decrease in spatial symmetry and simultaneously the increase in the conductivity amsotropy.Thus the above carbon matrixes are limited in achieving a considerably ideal promotion of ET between redox proteins and electrodes.While BGMC has a more ordered mesoscopic structure with the higher symmetry of 3D-Ia(?)d,possessing a relatively isotropic graphited structure and thus can more effectively enhance the heterogeneous electron communication.Herein a strategy was demonstrated,of the preparation of protein-entrapped BGMC nanocomposite films for assembling redox proteins(employed glucose oxidase and myoglobin as the models).The immobilized proteins showed fast electrochemistry and retained their bioactivity to a certain extent.In addition,a series of BGMCs with different pore sizes from 2 to 7 nm was designed and synthesized with sucrose or phenol formaldehyde(PF) resin as a carbon source.Pore sizes and carbon sources show great influences on the immobilization of redox proteins and on the ET between redox proteins and electrodes.It means that the pore diameter and structural topologies can be readily tuned to match the dimensional size of diverse biomolecules, to promote heterogeneous ET and to enhance the electrocatalytic properties of the proteins.All these properties make BGMC valuable in the understanding on the electrochemistry of redox proteins and expand the scope of carbon-based electrochemical devices.
     In Chapter Five,we studied the electrocatalytic oxidation of NADH based on BGMC with low overpotential.To the best of our knowledge,no previous work has been reported on the direct electro-oxidation research of NADH based on 3D-CMM. Herein we used the BGMC-modified electrode to study the electrochemical oxidation of NADH.The large specific surface area and the high electron-communicating capability of BGMC,plus the considerable edge-plane-like defective sites and the oxygen-containing groups on the BGMC surface could be responsible for its electrocatalytic behavior,which induced a substantial decrease by 649 mV in the overpotential of NADH oxidation reaction(compared with a bare electrode).The BGMC-modified electrode offers a stable and sensitive amperometric detection of NADH at a low overpotential(+0.046 V vs.SCE,pH 7.2) with a low detection limit (1.0×10~(-6) M) and a broad linear response range(3.0×10~(-6)~1.4×10~(-3) M).This might broaden the development avenue of amperometric biosensors based on NADH-dependent dehydrogenase.
     In Chapter Six,we summarized and pointed out the shortcomings in this dissertation.Finally we proposed the objects and schemes of further research.
引文
[1]张莉芹,袁泽喜.纳米技术和纳米材料的发展及其应用[J].武汉科技大学学报(自然科学版),2003,26(3):234-238.
    [2]张立德.纳米材料的研究现状和发展趋势[J].现代科学仪器,1998,(1-2):27-29.
    [3]严东生,冯端.我国纳米材料研究进展[J].中国科学院院刊,1997,(5):364-366.
    [4]高濂,李蔚.纳米陶瓷[M].北京:化学工业出版社,2002:4.
    [5]IUPAC manual of symbols and terminology[J].Pure Appl Chem,1972,31:578-638.
    [6]Beck J S,Vartuli J C,Roth W J,Leonowicz M E,Kresge C T,Schmitt K D,Chu C T W,Olson D H,Sheppard E W,Mccullen S B,Higgins J B,Schlenker J L.A New Family of Mesoporous Molecular-Sieves Prepared with Liquid-Crystal Templates[J].J Am Chem Soc,1992,114(27):10834-10843.
    [7]田修营,何文,赵洪石,李正茂,周伟家.介孔材料的研究进展及应用前景[J].山东轻工业学院学报,2008,22(2):20-24.
    [8]Ying J Y,Mehnert C P,Wong M S.Synthesis and applications of supramolecular-templated mesoporous materials[J].Angew Chem,Int Ed,1999,38(1-2):56-77.
    [9]Raimondo M,Perez G,Sinibaldi N,DeStefanis A,Tomlinson A A G.Mesoporous M41S materials in capillary gas chromatography[J].Chem Commun,1997,(15):1343-1344.
    [10]Hartmann M.Ordered mesoporous materials for bioadsorption and biocatalysis[J].Chem Mater,2005,17(18):4577-4593.
    [11]Zhao J W,Gao F,Fu Y L,Jin W,Yang P Y,Zhao D Y.Biomolecule separation using large pore mesoporous SBA-15 as a substrate in high performance liquid chromatography[J].Chem Commun,2002,(7):752-753.
    [12]Han Y J,Stucky G D,Butler A.Mesoporous silicate sequestration and release of proteins[J].J Am Chem Soc,1999,121(42):9897-9898.
    [13]Scott B J,Wirnsberger G,Stucky G D.Mesoporous and mesostructured materials for optical applications[J].Chem Mater,2001,13(10):3140-3150.
    [14]Zhang W H,Shi J L,Chen H R,Hua Z L,Yan D S.Synthesis and characterization of nanosized ZnS confined in ordered mesoporous silica[J].Chem Mater,2001,13(2):648-654.
    [15]刘吉平,孙洪强.碳纳米材料[M].北京:科学出版社,2004:17-21.
    [16]Iijima S.Helical Microtubules of Graphitic Carbon[J].Nature,1991,354(6348):56-58.
    [17]Ryoo R,Joo S H,Jun S.Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation[J].J Phys Chem B,1999,103(37):7743-7746.
    [18]Ajayan P M.Nanotubes from carbon[J].Chem Rev,1999,99(7):1787-1799.
    [19]王宗花,罗国安.碳纳米管在分析化学领域的研究进展[J].分析化学,2003,31(8):1004-1009.
    [20]Lee J,Kim J,Hyeon T.Recent progress in the synthesis of porous carbon materials[J].Adv Mater,2006,18(16):2073-2094.
    [21]Lee J,Yoon S,Hyeon T,Oh S M,Kim K B.Synthesis of a new mesoporous carbon and its application to electrochemical double-layer capacitors[J].Chem Commun,1999,(21):2177-2178.
    [22]Jun S,Joo S H,Ryoo R,Kruk M,Jaroniec M,Liu Z,Ohsuna T,Terasaki O.Synthesis of new,nanoporous carbon with hexagonally ordered mesostructure[J].J Am Chem Soc,2000,122(43):10712-10713.
    [23]Yoon S,Lee J W,Hyeon T,Oh S M.Electric double-layer capacitor performance of a new mesoporous carbon[J].J Electrochem Soc,2000,147(7):2507-2512.
    [24]Vinu A,Miyahara M,Ariga K.Biomaterial immobilization in nanoporous carbon molecular sieves:Influence of solution pH,pore volume,and pore diameter [J]. J Phys Chem B, 2005,109 (13): 6436-6441.
    [25] Zhou H S, Zhu S M, Hibino M, Honma I. Electrochemical capacitance of self-ordered mesoporous carbon [J]. J Power Sources, 2003, 122 (2): 219-223.
    [26] Joo S H, Choi S J, Oh I, Kwak J, Liu Z, Terasaki O, Ryoo R. Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles [J]. Nature, 2001,412 (6843): 169-172.
    [27] Kang M, Yi S H, Lee H I, Yie J E, Kim J M. Reversible replication between ordered mesoporous silica and mesoporous carbon [J]. Chem Commun, 2002, (17): 1944-1945.
    [28] Zhu S M, Zhou H A, Hibino M, Honma I, Ichihara M. Synthesis of MnO2 nanoparticles confined in ordered mesoporous carbon using a sonochemical method [J]. Adv Funct Mater, 2005, 15 (3): 381-386.
    [29] Roggenbuck J, Tiemann M. Ordered mesoporous magnesium oxide with high thermal stability synthesized by exotemplating using CMK-3 carbon [J]. J Am Chem Soc, 2005,127 (4): 1096-1097.
    [30] Liu H Y, Wang K P, Teng H S. A simplified preparation of mesoporous carbon and the examination of the carbon accessibility for electric double layer formation [J]. Carbon, 2005,43 (3): 559-566.
    [31] Zhou H S, Zhu S M, Hibino M, Honma I. Electrochemical capacitance of self-ordered mesoporous carbon [J]. J Power Sources, 2003, 122 (2): 219-223.
    [32] Wang T, Liu X Y, Zhao D Y, Jiang Z Y. The unusual electrochemical characteristics of a novel three-dimensional ordered bicontinuous mesoporous carbon [J]. Chem Phys Lett, 2004, 389 (4-6): 327-331.
    [33] Hartmann M, Vinu A, Chandrasekar G Adsorption of vitamin E on mesoporous carbon molecular sieves [J]. Chem Mater, 2005, 17 (4): 829-833.
    [34] Vinu A, Streb C, Murugesan V, Hartmann M. Adsorption of cytochrome c on new mesoporous carbon molecular sieves [J]. J Phys Chem B, 2003, 107 (33):8297-8299.
    [35]Lane R F,Hubbard A T.Electrochemistry of Chemisorbed Molecules.1.Reactants Connected to Electrodes Through Olefmic Substituents[J].J Phys Chem,1973,77(11):1401-1410.
    [36]Watkins B F,Behling J R.,Kariv E,Miller L L.Chiral Electrode[J].J Am Chem Soc,1975,97(12):3549-3550.
    [37]Moses P R,Wier L,Murray R W.Chemically Modified Tin Oxide Electrode [J].Anal Chem,1975,47(12):1882-1886.
    [38]董绍俊,车广礼,谢远武.化学修饰电极2nd ed[M].北京:科学出版社,2003.
    [39]Bookbinder D C,Wrighton M S.Thermodynamically Uphill Reduction of A Surface-Confined N,N'-Dialkyl-4,4'-Bipyridinium Derivative on Illuminated Para-Type Silicon Surfaces[J].J Am Chem Soc,1980,102(15):5123-5125.
    [40]Mazur S,Matusinovic T,Cammann K.Organic-Reactions of Oxide-Free Carbon Surfaces,An Electroactive Derivative[J].J Am Chem Soc,1977,99(11):3888-3890.
    [41]Lennox J C,Murray R W.Chemically Modified Electrodes.10.Electron-Spectroscopy for Chemical-Analysis and Alternating-Current Voltammetry of Glassy Carbon-Bound Tetra(Aminophenyl)Prophyrins[J].J Am Chem Soc,1978,100(12):3710-3714.
    [42]Lane R F,Hubbard A T.Electrochemistry of Chemisorbed Molecules.2.Influence of Charged Chemisorbed Molecules on Electrode-Reactions of Platinum Complexes[J].J Phys Chem,1973,77(11):1411-1421.
    [43]Brown A P,Anson F C.Cyclic and Differential Pulse Voltammetric Behavior of Reactants Confined to Electrode Surface[J].Anal Chem,1977,49(11):1589-1595.
    [44]Bockris J O M,Jeng K T.Insitu Studies of Adsorption of Organic-Compounds on Platinum-Electrodes[J].J Electroanal Chem,1992,330(1-2):541-581.
    [45]Palecek E,Jelen F,Teijeiro C,Fucik V,Jovin T M.Biopolymer-Modified Electrodes in the Voltammetric Determination of Nucleic-Acids and Proteins at the Submicrogram Level[J].Anal Chim Acta,1993,273(1-2):175-186.
    [46]Tauster S J,Fung S C,Garten R L.Strong Metal-Support Interactions-Group -8 Noble-Metals Supported on TiO2[J].J Am Chem Soc,1978,100(1):170-175.
    [47]Dong S J,Qiu Q S.Novel Deposition of Lead on A Glassy-Carbon Electrode and Its Electrocatalytic Reduction of Dioxygen[J].J Electroanal Chem,1991,314(1-2):331-334.
    [48]Bilewicz R,Majda M.Bifunctional Monomolecular Langmuir-Blodgett-Films at Electrodes-Electrochemistry at Single Molecule Gate Sites[J].J Am Chem Soc,1991,113(14):5464-5466.
    [49]Zhang X,Bard A J.Electrogenerated Chemi-Luminescent Emission from An Organized(L-B) Monolayer of A Ru(Bpy)3(2+)-Based Surfactant on Semiconductor and Metal-Electrodes[J].J Phys Chem,1988,92(20):5566-5569.
    [50]Sagiv J.Organized Monolayers by Adsorption.1.Formation and Structure of Oleophobic Mixed Monolayers on Solid-Surfaces[J].J Am Chem Soc,1980,102(1):92-98.
    [51]Cohen S R,Naaman R,Sagiv J.Thermally Induced Disorder in Organized Organic Monolayers on Solid Substrates[J].J Phys Chem,1986,90(14):3054-3056.
    [52]Allara D L,Nuzzo R G.Spontaneously Organized Molecular Assemblies.1.Formation,Dynamics,and Physical-Properties of Normal-Alkanoic Acids Adsorbed from Solution on An Oxidized Aluminum Surface[J].Langmuir,1985,1(1):45-52.
    [53]Lee H,Kepley L J,Hong H G,Akhter S,Mallouk T E.Adsorption of Ordered Zirconium Phosphonate Multilayer Films on Silicon and Gold Surfaces[J].J Phys Chem,1988,92(9):2597-2601.
    [54]Miller L L,Vandemark M R.Electrode Surface Modification Via Polymer Adsorption[J].J Am Chem Soc,1978,100(2):639-640.
    [55]Kaufman F B,Schroeder A H,Engler E M,Kramer S R,Chambers J Q.Ion and Electron-Transport in Stable,Electroactive Tetrathiafulvalene Polymer Coated Electrodes[J].J Am Chem Soc,1980,102(2):483-488.
    [56]Guarr T F,Anson F C.Electropolymerization of Ruthenium Bis(1,10-Phenanthroline)(4-Methyl-4'-Vinyl-2,2'-Bipyridine) Complexes Through Direct Bis(1,10-Phenanthroline)(4-Methyl-4'-Vinyl-2,2'-Bipyridine)Complexes Through Direct Attack on the Ligand Ring-System[J].J Phys Chem,1987,91(15):4037-4043.
    [57]Ports K T,Usifer D A,Guadalupe A,Abruna H D.4-Vinyl-2,2'-6',2",6-Vinyl-2,2'-6',2",and 4'-Vinyl-2,2'-6',2"-Terpyridinyl Ligands-Their Synthesis and the Electrochemistry of Their Transition-Metal Coordination-Complexes[J].J Am Chem Soc,1987,109(13):3961-3967.
    [58]Coury L A,Birch E M,Heineman W R.Gamma-Irradiated Polymer-Modified Graphite-Electrodes with Enhanced Response to Catechol[J].Anal Chem,1988,60(6):553-560.
    [59]Li F B,Albery W J.Electrochemical Deposition of A Conducting Polymer,Poly(Thiophene-3-Acetic Acid)-the 1st Observation of Individual Events of Polymer Nucleation and 2-Dimensional Layer-By-Layer Growth[J].Langmuir,1992,8(6):1645-1653.
    [60]Wang J,Li R L.Highly Stable Voltammetric Measurements of Phenolic-Compounds at Poly(3-Methylthiophene)-Coated Glassy-Carbon Electrodes[J].Anal Chem,1989,61(24):2809-2811.
    [61]Kuwana T,French W G.Electrooxidation Or Reduction of Organic Compounds Into Aqueous Solutions Using Carbon Paste Electrode[J].Anal Chem,1964,36(1):241-&.
    [62]Ravichandran K,Baldwin R R Chemically Modified Carbon Paste Electrodes[J].J Electroanal Chem,1981,126(1-3):293-300.
    [63]Kalcher K.Chemically Modified Carbon Paste Electrodes in Voltammetric Analysis[J].Electroanalysis,1990,2(6):419-433.
    [64]Dong S J,Wang Y D.Anodic-Stripping Voltammetric Determination of Trace Lead with A Nation Crown-Ether Film Electrode[J].Talanta,1988,35(10):819-821.
    [65]Price J F,Baldwin R P.Preconcentration and Determination of Ferrocenecarboxaldehyde at A Chemically Modified Platinum-Electrode[J].Anal Chem,1980,52(12):1940-1944.
    [66]Rice M E,Oke A F,Bradberry C W,Adams R N.Simultaneous Voltammetric and Chemical Monitoring of Dopamine Release Insitu[J].Brain Res,1985,340(1):151-155.
    [67]Sittampalam G,Wilson G S.Surface-Modified Electrochemical Detector for Liquid-Chromatography[J].Anal Chem,1983,55(9):1608-1610.
    [68]Wang J,Golden T.Permselectivity and Ion-Exchange Properties of Eastman-Aq Polymers on Glassy-Carbon Electrodes[J].Anal Chem,1989,61(13):1397-1400.
    [69]Tsou Y M,Anson F C.Shifts in Redox Formal Potentials Accompanying the Incorporation of Cationic Complexes in Perfluoro Polycarboxylate and Polysulfonate Coatings on Graphite-Electrodes[J].J Electrochem Soc,1984,131(3):595-601.
    [70]Karyakin A A,Strakhova A K,Karyakina E E,Varfolomeyev S D,Yatsimirsky A K.The Electrochemical Polymerization of Methylene-Blue and Bioelectrochemical Activity of the Resulting Film[J].Bioelectrochem Bioenerg,1993,32(1):35-43.
    [71]Sugawara M,Kojima K,Sazawa H,Umezawa Y.Ion-Channel Sensors[J].Anal Chem,1987,59(24):2842-2846.
    [72]Yamamoto K,Ohgaru T,Torimura M,Kinoshita H,Kano K,Ikeda T.Highly-sensitive flow injection determination of hydrogen peroxide with a peroxidase-immobilized electrode and its application to clinical chemistry [J].Anal Chim Acta,2000,406(2):201-207.
    [73]Yabuki S,Mizutani F,Hirata Y.Preparation of a microperoxidase and ferrocene-immobilized polyion complex membrane for the detection of hydrogen peroxide[J].J Electroanal Chem,1999,468(1):117-120.
    [74]Wang B Q,Li B,Deng Q,Dong S J.Amperometric glucose biosensor based on sol-gel organic-inorganic hybrid material[J].Anal Chem,1998,70(15):3170-3174.
    [75]Santos L M,Baldwin R P.Liquid-Chromatography Electrochemical Detection of Carbohydrates at A Cobalt Phthalocyanine Containing Chemically Modified Electrode[J].Anal Chem,1987,59(14):1766-1770.
    [76]Santos L M,Baldwin R P.Electrocatalytic Response of Cobalt Phthalocyanine Chemically Modified Electrodes Toward Oxalic-Acid and Alpha-Keto Acids[J].Anal Chem,1986,58(4):848-852.
    [77]Patel N G,Erlenkotter A,Cammann K,Chemnitius G C.Fabrication and characterization of disposable type lactate oxidase sensors for dairy products and clinical analysis[J].Sensor Actuat B-Chem,2000,67(1-2):134-141.
    [78]Shu H C,Wu N P.A chemically modified carbon paste electrode with D-lactate dehydrogenase and alanine aminotranferase enzyme sequences for D-lactic acid analysis[J].Talanta,2001,54(2):361-368.
    [79]Wang L G,Li Y H,Tien H T.Electrochemical Transduction of An Immunological Reaction Via S-Blms[J].Bioelectrochem Bioenerg,1995,36(2):145-147.
    [80]Rechnitz G A.Biosensors Into the 1990S[J].Electroanalysis,1991,3(2):73-76.
    [81]Torstensson A,Gorton L.Catalytic-Oxidation of Nadh by Surface-Modified Graphite-Electrodes[J].J Electroanal Chem,1981,130(1-3):199-207.
    [82]Bowden E F,Hawkridge F M.Thin-Layer Spectroelectrochemical Kinetic-Study of Viologen Cation Radicals Reacting at Hydrogen-Evolving Gold and Nickel Electrodes[J].J Electroanal Chem,1981,125(2):367-386.
    [83]Zhangsun D T,Luo S L.Biosensors[J].Bulletin of Biology,2001,36(11):10-11.
    [84]Wang J.Glucose biosensors:40 years of advances and challenges[J].Electroanalysis,2001,13(12):983-988.
    [85]池其金,董绍俊.酶直接电化学与第三代生物传感器[J].分析化学,1994,22(10):1065-1072.
    [86]孙康,葛元新.电流型生物传感器的研究进展[J].四川教育学院学报,2002,18(9):69-72.
    [87]程琼,蔡丽玲.酶生物传感器的发展和酶的固定化[J].嘉兴高等专科学校学报,1999,12(2):40-43.
    [88]Clark L C,Lyons C.Electrode Systems for Continuous Monitoring in Cardiovascular Surgery[J].Ann N Y Acad Sci,1962,102(1):29-&.
    [89]Updike S J,Hicks G P.Enzyme Electrode[J].Nature,1967,214:986-&.
    [90]Marcus R A,Sutin N.Electron Transfers in Chemistry and Biology[J].Biochim Biophys Acta,1985,811(3):265-322.
    [91]Armstrong F A,Lannon A M.Fast Interfacial Electron-Transfer Between Cytochrome-C Peroxidase and Graphite-Electrodes Promoted by Aminoglycosides-Novel Electroenzymic Catalysis of H2O2 Reduction[J].J Am Chem Soc,1987,109(23):7211-7212.
    [92]Degani Y,Heller A.Direct Electrical Communication Between Chemically Modified Enzymes and Metal-Electrodes.1.Electron-Transfer from Glucose-Oxidase to Metal-Electrodes Via Electron Relays,Bound Covalently to the Enzyme[J].J Phys Chem,1987,91(6):1285-1289.
    [93]Koopal C G J,Feiters M C,Nolte R J M,Deruiter B,Schasfoort R B M.Glucose Sensor Utilizing Polypyrrole Incorporated in Track-Etch Membranes As the Mediator[J].Biosens Bioelectron,1992,7(7):461-471.
    [94]Koopal C G J,Feiters M C,Nolte R J M,Deruiter B,Schasfoort R B M.3Rd-Generation Amperometric Biosensor for Glucose-Polypyrrole Deposited Within A Matrix of Uniform Latex-Particles As Mediator[J].Bioelectrochem Bioenerg,1992,29(2):159-175.
    [95]Newman J D,Turner A P F,Marrazza G.Ink-Jet Printing for the Fabrication of Amperometric Glucose Biosensors[J].Analytica Chimica Acta,1992,262(1):13-17.
    [96]刘春叶,王亚明,唐辉.酶的固定化及化学修饰[J].云南化工,2002,29(5):29-31.
    [97]张伟,杨秀山.酶的固定化技术及其应用[J].自然杂志,2000,22(5):282-286.
    [98]彭友元.生物传感器研究进展及应用[J].泉州师范学院学报,2000,18(6):24-31.
    [99]崔大付,陈翔.生物传感器的研究与发展[J].电子产品世界,2003,(1):55-57.
    [100]缪煜清,刘仲明,官建国.纳米技术在生物传感器中的应用[J].传感器技术,2002,21(11):61-64.
    [101]Woodbury R G,Wendin C,Clendenning J,Melendez J,Elkind J,Bartholomew D,Brown S,Furlong C E.Construction of biosensors using a gold-binding polypeptide and a miniature integrated surface plasmon resonance sensor[J].Biosens Bioelectron,1998,13(10):1117-1126.
    [102]Gonzalez-Garcia M B,Femandez-Sanchez C,Costa-Garcia A.Colloidal gold as an electrochemical label of streptavidin-biotin interaction[J].Biosens Bioelectron,2000,15(5-6):315-321.
    [103]Xiao Y,Patolsky F,Katz E,Hainfeld J F,Willner I."Plugging into enzymes":Nanowiring of redox enzymes by a gold nanoparticle[J].Science,2003,299(5614):1877-1881.
    [104]Perez J M,O'Loughin T,Simeone F J,Weissleder R,Josephson L.DNA-based magnetic nanoparticle assembly acts as a magnetic relaxation nanoswitch allowing screening of DNA-cleaving agents[J].J Am Chem Soc,2002,124(12):2856-2857.
    [105]Deng Y H,Deng C H,Yang D,Wang C C,Fu S K,Zhang X M.Preparation,characterization and application of magnetic silica nanoparticle functionalized multi-walled carbon nanotubes[J].Chem Commun,2005,(44):5548-5550.
    [106]Deng Y H,Wang C C,Shen X Z,Yang W L,An L,Gao H,Fu S K.Preparation,characterization,and application of multistimuli-responsive microspheres with fluorescence-labeled magnetic cores and thermoresponsive shells [J]. Chem-Eur J, 2005,11 (20): 6006-6013.
    [107] Singh A K, Flounders A W, Volponi J V, Ashley C S, Wally K, Schoeniger J S. Development of sensors for direct detection of organophosphates. Part Ⅰ: immobilization, characterization and stabilization of acetylcholinesterase and organophosphate hydrolase on silica supports [J]. Biosens Bioelectron, 1999,14 (8-9): 703-713.
    [108] Cai H, Xu C, He P G, Fang Y Z. Colloid Au-enhanced DNA immobilization for the electrochemical detection of sequence-specific DNA [J]. J Electroanal Chem, 2001, 510 (1-2): 78-85.
    [109] Charych D H, Nagy J O, Spevak W, Bednarski M D. Direct Colorimetric Detection of A Receptor-Ligand Interaction by A Polymerized Bilayer Assembly [J]. Science, 1993,261 (5121): 585-588.
    [110] Reichert A, Nagy J O, Spevak W, Charych D. Polydiacetylene Liposomes Functionalized with Sialic-Acid Bind and Colorimetrically Detect Influenza-Virus [J]. J Am Chem Soc, 1995,117 (2): 829-830.
    [111] Miao Y Q, Qi M, Zhan S Z, He N Y, Wang J, Yuan C W. Construction of a glucose biosensor immobilized with glucose oxidase in the film of polypyrrole nanotubules [J]. Anal Lett, 1999, 32 (7): 1287-1299.
    [112] Doan V V, Sailor M J. Luminescent Color Image Generation on Porous Silicon [J]. Science, 1992, 256 (5065): 1791-1792.
    [113] Lin V S Y, Motesharei K, Dancil K P S, Sailor M J, Ghadiri M R. A porous silicon-based optical interferometric biosensor [J]. Science, 1997,278 (5339): 840-843.
    [114] Topoglidis E, Campbell C J, Cass A E G, Durrant J R. Factors that affect protein adsorption on nanostructured titania films. A novel spectroelectrochemical application to sensing [J]. Langmuir, 2001, 17 (25): 7899-7906.
    [115] Xu X, Tian B Z, Zhang S, Kong J L, Zhao D Y, Liu B H. Electrochemistry and biosensing reactivity of heme proteins adsorbed on the structure-tailored mesoporous Nb2O5 matrix[J].Anal Chim Acta,2004,519(1):31-38.
    [116]Xu X,Tian B Z,Kong J L,Zhang S,Liu B H,Zhao D Y.Ordered mesoporous niobium oxide film:A novel matrix for assembling functional proteins for bioelectrochemical applications[J].Adv Mater,2003,15(22):1932-1936.
    [117]McKenzie K J,Marken F.Accumulation and reactivity of the redox protein cytochrome c in mesoporous films of TiO2 phytate[J].Langmuir,2003,19(10):4327-4331.
    [118]Topoglidis E,Cass A E G,O'Regan B,Durrant J R.Immobilisation and bioelectrochemistry of proteins on nanoporous TiO2 and ZnO films[J].J Electroanal Chem,2001,517(1-2):20-27.
    [119]Besteman K,Lee J O,Wiertz F G M,Heering H A,Dekker C.Enzyme-coated carbon nanotubes as single-molecule biosensors[J].Nano Lett,2003,3(6):727-730.
    [120]Liu J Q,Chou A,Rahinat W,Paddon-Row M N,Gooding J J.Achieving direct electrical connection to glucose oxidase using aligned single walled carbon nanotube arrays[J].Electroanalysis,2005,17(1):38-46.
    [121]Luo H X,Shi Z J,Li N Q,Gu Z N,Zhuang Q K.Investigation of the electrochemical and electrocatalytic behavior of single-wall carbon nanotube film on a glassy carbon electrode[J].Anal Chem,2001,73(5):915-920.
    [122]Azamian B R,Davis J J,Coleman K S,Bagshaw C B,Green M L H.Bioelectrochemical single-walled carbon nanotubes[J].J Am Chem Soc,2002,124(43):12664-12665.
    [123]Wang J,Musameh M.Carbon nanotube/teflon composite electrochemical sensors and biosensors[J].Anal Chem,2003,75(9):2075-2079.
    [124]Zhang J,Feng M,Tachikawa H.Layer-by-layer fabrication and direct electrochemistry of glucose oxidase on single wall carbon nanotubes[J].Biosens Bioelectron,2007,22(12):3036-3041.
    [125]Liu Y,Wang M K,Zhao F,Xu Z A,Dong S J.The direct electron transfer of glucose oxidase and glucose biosensor based on carbon nanotubes/chitosan matrix [J]. Biosens Bioelectron, 2005, 21 (6): 984-988.
    [126] Zhou Y, Yang H, Chen H Y. Direct electrochemistry and reagentless biosensing of glucose oxidase immobilized on chitosan wrapped single-walled carbon nanotubes [J]. Talanta, 2008,76 (2): 419-423.
    [127] Liu Q, Lu X B, Li J, Yao X, Li J H. Direct electrochemistry of glucose oxidase and electrochemical biosensing of glucose on quantum dots/carbon nanotubes electrodes [J]. Biosens Bioelectron, 2007,22 (12): 3203-3209.
    [128] Gong K P, Dong Y, Xiong S X, Chen Y, Mao L Q. Novel electrochemical method for sensitive determination of homocysteine with carbon nanotube-based electrodes [J]. Biosens Bioelectron, 2004,20 (2): 253-259.
    [129] Zhang M N, Liu K, Xiang L, Lin Y Q, Su L, Mao L Q. Carbon nanotube-modified carbon fiber microelectrodes for in vivo voltammetric measurement of ascorbic acid in rat brain [J]. Anal Chem, 2007, 79 (17): 6559-6565.
    [130] Gong K P, Zhang M N, Yan Y M, Su L, Mao L Q, Xiong Z X, Chen Y. Sol-gel-derived ceramic-carbon nanotube nanocomposite electrodes: Tunable electrode dimension and potential electrochemical applications [J]. Anal Chem, 2004, 76 (21): 6500-6505.
    [131] Gong K P, Yu P, Su L, Xiong S X, Mao L Q. Polymer-assisted synthesis of manganese dioxide/carbon nanotube nanocomposite with excellent electrocatalytic activity toward reduction of oxygen [J]. J Phys Chem C, 2007, 111 (5): 1882-1887.
    [132] Deng C Y, Chen J H, Chen X L, Mao C H, Nie L H, Yao S Z. Direct electrochemistry of glucose oxidase and biosensing for glucose based on boron-doped carbon nanotubes modified electrode [J]. Biosens Bioelectron, 2008,23 (8): 1272-1277.
    [133] Chen X L, Chen J H, Deng C Y, Xiao C, Yang Y M, Nie Z, Yao S Z. Amperometric glucose biosensor based on boron-doped carbon nanotubes modified electrode [J]. Talanta, 2008, 76 (4): 763-767.
    [134] Dai Z H, Xu X X, Ju H X. Direct electrochemistry and electrocatalysis of myoglobin immobilized on a hexagonal mesoporous silica matrix [J]. Anal Biochem, 2004,332(1): 23-31.
    [135] Dai Z H, Liu S Q, Ju H X, Chen H Y. Direct electron transfer and enzymatic activity of hemoglobin in a hexagonal mesoporous silica matrix [J]. Biosens Bioelectron, 2004,19 (8): 861-867.
    [136] Wu S, Ju H X, Liu Y. Conductive mesocellular silica-carbon nanocomposite foams for immobilization, direct electrochemistry, and biosensing of proteins [J]. Adv Funct Mater, 2007,17 (4): 585-592.
    [137] Lee D, Lee J, Kim J, Kim J, Na H B, Kim B, Shin C H, Kwak J H, Dohnalkova A, Grate J W, Hyeon T, Kim H S. Simple fabrication of a highly sensitive and fast glucose biosensor using enzymes immobilized in mesocellular carbon foam [J]. Adv Mater, 2005,17 (23): 2828-+.
    [138] Delacote C, Bouillon J P, Walcarius A. Voltammetric response of ferrocene-grafted mesoporous silica [J]. Electrochim Acta, 2006, 51 (28): 6373-6383.
    [139] Feng J J, Xu J J, Chen H Y. Direct electron transfer and electrocatalysis of hemoglobin adsorbed on mesoporous carbon through layer-by-layer assembly [J]. Biosens Bioelectron, 2007, 22 (8): 1618-1624.
    [140] Dai Z H, Fang M, Bao J C, Wang H S, Lu T H. An amperometric glucose biosensor constructed by immobilizing glucose oxidase on titanium-containing mesoporous composite material of no. 41 modified screen-printed electrodes [J].Anal Chim Acta, 2007, 591 (2): 195-199.
    [141] Jia N Q, Wang Z Y, Yang G F, Shen H B, Zhu L Z. Electrochemical properties of ordered mesoporous carbon and its electroanalytical application for selective determination of dopamine [J]. Electrochem Commun, 2007, 9 (2): 233-238.
    [142] Zhou M, Guo L P, Lin F Y, Liu H X. Electrochemistry and electrocatalysis of polyoxometalate-ordered mesoporous carbon modified [J]. Anal Chim Acta, 2007, 587(1): 124-131.
    [143] Zhou M, Ding J, Guo L P, Shang Q K. Electrochemical behavior of L-cysteine and its detection at ordered mesoporous carbon-modified glassy carbon electrode [J]. Anal Chem, 2007, 79 (14): 5328-5335.
    [144] Zhou M, Guo L P, Hou Y, Peng X J. Immobilization of Nafion-ordered mesoporous carbon on a glassy carbon electrode: Application to the detection of epinephrine [J]. Electrochim Acta, 2008, 53 (12): 4176-4184.
    [145] Ndamanisha J C, Guo L P, Wang G Mesoporous carbon functionalized with ferrocenecarboxylic acid and its electrocatalytic properties [J]. Micropor Mesopor Mat, 2008,113 (1-3): 114-121.
    [146] Ndamanisha J C, Guo L P. Electrochemical determination of uric acid at ordered mesoporous carbon functionalized with ferrocenecarboxylic acid-modified electrode [J]. Biosens Bioekctron, 2008,23 (11): 1680-1685.
    [147] Zhou M, Guo J D, Guo L P, Bai J. Electrochemical sensing platform based on the highly ordered mesoporous carbon-fullerene system [J]. Anal Chem, 2008, 80 (12): 4642-4650.
    [148] Zhou M, Shang L, Li B L, Huang L J, Dong S J. Highly ordered mesoporous carbons as electrode material for the construction of electrochemical dehydrogenase- and oxidase-based biosensors [J]. Biosens Bioekctron, 2008, 24 (3): 442-447.
    [149] Zhu L, Tian C, Zhu D, Yang R. Ordered mesoporous carbon paste electrodes for electrochemical sensing and biosensing [J]. Electroanalysis, 2008, 20 (10): 1128-1134.
    [150] Yu J J, Yu D L, Zhao T, Zeng B Z. Development of amperometric glucose biosensor through immobilizing enzyme in a Pt nanoparticles/mesoporous carbon matrix [J]. Talanta, 2008, 74 (5): 1586-1591.
    [151] Zhao D Y, Feng J L, Huo Q S, Melosh N, Fredrickson G H, Chmelka B F, Stucky G D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores [J]. Science, 1998, 279 (5350): 548-552.
    [152] Liu X Y, Tian B Z, Yu C Z, Gao F, Xie S H, Tu B, Che R C, Peng L M, Zhao D Y Room-temperature synthesis in acidic media of large-pore three-dimensional bicontinuous mesoporous silica with Ia3d symmetry [J]. Angew Chem,Int Ed,2002,41(20):3876-3878.
    [153]Kleitz F,Choi S H,Ryoo R.Cubic Ia3d large mesoporous silica:synthesis and replication to platinum nanowires,carbon nanorods and carbon nanotubes[J].Chem Commun,2003,(17):2136-2137.
    [154]Kim T W,Kleitz F,Paul B,Ryoo R.MCM-48-like large mesoporous silicas with tailored pore structure:Facile synthesis domain in a ternary triblock copolymer-butanol-water system[J].J Am Chem Soc,2005,127(20):7601-7610.
    [1] Azamian B R, Davis J J, Coleman K S, Bagshaw C B, Green M L H. Bioelectrochemical single-walled carbon nanotubes [J]. J Am Chem Soc, 2002, 124 (43): 12664-12665.
    [2] Guiseppi-Elie A, Lei C H, Baughman R H. Direct electron transfer of glucose oxidase on carbon nanotubes [J]. Nanotechnology, 2002,13 (5): 559-564.
    [3] Zhao Y D, Zhang W D, Chen H, Luo Q M. Direct electron transfer of glucose oxidase molecules adsorbed onto carbon nanotube powder microelectrode [J]. Anal Sci, 2002,18 (8): 939-941.
    [4] Gooding J J, Wibowo R, Liu J Q, Yang W R, Losic D, Orbons S, Mearns F J, Shapter J G, Hibbert D B. Protein electrochemistry using aligned carbon nanotube arrays [J]. J Am Chem Soc, 2003,125 (30): 9006-9007.
    [5] Wang J, Musameh M, Lin Y H. Solubilization of carbon nanotubes by Nafion toward the preparation of amperometric biosensors [J]. J Am Chem Soc, 2003, 125 (9): 2408-2409.
    [6] Ju H X, Liu S Q, Ge B X, Lisdat F, Scheller F W. Electrochemistry of cytochrome c immobilized on colloidal gold modified carbon paste electrodes and its electrocatalytic activity [J]. Electroanalysis, 2002,14 (2): 141-147.
    [7] Kong J L, Lu Z Q, Lvov Y M, Desamero R Z B, Frank H A, Rusling J F. Direct electrochemistry of cofactor redox sites in a bacterial photosynthetic reaction center protein [J]. J Am Chem Soc, 1998, 120 (29): 7371-7372.
    [8] Xu X, Tian B Z, Kong J L, Zhang S, Liu B H, Zhao D Y. Ordered mesoporous niobium oxide film: A novel matrix for assembling functional proteins for bioelectrochemical applications [J]. Adv Mater, 2003,15 (22): 1932-1936.
    [9] Ryoo R, Joo S H, Jun S. Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation [J]. J Phys Chem B, 1999,103 (37): 7743-7746.
    [10] Lee J, Yoon S, Hyeon T, Oh S M, Kim K B. Synthesis of a new mesoporous carbon and its application to electrochemical double-layer capacitors [J]. Chem Commun, 1999, (21): 2177-2178.
    [11] Joo S H, Choi S J, Oh I, Kwak J, Liu Z, Terasaki O, Ryoo R. Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles [J]. Nature, 2001,412 (6843): 169-172.
    [12] Yoon S, Lee J W, Hyeon T, Oh S M. Electric double-layer capacitor performance of a new mesoporous carbon [J]. J Electrochem Soc, 2000, 147 (7): 2507-2512.
    [13] Zhou M, Guo J D, Guo L P, Bai J. Electrochemical sensing platform based on the highly ordered mesoporous carbon-fullerene system [J]. Anal Chem, 2008, 80 (12): 4642-4650.
    [14] Zhu L, Tian C, Zhu D, Yang R. Ordered mesoporous carbon paste electrodes for electrochemical sensing and biosensing [J]. Electroanalysis, 2008, 20 (10): 1128-1134.
    [15] Wang J, Pamidi P V A, Renschler C L, White C. Metal-dispersed porous carbon films as electrocatalytic sensors [J]. Journal of Electroanalytical Chemistry, 1996,404 (1): 137-142.
    [16] Hrapovic S, Liu Y L, Male K B, Luong J H T. Electrochemical biosensing platforms using platinum nanoparticles and carbon nanotubes [J]. Anal Chem, 2004,76 (4): 1083-1088.
    [17] You T Y, Niwa O, Tomita M, Hirono S. Characterization of platinum nanoparticle-embedded carbon film electrode and its detection of hydrogen peroxide [J]. Anal Chem, 2003, 75 (9): 2080-2085.
    [18] Zhao D Y, Feng J L, Huo Q S, Melosh N, Fredrickson G H, Chmelka B F, Stucky G D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores [J]. Science, 1998, 279 (5350): 548-552.
    [19] Jun S, Joo S H, Ryoo R, Kruk M, Jaroniec M, Liu Z, Ohsuna T, Terasaki O. Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure [J]. J Am Chem Soc, 2000,122 (43): 10712-10713.
    [20] Banks C E, Davies T J, Wildgoose G G, Compton R G. Electrocatalysis at graphite and carbon nanotube modified electrodes: edge-plane sites and tube ends are the reactive sites [J]. Chem Commun, 2005, (7): 829-841.
    [21] Bard A J, Faulkner L R. Electrochemical Methods: Fundamentals and Applications 2nd ed [M]. John Wiley & Sons, New York, 2001.
    [22] Liu S Q, Ju H X. Reagentless glucose biosensor based on direct electron transfer of glucose oxidase immobilized on colloidal gold modified carbon paste electrode [J]. Biosens Bioelectron, 2003,19 (3): 177-183.
    [23] Huang Y X, Zhang W J, Xiao H, Li G X. An electrochemical investigation of glucose oxidase at a US nanoparticles modified electrode [J]. Biosens Bioelectron, 2005,21 (5): 817-821.
    [24] Zhang J, Feng M, Tachikawa H. Layer-by-layer fabrication and direct electrochemistry of glucose oxidase on single wall carbon nanotubes [J]. Biosens Bioelectron, 2007,22 (12): 3036-3041.
    [25] Zhou Y, Yang H, Chen H Y. Direct electrochemistry and reagentless biosensing of glucose oxidase immobilized on chitosan wrapped single-walled carbon nanotubes [J]. Talanta, 2008, 76 (2): 419-423.
    [26] Hartmann M. Ordered mesoporous materials for bioadsorption and biocatalysis [J]. Chem Mater, 2005,17 (18): 4577-4593.
    [27] Bao S J, Li C M, Zang J F, Cui X Q, Qiao Y, Guo J. New nanostructured TiO2 for direct electrochemistry and glucose sensor applications [J]. Adv Funct Mater, 2008,18 (4): 591-599.
    [28] Deng C Y, Chen J H, Chen X L, Mao C H, Nie L H, Yao S Z. Direct electrochemistry of glucose oxidase and biosensing for glucose based on boron-doped carbon nanotubes modified electrode [J]. Biosens Bioelectron, 2008,23 (8): 1272-1277.
    [29] Liu Q, Lu X B, Li J, Yao X, Li J H. Direct electrochemistry of glucose oxidase and electrochemical biosensing of glucose on quantum dots/carbon nanotubes electrodes [J]. Biosens Bioelectron, 2007, 22 (12): 3203-3209.
    [30] Ianniello R, Lindsay J, Yacynych A. Differential pulse voltammetric study of direct electron transfer in glucose oxidase chemically modified graphite electrodes [J].Anal Chem, 1982, 54 (7): 1098-1101.
    [31]Li J W,Yu J J,Zhao F Q,Zeng B Z.Direct electrochemistry of glucose oxidase entrapped in nano gold particles-ionic liquid-N,N-dimethylformamide composite film on glassy carbon electrode and glucose sensing[J].Analytica Chimica Acta,2007,587(1):33-40.
    [32]Laviron E.General Expression of the Linear Potential Sweep Voltammogram in the Case of Diffusionless Electrochemical Systems[J].J Electroanal Chem,1979,101(1):19-28.
    [33]Liu Y,Wang M K,Zhao F,Xu Z A,Dong S J.The direct electron transfer of glucose oxidase and glucose biosensor based on carbon nanotubes/ckitosan matrix[J].Biosens Bioelectron,2005,21(6):984-988.
    [34]Wang J.Electrochemical glucose biosensors[J].Chem Rev,2008,108(2):814-825.
    [35]Kamin R A,Wilson G S.Rotating-Ring-Disk Enzyme Electrode for Biocatalysis Kinetic-Studies and Characterization of the Immobilized Enzyme Layer[J].Anal Chem,1980,52(8):1198-1205.
    [36]Liu X Q,Ski L H,Niu W X,Li H J,Xu G B.Amperometric glucose biosensor based on single-walled carbon nanohoms[J].Biosens Bioelectron,2008,23(12):1887-1890.
    [1]Azamian B R,Davis J J,Coleman K S,Bagshaw C B,Green M L H.Bioelectrochemical single-walled carbon nanotubes[J].J Am Chem Soc,2002,124(43):12664-12665.
    [2]Guiseppi-Elie A,Lei C H,Baughman R H.Direct electron transfer of glucose oxidase on carbon nanotubes[J].Nanotechnology,2002,13(5):559-564.
    [3]Wang J,Musameh M,Lin Y H.Solubilization of carbon nanotubes by Nafion toward the preparation of amperometric biosensors[J].J Am Chem Soc,2003,125(9):2408-2409.
    [4]Weigel M C,Tritscher E,Lisdat F.Direct electrochemical conversion of bilirubin oxidase at carbon nanotube-modified glassy carbon electrodes[J].Electrochem Commun,2007,9(4):689-693.
    [5]Ryoo R,Joo S H,Jun S.Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation[J].J Phys Chem B,1999,103(37):7743-7746.
    [6]Lee J,Yoon S,Hyeon T,Oh S M,Kim K B.Synthesis of a new mesoporous carbon and its application to electrochemical double-layer capacitors[J].Chem Commun,1999,(21):2177-2178.
    [7]Jun S,Joo S H,Ryoo R,Kruk M,Jaroniec M,Liu Z,Ohsuna T,Terasaki O.Synthesis of new,nanoporous carbon with hexagonally ordered mesostructure [J].J Am Chem Soc,2000,122(43):10712-10713.
    [8]Lee J,Kim J,Hyeon T.Recent progress in the synthesis of porous carbon materials[J].Adv Mater,2006,18(16):2073-2094.
    [9]Joo S H,Choi S J,Oh I,Kwak J,Liu Z,Terasaki O,Ryoo R.Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles[J].Nature,2001,412(6843):169-172.
    [10]Yoon S,Lee J W,Hyeon T,Oh S M.Electric double-layer capacitor performance of a new mesoporous carbon[J].J Electrochem Soc,2000,147(7):2507-2512.
    [11] Vinu A, Miyahara M, Ariga K. Biomaterial immobilization in nanoporous carbon molecular sieves: Influence of solution pH, pore volume, and pore diameter [J]. J Phys Chem B, 2005,109 (13): 6436-6441.
    [12] Zhou H S, Zhu S M, Hibino M, Honma I. Electrochemical capacitance of self-ordered mesoporous carbon [J]. J Power Sources, 2003,122 (2): 219-223.
    [13] Zhao D Y, Feng J L, Huo Q S, Melosh N, Fredrickson G H, Chmelka B F, Stucky G D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores [J]. Science, 1998,279 (5350): 548-552.
    [14] Liu X Y, Tian B Z, Yu C Z, Gao F, Xie S H, Tu B, Che R C, Peng L M, Zhao D Y. Room-temperature synthesis in acidic media of large-pore three-dimensional bicontinuous mesoporous silica with Ia3d symmetry [J]. Angew Chem.Int Ed, 2002, 41 (20): 3876-3878.
    [15] Wang T, Liu X Y, Zhao D Y, Jiang Z Y. The unusual electrochemical characteristics of a novel three-dimensional ordered bicontinuous mesoporous carbon [J]. Chem Phys Lett, 2004, 389 (4-6): 327-331.
    [16] Luo H X, Shi Z J, Li N Q, Gu Z N, Zhuang Q K. Investigation of the electrochemical and electrocatalytic behavior of single-wall carbon nanotube film on a glassy carbon electrode [J]. Anal Chem, 2001, 73 (5): 915-920.
    [17] Bard A J, Faulkner L R. Electrochemical Methods: Fundamentals and Applications 2nd ed [M]. John Wiley & Sons, New York, 2001.
    [18] Liu S Q, Ju H X. Reagentless glucose biosensor based on direct electron transfer of glucose oxidase immobilized on colloidal gold modified carbon paste electrode [J]. Biosens Bioelectron, 2003,19 (3): 177-183.
    [19] Huang Y X, Zhang W J, Xiao H, Li G X. An electrochemical investigation of glucose oxidase at a US nanoparticles modified electrode [J]. Biosens Bioelectron, 2005,21 (5): 817-821.
    [20] Zhang J, Feng M, Tachikawa H. Layer-by-layer fabrication and direct electrochemistry of glucose oxidase on single wall carbon nanotubes [J]. Biosens Bioelectron, 2007, 22 (12): 3036-3041.
    [21] Zhou Y, Yang H, Chen H Y. Direct electrochemistry and reagentless biosensing of glucose oxidase immobilized on chitosan wrapped single-walled carbon nanotubes[J].Talanta,2008,76(2):419-423.
    [22]Bao S J,Li C M,Zang J F,Cui X Q,Qiao Y,Guo J.New nanostructured TiO2for direct electrochemistry and glucose sensor applications[J].Adv Funct Mater,2008,18(4):591-599.
    [23]Deng C Y,Chen J H,Chen X L,Mao C H,Nie L H,Yao S Z.Direct electrochemistry of glucose oxidase and biosensing for glucose based on boron-doped carbon nanotubes modified electrode[J].Biosens Bioelectron,2008,23(8):1272-1277.
    [24]Liu Q,Lu X B,Li J,Yao X,Li J H.Direct electrochemistry of glucose oxidase and electrochemical biosensing of glucose on quantum dots/carbon nanotubes electrodes[J].Biosens Bioelectron,2007,22(12):3203-3209.
    [25]Ianniello R,Lindsay J,Yacynych A.Differential pulse voltammetric study of direct electron transfer in glucose oxidase chemically modified graphite electrodes[J].Anal Chem,1982,54(7):1098-1101.
    [26]Chen X L,Chen J H,Deng C Y,Xiao C,Yang Y M,Nie Z,Yao S Z.Amperometric glucose biosensor based on boron-doped carbon nanotubes modified electrode[J].Talanta,2008,76(4):763-767.
    [27]Liu Y,Wang M K,Zhao F,Xu Z A,Dong S J.The direct electron transfer of glucose oxidase and glucose biosensor based on carbon nanotubes/chitosan matrix[J].Biosens Bioelectron,2005,21(6):984-988.
    [28]Laviron E.General Expression of the Linear Potential Sweep Voltammogram in the Case of Diffusionless Electrochemical Systems[J].J Electroanal Chem,1979,101(1):19-28.
    [29]Wang J.Electrochemical glucose biosensors[J].Chem Rev,2008,108(2):814-825.
    [30]Kamin R A,Wilson G S.Rotating-Ring-Disk Enzyme Electrode for Biocatalysis Kinetic-Studies and Characterization of the Immobilized Enzyme Layer[J].Anal Chem,1980,52(8):1198-1205.
    [31]Liu X Q,Shi L H,Niu W X,Li H J,Xu G B.Amperometric glucose biosensor based on single-walled carbon nanohoms[J].Biosens Bioelectron,2008,23(12):1887-1890.
    [1]Azamian B R,Davis J J,Coleman K S,Bagshaw C B,Green M L H.Bioelectrochemical single-walled carbon nanotubes[J].J Am Chem Soc,2002,124(43):12664-12665.
    [2]Weigel M C,Tritscher E,Lisdat F.Direct electrochemical conversion of bilirubin oxidase at carbon nanotube-moditied glassy carbon electrodes[J].Electrochem Commun,2007,9(4):689-693.
    [3]Guiseppi-Elie A,Lei C H,Baughman R H.Direct electron transfer of glucose oxidase on carbon nanotubes[J].Nanotechnology,2002,13(5):559-564.
    [4]Zhao Y D,Zhang W D,Chen H,Luo Q M.Direct electron transfer of glucose oxidase molecules adsorbed onto carbon nanotube powder microelectrode[J].Anal Sci,2002,18(8):939-941.
    [5]Gooding J J,Wibowo R,Liu J Q,Yang W R,Losic D,Orbons S,Mearns F J,Shapter J G,Hibbert D B.Protein electrochemistry using aligned carbon nanotube arrays[J].J Am Chem Soc,2003,125(30):9006-9007.
    [6]Wang J,Musameh M,Lin Y H.Solubilization of carbon nanotubes by Nation toward the preparation of amperometric biosensors[J].J Am Chem Soc,2003,125(9):2408-2409.
    [7]Liu Q,Lu X B,Li J,Yao X,Li J H.Direct electrochemistry of glucose oxidase and electrochemical biosensing of glucose on quantum dots/carbon nanotubes electrodes[J].Biosens Bioelectron,2007,22(12):3203-3209.
    [8]Deng C Y,Chen J H,Chen X L,Mao C H,Nie L H,Yao S Z.Direct electrochemistry of glucose oxidase and biosensing for glucose based on boron-doped carbon nanotubes modified electrode[J].Biosens Bioelectron,2008,23(8):1272-1277.
    [9]Chen X L,Chen J H,Deng C Y,Xiao C,Yang Y M,Nie Z,Yao S Z.Amperometric glucose biosensor based on boron-doped carbon nanotubes modified electrode[J].Talanta,2008,76(4):763-767.
    [10]Zhou Y,Yang H,Chen H Y.Direct electrochemistry and reagentless biosensing of glucose oxidase immobilized on chitosan wrapped single-walled carbon nanotubes[J].Talanta,2008,76(2):419-423.
    [11]Liu Y,Wang M K,Zhao F,Xu Z A,Dong S J.The direct electron transfer of glucose oxidase and glucose biosensor based on carbon nanotubes/chitosan matrix[J].Biosens Bioelectron,2005,21(6):984-988.
    [12]Armstrong F A,Hill H A O,Walton N J.Direct Electrochemistry of Redox Proteins[J].Acc Chem Res,1988,21(11):407-413.
    [13]Sun Z Y,Li Y Q,Zhou T S,Liu Y,Shi G Y,Jin L T.Direct electron transfer and electrocatalysis of hemoglobin in layer-by-layer films assembled with Al-MSU-S particles[J].Talanta,2008,74(5):1692-1698.
    [14]Stargardt J F,Hawkridge F M,Landrum H L.Reversible Heterogeneous Reduction and Oxidation of Sperm Whale Myoglobin at A Surface Modified Gold Minigrid Electrode[J].Anal Chem,1978,50(7):930-932.
    [15]Hamachi I,Noda S,Kunitake T.Functional Conversion of Myoglobin Bound to Synthetic Bilayer-Membranes-from Dioxygen Storage Protein to Redox Enzyme[J].J Am Chem Soc,1991,113(25):9625-9630.
    [16]Wang Q L,Lu G X,Yang B J.Myoglobin/sol-gel film modified electrode:Direct electrochemistry and electrochemical catalysis[J].Langmuir,2004,20(4):1342-1347.
    [17]Immoos C E,Chou J,Bayachou M,Blair E,Greaves J,Farmer P J.Electrocatalytic reductions of nitrite,nitric oxide,and nitrous oxide by thermophilic cytochrome P450CYP119 in film-modified electrodes and an analytical comparison of its catalytic activities with myoglobin[J].J Am Chem Soc,2004,126(15):4934-4942.
    [18]Liu H Y,Hu N F.Comparative bioelectrochemical study of core-shell nanocluster films with ordinary layer-by-layer films containing heme proteins and CaCO3 nanoparticles[J].J Phys Chem B,2005,109(20):10464-10473.
    [19]Yang L Z,Liu H Y,Hu N F.Assembly of electroactive layer-by-layer films of myoglobin and small-molecular phytic acid[J].Electrochem Commun,2007,9(5):1057-1061.
    [20]Feng M L,Tachikawa H.Raman spectroscopic and electrochemical characterization of myoglobin thin film:Implication of the role of histidine 64 for fast heterogeneous electron transfer[J].J Am Chem Soc,2001,123(13):3013-3020.
    [21]Zhang L,Zhang Q,Li J H.Layered titanate nanosheets intercalated with myoglobin for direct electrochemistry[J].Adv Funct Mater,2007,17(12):1958-1965.
    [22]Liu S Q,Ju H X.Electrocatalysis via direct electrochemistry of myoglobin immobilized on colloidal gold nanoparticles[J].Electroanalysis,2003,15(18):1488-1493.
    [23]Nadzhafova O Y,Zaitsev V N,Drozdova M V,Vaze A,Rusling J F.Heme proteins sequestered in silica sol-gels using surfactants feature direct electron transfer and peroxidase activity[J].Electrochem Commun,2004,6(2):205-209.
    [24]Zhao G,Feng J J,Xu J J,Chen H Y.Direct electrochemistry and electrocatalysis of heme proteins immobilized on self-assembled ZrO2 film [J].Electrochem Commun,2005,7(7):724-729.
    [25]Zhao G C,Zhang L,Wei X W,Yang Z S.Myoglobin on multi-walled carbon nanotubes modified electrode:direct electrochemistry and electrocatalysis [J].Electrochem Commun,2003,5(9):825-829.
    [26]Yu X,Chattopadhyay D,Galeska I,Papadimitrakopoulos F,Rusling J F.Peroxidase activity of enzymes bound to the ends of single-wall carbon nanotube forest electrodes[J].Electrochem Commun,2003,5(5):408-411.
    [27]Peng S,Gao Q M,Wang Q G,Shi J L.Layered structural heme protein magadiite nanocomposites with high enzyme-like peroxidase activity[J].Chem Mater,2004,16(13):2675-2684.
    [28]Zhang L,Zhao G C,Wei X W,Yang Z S.A nitric oxide biosensor based on myoglobin adsorbed on multi-walled carbon nanotubes[J].Electroanalysis, 2005,17 (7): 630-634.
    [29] Zhao L Y, Liu H Y, Hu N F. Electroactive films of heme protein-coated multlwalled carbon nanotubes [J]. J Colloid Interface Sci, 2006, 296 (1): 204-211.
    [30] Zhao G C, Zhang L, Wei X W. An unmediated H2O2 biosensor based on the enzyme-like activity of myoglobin on multi-walled carbon nanotubes [J]. Anal Biochem, 2004, 329 (1): 160-161.
    [31] Zhao L Y, Liu H Y, Hu N F. Assembly of layer-by-layer films of heme proteins and single-walled carbon nanotubes: electrochemistry and electrocatalysis [J]. Anal Bioanal Chem, 2006, 384 (2): 414-422.
    [32] Ryoo R, Joo S H, Jun S. Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation [J]. J Phys Chem B, 1999, 103 (37): 7743-7746.
    [33] Lee J, Yoon S, Hyeon T, Oh S M, Kim K B. Synthesis of a new mesoporous carbon and its application to electrochemical double-layer capacitors [J]. Chem Commun, 1999, (21): 2177-2178.
    [34] Joo S H, Choi S J, Oh I, Kwak J, Liu Z, Terasaki O, Ryoo R. Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles [J]. Nature, 2001, 412 (6843): 169-172.
    [35] Yoon S, Lee J W, Hyeon T, Oh S M. Electric double-layer capacitor performance of a new mesoporous carbon [J]. J Electrochem Soc, 2000, 147 (7): 2507-2512.
    [36] Jun S, Joo S H, Ryoo R, Kruk M, Jaroniec M, Liu Z, Ohsuna T, Terasaki O. Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure [J]. J Am Chem Soc, 2000,122 (43): 10712-10713.
    [37] Lee J, Kim J, Hyeon T. Recent progress in the synthesis of porous carbon materials [J]. Adv Mater, 2006,18 (16): 2073-2094.
    [38] Yang H F, Yan Y, Liu Y, Zhang F Q, Zhang R Y, Meng Y, Li M, Xie S H, Tu B, Zhao D Y. A simple melt impregnation method to synthesize ordered mesoporous carbon and carbon nanofiber bundles with graphitized structure from pitches[J].J Phys Chem B,2004,108(45):17320-17328.
    [39]Wang T,Liu X Y,Zhao D Y,Jiang Z Y.The unusual electrochemical characteristics of a novel three-dimensional ordered bicontinuous mesoporous carbon[J].Chem Phys Lett,2004,389(4-6):327-331.
    [40]Vinu A,Streb C,Murugesan V,Hartmann M.Adsorption of cytochrome c on new mesoporous carbon molecular sieves[J].J Phys Chem B,2003,107(33):8297-8299.
    [41]Hartmann M,Vinu A,Chandrasekar G.Adsorption of vitamin E on mesoporous carbon molecular sieves[J].Chem Mater,2005,17(4):829-833.
    [42]Takahashi H,Li B,Sasaki T,Miyazaki C,Kajino T,Inagaki S.Catalytic activity in organic solvents and stability of immobilized enzymes depend on the pore size and surface characteristics of mesoporous silica[J].Chem Mater,2000,12(11):3301-3305.
    [43]Mastai Y,Polarz S,Antonietti M.Silica-carbon nanocomposites:A new concept for the design of solar absorbers[J].Adv Funct Mater,2002,12(3):197-202.
    [44]Lee J,Sohn K,Hyeon T.Fabrication of novel mesocellular carbon foams with uniform ultralarge mesopores[J].J Am Chem Soc,2001,123(21):5146-5147.
    [45]Kleitz F,Choi S H,Ryoo R.Cubic Ia3d large mesoporous silica:synthesis and replication to platinum nanowires,carbon nanorods and carbon nanotubes[J].Chem Commun,2003,(17):2136-2137.
    [46]Kim T W,Kleitz F,Paul B,Ryoo R.MCM-48-like large mesoporous silicas with tailored pore structure:Facile synthesis domain in a ternary triblock copolymer-butanol-water system[J].J Am Chem Soc,2005,127(20):7601-7610.
    [47]Lin Y P,Lin H P,Chen D W,Liu H Y,Teng H S,Tang C Y.Using phenol-formaldehyde resin as carbon source to synthesize mesoporous carbons of different pore structures[J].Mater Chem Phys,2005,90(2-3): 339-343.
    [48] Zhou L, Li H Q, Yu C Z, Zhou X F, Tang J W, Meng Y, Xia Y Y, Zhao D Y. Easy synthesis and supercapacities of highly ordered mesoporous polyacenes/carbons [J]. Carbon, 2006,44 (8): 1601-1604.
    [49] Gierszal K P, Kim T W, Ryoo R, Jaroniec M. Adsorption and structural properties of ordered mesoporous carbons synthesized by using various carbon precursors and ordered siliceous P6mm and Ia(3)over-bard mesostructures as templates [J]. J Phys Chem B, 2005, 109 (49): 23263-23268.
    [50] Kim T W, Solovyov L A. Synthesis and characterization of large-pore ordered mesoporous carbons using gyroidal silica template [J]. J Mater Chem,2006,16(15): 1445-1455.
    [51] Zhao D Y, Feng J L, Huo Q S, Melosh N, Fredrickson G H, Chmelka B F, Stucky G D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores [J]. Science, 1998,279 (5350): 548-552.
    [52] Nam J H, Jang Y Y, Kwon Y U, Nam J D. Direct methanol fuel cell Pt-carbon catalysts by using SBA-15 nanoporous templates [J]. Electrochem Commun, 2004,6 (7): 737-741.
    [53] Ferrari A C, Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon [J]. Phys Rev B, 2000, 61 (20): 14095-14107.
    [54] Zhou M, Guo J D, Guo L P, Bai J. Electrochemical sensing platform based on the highly ordered mesoporous carbon-fullerene system [J]. Anal Chem, 2008, 80 (12): 4642-4650.
    [55] Banks C E, Davies T J, Wildgoose G G, Compton R G. Electrocatalysis at graphite and carbon nanotube modified electrodes: edge-plane sites and tube ends are the reactive sites [J]. Chem Commun, 2005, (7): 829-841.
    [56] Liu X Y, Tian B Z, Yu C Z, Gao F, Xie S H, Tu B, Che R C, Peng L M, Zhao D Y. Room-temperature synthesis in acidic media of large-pore three-dimensional bicontinuous mesoporous silica with Ia3d symmetry [J]. Angew Chem, Int Ed, 2002,41 (20): 3876-3878.
    [57]Chen X,Jia J B,Dong S J.Organically modified sol-gel/chitosan composite based glucose biosensor[J].Electroanalysis,2003,15(7):608-612.
    [58]Taliene V R,Ruzgas T,Razumas V,Kulys J.Chronoamperometric and Cyclic Voltammetric Study of Carbon-Paste Electrodes Using Ferricyanide and Ferrocenemonocarboxylic Acid[J].J Electroanal Chem,1994,372(1-2):85-89.
    [59]Ianniello R,Lindsay J,Yacynych A.Differential pulse voltammetric study of direct electron transfer in glucose oxidase chemically modified graphite electrodes[J].Anal Chem,1982,54(7):1098-1101.
    [60]Bard A J,Faulkner L R.Electrochemical Methods:Fundamentals and Applications 2nd ed[M].John Wiley & Sons,New York,2001.
    [61]Liu S Q,Ju H X.Reagentless glucose biosensor based on direct electron transfer of glucose oxidase immobilized on colloidal gold modified carbon paste electrode[J].Biosens Bioelectron,2003,19(3):177-183.
    [62]Huang Y X,Zhang W J,Xiao H,Li G X.An electrochemical investigation of glucose oxidase at a US nanoparticles modified electrode[J].Biosens Bioelectron,2005,21(5):817-821.
    [63]Zhang J,Feng M,Tachikawa H.Layer-by-layer fabrication and direct electrochemistry of glucose oxidase on single wall carbon nanotubes[J].Biosens Bioelectron,2007,22(12):3036-3041.
    [64]Hartmann M.Ordered mesoporous materials for bioadsorption and biocatalysis[J].Chem Mater,2005,17(18):4577-4593.
    [65]Bao S J,Li C M,Zang J F,Cui X Q,Qiao Y,Guo J.New nanostructured TiO2 for direct electrochemistry and glucose sensor applications[J].Adv Funct Mater,2008,18(4):591-599.
    [66]Laviron E.General Expression of the Linear Potential Sweep Voltammogram in the Case of Diffusionless Electrochemical Systems[J].J Electroanal Chem,1979,101(1):19-28.
    [67]Kumar S A,Chen S M.Direct electrochemistry and electrocatalysis of myoglobin on redox-active self-assembling monolayers derived from nitroaniline modified electrode[J].Biosens Bioelectron,2007,22(12):3042-3050.
    [68]Wang J.Electrochemical glucose biosensors[J].Chem Rev,2008,108(2):814-825.
    [69]Kamin R A,Wilson G S.Rotating-Ring-Disk Enzyme Electrode for Biocatalysis Kinetic-Studies and Characterization of the Immobilized Enzyme Layer[J].Anal Chem,1980,52(8):1198-1205.
    [70]Liu X Q,Shi L H,Niu W X,Li H J,Xu G B.Amperometric glucose biosensor based on single-walled carbon nanohorns[J].Biosens Bioelectron,2008,23(12):1887-1890.
    [71]Luo H X,Shi Z J,Li N Q,Gu Z N,Zhuang Q K.Investigation of the electrochemical and electrocatalytic behavior of single-wall carbon nanotube film on a glassy carbon electrode[J].Anal Chem,2001,73(5):915-920.
    [1]Wang J,Musameh M.A reagentless amperometric alcohol biosensor based on carbon-nanotube/Teflon composite electrodes[J].Anal Lett,2003,36(9):2041-2048.
    [2]Chakraborty S,Raj C R.Amperometric biosensing of glutamate using carbon nanotube based electrode[J].Electrochem Commun,2007,9(6):1323-1330.
    [3]Lawrence N S,Wang J.Chemical adsorption of phenothiazine dyes onto carbon nanotubes:Toward the low potential detection of NADH[J].Electrochem Commun,2006,8(1):71-76.
    [4]Jaegfeldt H.Adsorption and electrochemical oxidation behaviour of NADH at a clean platinum electrode[J].J Electroanal Chem,1980,110:295-302.
    [5]Molroux J,Elving P J.Effects of adsorption,electrode material,and operational variables on the oxidation of dihydronicotinamide adenine dinucleotide at carbon electrodes[J].Anal Chem,1978,50:1056-1062.
    [6]Wang J,Angnes L,Martinez T.Scanning Tunneling Microscopic Probing of Surface Fouling During the Oxidation of Nicotinamide Coenzymes[J].Bioelectrochem Bioenerg,1992,29(2):215-221.
    [7]Lobo M J,Miranda A J,Tunon P.Amperometric biosensors based on NAD(P)-dependent dehydrogenase enzymes[J].Electroanalysis,1997,9(3):191-202.
    [8]Blaedel W J,Jenkins R A.Study of a reagentless lactate electrode[J].Anal Chem,1976,48:1240-1247.
    [9]Pariente F,Lorenzo E,Abruna H D.Electrocatalysis of NADH Oxidation with Electropolymerized Films of 3,4-Dihydroxybenzaldehyde[J].Anal Chem,1994,66(23):4337-4344.
    [10]Zare H R,Golabi S M.Electrocatalytic oxidation of reduced nicotinamide adenine dinucleotide(NADH) at a chlorogenic acid modified glassy carbon electrode[J].J Electroanal Chem,1999,464(1):14-23.
    [11]Musameh M,Wang J,Merkoci A,Lin Y H.Low-potential stable NADH detection at carbon-nanotube-modified glassy carbon electrodes[J].Electrochem Commun,2002,4(10):743-746.
    [12]Raj C R,Chakraborty S.Carbon nanotubes-polymer-redox mediator hybrid thin film for electrocatalytic sensing[J].Biosens Bioelectron,2006,22(5):700-706.
    [13]Lee J,Yoon S,Hyeon T,Oh S M,Kim K B.Synthesis of a new mesoporous carbon and its application to electrochemical double-layer capacitors[J].Chem Commun,1999,(21):2177-2178.
    [14]Joo S H,Choi S J,Oh I,Kwak J,Liu Z,Terasaki O,Ryoo R.Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles[J].Nature,2001,412(6843):169-172.
    [15]Liang C D,Dai S,Guiochon G.A graphitized-carbon monolithic column[J].Anal Chem,2003,75(18):4904-4912.
    [16]Yantasee W,Lin Y H,Fryxell G E,Alford K L,Busche B J,Johnson C D.Selective removal of copper(Ⅱ) from aqueous solutions using fine-grained activated carbon functionalized with amine[J].Ind Eng Chem Res,2004,43(11):2759-2764.
    [17]Li W J,Yao Y W,Wang Z C,Zhao J Z,Zhao M Y,Sun C Q.Preparation of stable mesoporous silica FSM-16 from water glass in the presence of cetylpyridium bromide[J].Mater Chem Phys,2001,70(2):144-149.
    [18]Kressqe C T,Marler D O,Rav G S,Rose B H.Supported Heteropoly Acid Catalysts[P].US Patent:5366945,1994-11-12.
    [19]Dai Z H,Lu G F,Bao J C,Huang X H,Ju H X.Low potential detection of NADH at titanium-containing MCM-41 modified glassy carbon electrode[J].Electroanalysis,2007,19(5):604-607.
    [20]Zhao D Y,Feng J L,Huo Q S,Melosh N,Fredrickson G H,Chmelka B F,Stucky G D.Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores[J].Science,1998,279(5350):548-552.
    [21]Jun S,Joo S H,Ryoo R,Kruk M,Jaroniec M,Liu Z,Ohsuna T,Terasaki O.Synthesis of new,nanoporous carbon with hexagonally ordered mesostructure [J]. J Am Chem Soc, 2000,122 (43): 10712-10713.
    [22] Kleitz F, Choi S H, Ryoo R. Cubic Ia3d large mesoporous silica: synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes [J]. Chem Commun, 2003, (17): 2136-2137.
    [23] Kim T W, Kleitz F, Paul B, Ryoo R. MCM-48-like large mesoporous silicas with tailored pore structure: Facile synthesis domain in a ternary triblock copolymer-butanol-water system [J]. J Am Chem Soc, 2005, 127 (20): 7601-7610.
    [24] Chen X, Jia J B, Dong S J. Organically modified sol-gel/chitosan composite based glucose biosensor [J]. Electroanalysis, 2003,15 (7): 608-612.
    [25] Guiseppi-Elie A, Lei C H, Baughman R H. Direct electron transfer of glucose oxidase on carbon nanotubes [J]. Nanotechnology, 2002,13 (5): 559-564.
    [26] Yang H F, Yan Y, Liu Y, Zhang F Q, Zhang R Y, Meng Y, Li M, Xie S H, Tu B, Zhao D Y. A simple melt impregnation method to synthesize ordered mesoporous carbon and carbon nanofiber bundles with graphitized structure from pitches [J]. J Phys Chem B, 2004,108 (45): 17320-17328.
    [27] Taliene V R, Ruzgas T, Razumas V, Kulys J. Chronoamperometric and Cyclic Voltammetric Study of Carbon-Paste Electrodes Using Ferricyanide and Ferrocenemonocarboxylic Acid [J]. J Electroanal Chem, 1994, 372 (1-2): 85-89.
    [28] Ferrari A C, Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon [J]. Phys Rev B, 2000,61 (20): 14095-14107.
    [29] Banks C E, Davies T J, Wildgoose G G, Compton R G. Electrocatalysis at graphite and carbon nanotube modified electrodes: edge-plane sites and tube ends are the reactive sites [J]. Chem Commun, 2005, (7): 829-841.
    [30] Banks C E, Compton R G Exploring the electrocatalytic sites of carbon nanotubes for NADH detection: an edge plane pyrolytic graphite electrode study [J]. Analyst, 2005,130 (9): 1232-1239.
    [31] Banks C E, Compton R G. New electrodes for old: from carbon nanotubes to edge plane pyrolytic graphite [J]. Analyst, 2006,131 (1): 15-21.
    [32]Luo H X,Shi Z J,Li N Q,Gu Z N,Zhuang Q K.Investigation of the electrochemical and electrocatalytic behavior of single-wall carbon nanotube film on a glassy carbon electrode[J].Anal Chem,2001,73(5):915-920.
    [33]Tsai Y C,Tsai M C,Chiu C C.Self-assembly of carbon nanotubes and alumina-coated silica nanoparticles on a glassy carbon electrode for electroanalysis[J].Electrochem Commun,2008,10(5):749-752.
    [34]Deng C Y,Chen J H,Chen X L,Mao C H,Nie Z,Yao S Z.Boron-doped carbon nanotubes modified electrode for electroanalysis of NADH[J].Electrochem Commun,2008,10(6):907-909.
    [35]Kamin R A,Wilson G S.Rotating-Ring-Disk Enzyme Electrode for Biocatalysis Kinetic-Studies and Characterization of the Immobilized Enzyme Layer[J].Anal Chem,1980,52(8):1198-1205.
    [36]los-Santos-Alvarez N,Lobo-Castanon M J,Miranda-Ordieres A J,Tunon-Blanco P,Abruna H D.5-hydroxytryptophan as a precursor of a catalyst for the oxidation of NADH[J].Anal Chem,2005,77(8):2624-2631.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700