贵金属纳米颗粒的形貌控制合成、自组装与表面增强拉曼散射性质
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文研究的是贵金属纳米颗粒的形貌控制合成、自组装及其表面增强拉曼散射(SERS)性质。正文包括五部分内容:第一章是绪论,主要是介绍贵金属纳米颗粒的液相法合成和自组装方面的一些最新进展,并简要介绍了贵金属纳米结构的光学与催化性质;第二章讲述的是在水溶液中以十六烷基三甲基溴化铵(CTAB)为包覆剂制备不同形貌的钯纳米颗粒;第三章讨论的是通过蒸发溶液的方法实现钯纳米立方体的三维自组装;第四章介绍了通过控制银纳米颗粒的聚集制备具有不同表面形貌的花状银纳米球,并研究了这些银纳米球的SERS性能;第五章介绍的是一维银纳米异质结构的制备与生长机制研究。第二至第五章的具体内容如下:
     1.第二章:本章研究了以CTAB为包覆剂,以抗坏血酸钠为还原剂,在水溶液中合成钯纳米颗粒的问题。在该研究中,我们发展出了一种高产率的合成钯纳米立方体(产率~95%)和钯纳米星形二十面体(产率~65%)的方法。我们在该研究中还重点分析了不同形貌纳米颗粒的生长机理。纳米颗粒的形成经历两个过程:成核与生长。在成核阶段,如何控制各种孪晶结构晶核的产率是关键;在生长阶段,如何控制不同晶面的生长速率是关键。很多实验条件都能够影响颗粒的成核与生长,在该研究中我们关注的主要是包覆剂的影响。在以前的研究中,人们更多关注的是包覆剂在晶体面上的选择性吸附从而对不同晶面生长速率的影响。在我们的研究中,我们同时关注了包覆剂对成核与生长的影响,只有这样,我们才能全面理解在纳米颗粒的形成过程中包覆剂所产生的影响。本章还研究了钯纳米颗粒的表面等离子体共振和表面增强拉曼散射性质。
     2.第三章:我们发展了一种实现钯纳米立方体三维自组装的方法。纳米立方体很容易实现二维正方排列,但其三维自组装却困难的多。这里的关键是要在纳米立方体之间引入合适的相互作用力。我们发现,通过缓慢的蒸发含有合适浓度的CTAB和钯纳米立方体的水溶液,可以缓慢的增加钯纳米立方体与溶液之间的疏水相互作用,从而使得纳米立方体以有序的方式聚集在一起。这样,我们就得到了由钯纳米立方体组装成的具有简立方结构的微米立方体。通过改变蒸发温度可以在一定范围内调控这些微米立方体的尺寸。这种组装方法不依赖于钯材料的性质,因而可以用来组装其他贵金属材料的纳米立方体。我们就用同样的方法实现了银纳米立方体的三维自组装。
     3.第四章:本章我们发展了一种制备有着特殊表面形貌的花状银纳米球的方法。这些花状银纳米球是由较小的初始银纳米颗粒聚集形成的。我们实现这些银纳米颗粒聚集的方法是降低作为稳定剂使用的聚乙烯吡咯烷酮(PVP)的量,并且,通过控制PVP的量我们还能够调控由银纳米颗粒聚集形成的花状银纳米球的尺寸。另外,我们通过向反应液中引入少量离子型包覆剂(柠檬酸钠或十二烷基硫酸钠)的方法实现了对花状银纳米球表面形貌的控制。引入少量离子型的包覆剂之后,初始银纳米颗粒的形貌发生了很大的变化,从而由这些纳米颗粒聚集形成的花状银纳米球的表面形貌也发生了很大的变化。在通常的合成中,包覆剂主要起两个作用:稳定颗粒和控制颗粒的形貌。我们方法的新颖之处在于,我们选择了两种不同类型的包覆剂(非离子型的包覆剂PVP与离子型的包覆剂),让它们分别起着稳定颗粒和控制颗粒形貌的作用。因为可以分别改变这两种包覆剂的量,所以我们可以更好的控制产物的尺寸和形貌。我们发现,相对于通常非聚集的球形银纳米颗粒,表面有着很多尖端突起的花状银纳米球表现出更优异的SERS性质。
     4.第五章:在本工作中我们制备了两种分别被称为棒-针异质纳米结构(rod-needle heteronanostructures, RNHSs)和片-带状纳米异质结构(plate-belt heteronanostructures, PBHSs)的新颖的一维银纳米异质结构,并分析了它们的形成机制。对于RNHSs,快速生长引起的堆垛层错——包括孪晶、局部六方相等——促进了<111>方向的生长,这是一种新的形成一维贵金属纳米结构的机制。另外,在RNHSs的不同部分,由于含有不同密度的堆垛层错,这导致了RNHSs不同部分形貌上的差别。对于PBHSs,孪晶导致了片状纳米结构的形成,而4H相导致了带状银纳米结构的形成。控制银纳米结构中的堆垛层错是调控其形貌的一个新的途径。
This dissertation is about shape-controlled synthesis, self-assembly and surface-enhanced Raman scattering (SERS) properties of noble metal nanoparticles. There are five chapters in this dissertation:the first chapter is an introduction of fundamental concepts and some recent advances on solution-phase synthesis, self-assembly, surface plasmon resonance (SPR) and SERS properties of noble metal nanoparticles; the second chapter is shape-controlled synthesis of Palladium nanoparticles in aqueous solution using cetyltrimethylammonium bromide (CTAB) as a capping agent; the third chapter is three-dimensional self-assembly of Pd nanocubes through solution vaporizing; the fourth chapter is synthesis and SERS properties of flower-like Ag nanospheres with different surface morphologies; the fifth chapter is synthesis and growth mechanism of one-dimensional Ag heteronanostructures. The main content of chapter two to five is given below.
     1. In chapter two, morphological evolution of Pd nanoparticles was studied in a solution phase synthesis using CTAB and sodium ascorbate as a capping agent and a reducing agent respectively. In this study, we developed a method for high yield synthesis of Pd nanocues (-95%) and Pd star-shaped icosahedra (-65%). The role of capping agents in controlling the morphology of Pd nanoparticles was studied, considering the effects of the capping agents on the nucleation and growth process. In the nucleation stage, capping agents influence the distribution of single-crystal and multiple-twinned seeds; in the growth stage, capping agents selectively enlarge one set of crystallographic facets. We also studied the SPR and SERS properties of the Pd nanoparticles.
     2. In chapter three, we developed a method for three-dimensional self-assembly of Pd nanocubes. Through slowly vaporizing the solution containing CTAB-coated Pd nanocubes and excess CTAB, we obtained simple-cubic microcubes assembled by Pd nanocubes. The size of the microcubes could be slightly controlled by changing the evaporation temperature. The method described here is independent of the property of Pd, so it is expected to be applicable to CTAB-coated nanocubes of other materials. For example, we also achieved three-dimensional self-assembly of silver nanocubes using this method.
     3. In chapter four, we report a high-yield synthesis of Ag nanospheres with complex surface morphology which are formed by the agglomeration of small Ag nanoparticles. The size of the silver nanosphers can be controlled by changing the concentration of poly(vinylpyrrolidone) (PVP) which acts as a stabilizer. In addition, the surface morphology of the nanospheres can be well controlled through controlling the shape of primary Ag nanoparticles by introducing a small quantity of ionic capping agents into the solution. Through changing the concentration of the two types of capping agents separately, Ag nanospheres with well controlled size and morphology were obtained. We find that the flower-like nanospheres with sharp tips on their surface exhibit much better SERS properties than non-agglomerated spherical Ag nanoparticles.
     4. In Chapter five, we demonstrate that we can fabricate one-dimensional Ag rod-needle heteronanostructures (RNHSs) and plate-belt heteronanostructures (PBHSs). The formation mechanism was also studied. For RNHSs, the stacking faults (including twins, local hcp phase, and so on) arising from fast growth promote the growth along<111> direction, which is a new mechanism for formation of 1D noble metal nanostructures. For PBHSs, the twins lead to the formation of Ag nanoplate, while 4H crystal structures are responsible for the formation of Ag nanobelts. Condition-sensitive coexisting phase preferences can be applied as a new way of controlling the shap and thus the properties of Ag nanostructures.
引文
[1]A. R. Tao, S. Habas, P. Yang, Small 2008,4,310.
    [2]X. Xia, Y. Xiong, B. Lim, S. E. Skrabalak, Angew. Chem. Int. Ed.2009,48,60.
    [3]B. L. V. Prasad, C. M. Sorensen, K. J. Klabunde, Chem. Soc. Rev.2008,37,1871.
    [4]K. J. M. Bishop, C. E. Wilmer, S. Soh, B. A. Grzybowski, Small,2009,5,1600.
    [5]H. Ko, S. Singamaneni, V. V. Tsukruk, Small,2008,4,1576.
    [6]A. M. Schwartzberg, J. Z. Zhang, J. Phys. Chem. C 2008,112,10323.
    [7]C. J. Murphy, A. M. Gole, S. E. Hunyadi, C. J. Orendorff, Inorg. Chem.2006,45,7544.
    [8]I. Pastoriza-Santos, L. M. Liz-Marzan, J. Mater. Chem.2008,18,1724.
    [9]S. H. Im, Y. T. Lee, B. Wiley, Y. Xia, Angew. Chem. Int. Ed.2005,44,2154.
    [10]H. Lee, S. E. Habas, S. Kweskin, D. Butcher, G.. A. Somorjai, P. Yang, Angew. Chem. Int. Ed. 2006,45,7824.
    [11]L. Xiao, L. Zhuang, Y. Liu, J. Lu, H. Abruna, J. Am. Chem. Soc.2009,131,602.
    [12]C. Wang, H. Daimon, T. Onodera, T. Koda, S. Sun, Angew. Chem. Int. Ed.2008,47,3588.
    [13]C. Tsung, J. N. Kuhn, W. Huang, C. Aliaga, L. Hung, G. A. Somorjai, P. Yang, J. Am. Chem. Soc.2009,131,5816.
    [14]Z. L. Wang, J. Phys. Chem. B 2006,104,1153.
    [15]B. Viswanath, P. Kundu, A. Halder, N. Ravishankar, J. Phys. Chem. C 2009,113,16866.
    [16]Y. Sun, Y. Xia, Science 2002,298,2176.
    [17]W. Lu, B. Wang, K. Wang, X. Wang, J. G. Hou, Langmuir 2003,19,5887.
    [18]Y. Sun, Y. Yin, B. T. Mayers, T. Herricks, Y. Xia, Chem. Mater.2002,14,4736.
    [19]S. H. Im, Y. T. Lee, B. Wiley, Y. Xia, Angew. Chem. Int. Ed.2005,44,2154.
    [20]S. E. Skrabalak, B. J. Wiley, M. Kim, E. V. Formo, Y Xia, Nano Lett.2008,8,2077.
    [21]J. L. Elechiguerra, J. Reyes-Gasga, M. J. Yacaman, J. Mater. Chem.2006,16,3906.
    [22]A. Tao, P. Sinsermsuksakul, P. Yang, Angew. Chem. Int. Ed.2006,45,4597.
    [23]F. Kim, S. Connor, H. Song, T. Kuykendall, P. Yang, Angew. Chem. Int. Ed.2004,43,3673.
    [24]T. K. Sau, C. J. Murphy, J. Am. Chem. Soc.2004,126,8648.
    [25]J. Zhang, Y. Gao, R. A. Alvarez-puebla, J. M. Buriak, H. Fenniri, Adv. Mater.2006,18,3233.
    [26]D. Seo, J. C. Park, H. Song, J. Am. Chem. Soc.2006,128,14863.
    [27]C. Li, K. L. Shuford, Q.-H. Park, W. Cai, Y. Li, E. J. Lee, S. O. Cho, Angew. Chem. Int. Ed. 2007,46,3264.
    [28]C.-C. Chang, H.-L. Wu, C.-H. Kuo, M. H. Huang, Chem. Mater.2008,20,7570.
    [29]C. Li, K. L. Shuford, M. Chen, E. J. Lee, S. O. Cho,ACS Nano 2008,2,1760.
    [30]Y. Xiong, J. Chen, B. Wiley, Y. Xia, Y. Yin, Z.-Y. Li, Nano Lett.2005,5,1237.
    [31]G. Chang, M. Oyama, K. Hirao,Acta. Mater.2007,55,3453.
    [32]W. Niu, Z.-Y. Li, L. Shi, X. Liu, H. Li, S. Han, J. Chen, G. Xu, Cryst. Growth Des.2008,8, 4440.
    [33]B. Lim, Y. Xiong, Y. Xia, Angew. Chem. Int. Ed.2007,46,9279.
    [34]W. Niu, S. Zheng, D. Wang, X. Liu, H. Li, S. Han, J. Chen, Z. Tang, G. Xu, J. Am. Chem. Soc. 2009,131,697.
    [35]G. H. Jeong, M. Kim, Y. W. Lee, W. Choi, W. T. Oh, Q. Park, S. W. Han, J. Am. Chem. Soc. 2009,131,1672.
    [36]N. Tian, Z.-Y. Zhou, S.-G. Sun, Y. Ding, Z. L. Wang, Science 2007,316,732.
    [37]T. Ming, W. Feng, Q. Tang, F. Wang, L. Sun, J. Wang, C. Yan, J. Am. Chem. Soc.2009,131, 16350.
    [38]Y. Xiong, H. Cai, B. J. Wiley, J. Wang, M. J. Kim, Y. Xia, J. Am. Chem. Soc.2007,129,3665.
    [39]B. J. Wiley, Y. Chen, J. M. McLellan, Y. Xiong, Z.-Y. Li, D. Ginger, Y. Xia, Nano Lett.2007, 7,1032.
    [40]Y. Sun, L. Zhang, H. Zhou, Y. Zhu, E. Sutter, Y. Ji, M. H. Rafailovich, J. C. Sokolov, Chem. Mater.2007,19,2065.
    [41]X. Kou, S. Zhang, C. Tsung, Z. Yang, M. H. Yeung, G. D. Stucky, L. Sun, J. Wang, C. Yan, Chem. Eur. J.2007,13,2929.
    [42]T. Placido, R. Comparelli, F. Giannici, P. D. Cozzoli, G. Capitani, M. Striccoli, A. Agostiano, M. L. Curri, Chem. Mater.2009,21,4192.
    [43]A. Halder, N. Ravishankar, Adv. Mater.2007,19,1854.
    [44]Q. Zhang, S.-J. Liu, S.-H. Yu, J. Mater. Chem.2009,19,191.
    [45]M. Grouchko, I. Popov, V. Uvarov, S. Magdassi, A. Kamyshny, Langmuir 2009,25,2501.
    [46]T. S. Ahmadi, Z. L. Wang, T. C. Green, A. Henglein, M. A. El-Sayed, Science 1996,272, 1924.
    [47]R. Jin, Y. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, J. G. Zheng, Science 2001,294,1901.
    [48]Y. Sun, B. Mayers, Y. Xia, Nano Lett.2003,3,675.
    [49]I. Washio, Y. Xiong, Y. Yin, Y. Xia, Adv. Mater.2006,18,1745.
    [50]Z. Cao, H. Fu, L. Kang, L. Huang, T. Zhai, Y. Ma, J. Yao, J. Mater. Chem.2008,18,2673.
    [51]J. Song, Y. Chu, Y. Liu, L. Li, W. Sun, Chem. Commun.2008,1223.
    [52]Y. Xiong, A. R. Siekkinen, J. Wang, Y. Yin, M. J. Kim, Y. Xia, J. Mater. Chem.2007,17, 2600.
    [53]S. T. Gentry, S. D. Levit, J. Phys. Chem. C 2009,113,12007.
    [54]C. S. Ah, Y. J. Yun, H. J. Park, W.-J. Kim, D. H. Ha, W. S. Yun, Chem. Mater.2005,17,5558.
    [55]B. L. Lim, P. H. C. Camargo, Y. Xia, Langmuir 2008,24,10437.
    [56]Y. Xiong, J. M. Mclellan, J. Chen, Y. Yin, Z.-Y. Li, Y. Xia, J. Am. Chem. Soc.2005,127, 17118.
    [57]C. Lofton,W. Sigmund, Adv. Funct. Mater.2005,15,1197.
    [58]T. C. R. Rocha, D. Zanchet, J. Phys. Chem. C 2007,111,6989.
    [59]D. Aherne, D. M. Ledwith, M. Gara, J. M. Kelly, Adv. Funct. Mater.2008,18,2005.
    [60]B. Wiley, Y. Sun, B. Mayers, Y. Xia, Chem. Eur. J.2005,11,454.
    [61]B. J. Wiley, Y. Xiong, Z.-Y. Li, Y. Yin, Y. Xia, Nano Lett.2006,6,765.
    [62]J. Zhang, S. Li, J. Wu, G. C. Schatz, C. A. Mirkin, Angew. Chem. Int. Ed.2009,48,7787.
    [63]S. Iijima, T. Ichihashi, Phys. Rev. Lett.1986,56,616.
    [64]D. J. Smith, A. K. Petford Long, L. R. Wallenberg, J. O. Bovin, Science 1986,233,872.
    [65]J. Xu, S. Li, J. Weng, X. Wang, Z. Zhou, K. Yang, M. Liu, X. Chen, Q. Cui, M. Cao, Q. Zhang, Adv. Funct. Mater.2008,18,227.
    [66]N. R. Jana, L. Gearheart, C. J. Murphy, Adv. Mater.2001,13,1389.
    [67]B. D. Busbee, S. O. Obare, C. J. Murphy, Adv. Mater.2003,15,414.
    [68]J. Reyes-Gasga, J. L. Elechiguerra, C. Liu, A. Camacho-Bragado, J. M. Montejano-Carrizales, M. J. Yacaman, J. Crystal Growth 2006,286,162.
    [69]Z. Nie, D. Fava, E. Kumacheva, S. Zou, G. C. Walker, M. Rubinstein, Nat. Mater.2007,6, 609.
    [70]N. R. Jana, L. G. Gearheart, C. J. Murphy, Chem. Commun.2001,617.
    [71]Y. Sun, Y. Xia, Adv. Mater.2002,14,833.
    [72]Y. Sun, B. Gates, B. Mayers, Y. Xia, Nano Lett.2002,2,165.
    [73]Y. Sun, Y. Yin, B. T. Mayers, T. Herricks, Y. Xia, Chem. Mater.2002,14,4736.
    [74]B. Wang, G. T. Fei, Y. Zhou, B. Wu, X. Zhu, L. Zhang, Cryst. Growth Des.2008,8,3073.
    [75]Y. Xiong, H. Cai, Y. Yin, Y. Xia, Chem. Phys. Lett.2007,440,273.
    [76]X. Huang, N. Zheng, J. Am. Chem. Soc.2009,131,4602.
    [77]S. Chen, K. Kimura, J.Phys. Chem. B 2001,105,5397.
    [78]S. E. Skrabalak, J. Chen, L. Au, X. Lu, X. Li, Y. Xia, Adv. Mater.2007,19,3177.
    [79]J. Chen, D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, Z.-Y. Li, H. Zhang, Y. Xia, X. Li, Nano Lett.2007,7,1318.
    [80]X. W. Lou, L. A. Archer, Z. Yang, Adv. Mater.2008,20,3987.
    [81]K. An, T. Hyeon, Nano Today 2009,4,359.
    [82]Y. Sun, Y. Xia, Nano Lett.2003,3,1569.
    [83]Y. Sun, Y. Xia, J. Am. Chem. Soc.2004,126,3892.
    [84]J. Chen, J. M. McLellan, A. Siekkinen, Y. Xiong, Z.-Y. Li, Y. Xia, J. Am. Chem. Soc.2006, 128,14776.
    [85]L. Au, X. Lu, Y. Xia, Adv. Mater.2008,20,2517.
    [86]M. Chen, L. Gao, Inorg. Chem.2006,45,5145.
    [87]Y. Sun, Y. Xia, Adv. Mater.2004,16,264.
    [88]J. Chen, B. Wiley, J. McLellan, Y. Xiong, Z.-Y. Li, Y. Xia, Nano Lett.2005,5,2058.
    [89]H.-P. Liang, H.-M. Zhang, J.-S. Hu, Y.-G. Guo, L.-J. Wan, C.-L. Bai, Angew. Chem. Int. Ed. 2004,43,1540.
    [90]M. P. Mallin, C. J. Murphy, Nano Lett.2002,2,1235.
    [91]Y. W. Lee, M. Kim, Z. H. Kim, S. W. Han, J. Am. Chem. Soc.2009,131,17036.
    [92]M. Liu, P. Guyot-Sionnest, J. Phys. Chem. B 2004,108,5882.
    [93]H. Yoo, J. E. Millstone, S. Li, J.-W. Jang, W. Wei, J. Wu, G. C. Schartz, C. A. Mirkin, Nano Lett.2009,9,3038.
    [94]B. Lim, J. Wang, P. H. C. Camargo, M. Jiang, M. J. Kim, Y. Xia, Nano Lett.2008,8,2535.
    [95]S. Habas, H. Lee, V. Radmilovic, G. A. Somorjai, P. Yang, Nat. Mater.2007,6,692.
    [96]F.-R. Fan, D.-Y. Liu, Y.-F. Wu, S. Duan, Z.-X. Xie, Z.-Y. Jiang, Z.-Q. Tian, J. Am. Chem. Soc. 2008,130,6949.
    [97]B. Lim, H. Kobayashi, T. Yu, J. Wang, M. J. Kim, Z.-Y. Li, M. Rycenga, Y. Xia, J. Am. Chem. Soc.2010,132,2506.
    [98]E. Hao, S. Li, R. C. Bailey, S. Zou, G. C. Schatz, J. T. Hupp, J. Phys. Chem. B 2004,108, 1224.
    [99]E. K. Payne, K. L. Shuford, S. Park, G. C. Schatz, C. A. Mirkin, J. Phys. Chem. B 2006 110, 2150.
    [100]W.-H. Yang, G. C. Schatz, R. P. V. Duyne, J. Chem. Phys.1995,103,869.
    [101]A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. Xia, E. R. Dufresns, M. A. Reed, Nano Lett. 2006,6,1822.
    [102]M. W. Knight, N. K. Grady, R. Bardhan, F. Hao, P. Nordlander, N. J. Halas, Nano Lett.2007, 7,2346.
    [103]H. Wei, D. Ratchford, X. Li, H. Xu, C.-K. Shih, Nano Lett.2009,9,4168.
    [104]Y. Fang, H. Wei, F. Hao, P. Nordlander, H. Xu, Nano Lett.2009,9,2049.
    [105]M. Fleischmann, P. J. Hendra, A. McQuillan, Chem. Phys. Lett.1974,26,163.
    [106]D. L. Jeanmaire, R. P. V. Duyne, J. Electroanal. Chem.1977,84,1.
    [107]M. G. Albecht, J. A. Creighton, J. Am. Chem. Soc.1977,99,5215.
    [108]M. Moskovits, Rev. Mod. Phys.1985,57,783.
    [109]M. M. Maitani, D. A. A. Ohlberg, Z. Li, D. L. Allara, D. R. Stewart, R. S. Wiliams, J. Am. Chem.Soc.2009,131,6310.
    [110]S. Nie, S. R. Emory, Science 1997,275,1102.
    [111]Z.-Y. Li, Y. Xia, Nano Lett.2010,10,243.
    [112]J. M. McLellan, Z.-Y. Li, A. R. Siekkinen, Y. Xia, Nano Lett.2007,7,1013.
    [113]S. J. Lee, A. R. Morrill, M. Moskovits, J. Am. Chem. Soc.2006,128,2200.
    [114]L. Qin, S. Zou, C. Xue, A. Atkinson, G. C. Schatz, C. A. Mirkin, Proc. Natl. Acad. Sci. U. S. A.2006,103,13300.
    [115]G. A. Baker, D. S. Moore, Anal. Bioanal. Chem.2005,382,1751.
    [116]G. Chen, Y. Wang, M. Yang, J. Xu, S. J. Goh, M. Pan, H. Chen, J. Am. Chem. Soc.2010,132, 3644.
    [117]O. Vaughan, Nat. Nanotech.2010,5,5.
    [118]S. H. Joo, J. Y. Park, C.-K. Tsung, Y. Yamada, P. Yang, G. A. Somorjai, Nat. Mater.2009,8, 126.
    [119]C.-K. Tsung, J. N. Kuhn, W. Wang, C. Aliaga, L. Hung, G. A. Somorjai, P. Yang, J. Am. Chem. Soc.2009,131,5816.
    [120]O. M. Wilson, M. R. Knecht, J. C. Garcia-Martinez, R. M. Crooks, J. Am. Chem. Soc.2006, 128,4510.
    [121]R. Guo, R. W. Murray,J. Am. Chem. Soc.2005,127,12140.
    [122]X. Huang, S. Tang, H. Zhang, Z. Zhou, N. Zheng, J. Am. Chem. Soc.2009,131,13916.
    [123]Z.-Y. Zhou, Z. Z. Huang, D.-J. Chen, Q. Wang, N. Tian, S. G. Sun, Angew. Chem. Int. Ed. 2010,49,411.
    [124]Z. Peng, H. Yang, Nano Res.2009,2,406.
    [125]Y.-K. Park, S.-H. Yoo, S. Park, Langmuir,2008,24,4370.
    [126]B. Lim, X. Lu, M. Jiang, P. H. C. Camargo, E. C. Cho, E. P. Lee, Y. Xia, Nano Lett.2008,8, 4043.
    [127]H. Lee, S. E. Habas, G. A. Somorjai, P. Yang, J. Am. Chem. Soc.2008,130,5406.
    [128]B. Lim, M. Jiang, P. H. C. Camargo, E. C. Cho, J. Tao, X. Lu, Y. Zhu, Y. Xia, Science 2009, 324,1302.
    [129]M. Antonietti, G. A. Ozin, Chem.-Eur. J.2004,10,28.
    [130]B. L. V. Prasad, C. M. Sorensen, K. J. Klabunde, Chem. Soc. Rev.2008,37,1871.
    [131]K. J. M. Bishop, C. E. Wilmer, S. Soh, B. A. Grzybowski, Small 2009,5,1600.
    [132]S. U. Pickering, J. Chem. Soc., Trans.1907,91,2001.
    [133]A. Boker, J. He, T. Emrick, T. P. Russell, Soft Matter 2007,3,1231.
    [134]A. D. Dinsmore, M. F. Hsu, M. G. Nikolaides, M. Marquez, A. R. Bausch, D. A. Weitz, Science 2002,298,1006.
    [135]T. P. Bigioni, X.-M. Lin, T. T. Nguyen, E. I. Corwin, T. A. Witten, H. M. Jaeger, Nat. Mater. 2006,5,265.
    [136]J. Zhuang, H. Wu, Y. Yang, Y. C. Cao, Angew. Chem. Int. Ed.2008,47,2208.
    [137]O. C. Compton, F. E. Osterloh, J. Am. Chem. Soc.2007,129,7793.
    [138]E. V. Shevchenko, D. V. Talapin, N. A. Kotov, S. O'Brien, C. B. Murray, Nature 2006,439, 55.
    [139]A. M. Kalsin, M. Fialkowski, M. Paszewski, S. Smoukov, K. J. M. Bishop, B. A. Grzybowski, Science 2006,312,420.
    [140]D. V. Talapin, E. V. Shevchenko, M. I. Bodnarchuk, X. Ye, J. Chen, C. B. Murray, Nature 2009,461,964.
    [141]A.P.Alivisatos, Science 1996,271,933.
    [142]U. Banin, Y. Cao,D. Katz, O. Millo, Nature 1999,400,542.
    [1]A. Nemamcha, J,-L, Rehspringer, D. Khatmi,J. Phys. Chem. B 2006,110,383.
    [2]Y. Xiong, Y. Xia, Adv. Mater.2007,19,3385.
    [3]B. Lim, M. Jiang, J. Tao, P. H. C. Camargo, Y. Zhu, Y. Xia, Adv. Funct. Mater.2009,19,189.
    [4]M. Ganesan, R. G. Freemantle, S.O. Obare, Chem. Mater.2007,19,3464.
    [5]B. Wiley, Y. Sun, B. Mayers, Y. Xia, Chem. Eur. J.2005,11,454.
    [6]Y. Xia, Y. Xiong, B. Lim, S. E. Skrabalak, Angew. Chem. Int. Ed.2009,48,60.
    [7]Y. Xiong, J. Chen, B. Wiley, Y. Xia, J. Am. Chem. Soc.2005,127,7332.
    [8]B. Wiley, T. Herricks, Y. Sun, Y. Xia, Nano Lett.2004,4,1733.
    [9]S. H. Im, Y. T. Lee, B. Wiley, Y. Xia, Angew. Chem. Int. Ed.2005,44,2154.
    [10]Y. Xiong, J. Chen, B. Wiley, Y. Xia, Y. Yin, Z. Li, Nano Lett.2005,5,1237.
    [11]G.. Chang, M. Oyama, K. Hirao, Acta Mater.2007,55,3453.
    [12]W. Niu, Z.-Y. Li, L. Shi, X. Liu, H. Li, S. Han, J. Chen, G. Xu, Cryst. Growth Des.2008,8, 4440.
    [13]Y. Sun, Y. Xia, Science 2002,298,2176.
    [14]J. Chen, B. Wiley, J. McLellan, Y. Xiong, Z.-Y. Li, Y. Xia, Nano Lett.2005,5,2058.
    [15]Y. Xiong, B. Wiley, J. Chen, Z.-Y. Li, Y. Yin, Y. Xia, Angew. Chem. Int. Ed.2005,44,7913.
    [16]Y. Xiong, J. M. McLellan, Y. Yin, Y. Xia, Angew. Chem. Int. Ed.2007,46,790.
    [17]Y. Sun, L. Zhang, H. Zhou, Y. Zhu, E. Sutter, Y. Ji, M. R. Rafailovich, J. C. Sokolov, Chem. Mater.2007,19,2065.
    [18]Y. Xiong, H. Cai, B. J. Wiley, J. Wang, M. J. Kim, Y. Xia, J. Am. Chem. Soc.2007,129,3665.
    [19]Y. Xiong, J. M. McLellan, J. Chen, Y. Yin, Z.-Y, Li, Y. Xia, J. Am. Chem. Soc.2005,127, 17118.
    [20]P. Zhou, Z. Dai, M. Fang, X. Huang, J. Bao, J. Gong, J. Phys. Chem. C 2007,111,12609.
    [21]J. M. McLellan, Y. Xiong, M. Hu, Y. Xia, Chem. Phys. Lett.2006,417,230.
    [22]J. L. Elechiguerra, J. Reyes-Gasga, M. J. Yacaman, J. Mater. Chem.2006,16,3906.
    [23]P. Jiang, J,-J, Zhou, R. Li, Z.-L, Wang, S.-S. Xie, Nanotechnology 2006,17,3533.
    [24]Y. Gao, P. Jiang, L. Song, J. X. Wang, L. F. Liu, D. F. Liu, Y. J. Xiang, Z. X. Zhang, X. W. Zhao, X. Y. Dou, S. D. Luo, W. Y. Zhou, S. S. Xie, J. Crystal Growth 2006,289,376.
    [25]Q. Li, M. Shao, S. Zhang, X. Liu, G. Li, K. Jiang, Y. Qian, J. Crystal Growth 2002,243,327.
    [26]Y. Xiong, H. Cai, Y. Yin, Y. Xia, Chem. Phys. Lett.2007,440,273.
    [27]G.. Berhault, M. Bausach, L. Bisson, L. Becerra, C. Thomazeau, D. Uzio, J. Phys. Chem. C 2007,111,17305.
    [28]C. L. Nehl, H. Liao, J. H. Hafner, Nano Lett.2006,6,683.
    [29]J. Reyes-Gasga, J. L. Elechiguerra, C. Liu, A. Camacho-Bragado, J. M. Montejano-Carrizales, M. Jose Yacaman, J. Crystal Growth 2006,286,162.
    [30]C. J. Murphy, A. M. Gole, S. E. Hunyadi, C. J. Orendorff, Inorg. Chem.2006,45,7544.
    [31]N. R. Jana, L. A. Gearheart, S. O. Obare, C. J. Johnson, K. J. Edler, S. Mann, C. J. Murphy, J. Mater. Chem.2002,12,2909.
    [32]L. Gou, C. J. Murphy, Nano Lett.2003,3,231.
    [33]F. Kim, S. Connor, H. Song, T. Kuykendall, P. Yang, Angew. Chem. Int. Ed.2004,43,3673.
    [34]A. Tao, P. Sinsermsuksakul, P. Yang, Angew. Chem. Int. Ed.2006,45,4597.
    [35]L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, J. L. West, Proc. Natl. Acad. Sci. USA 2003,100,13549.
    [1]M. Antonietti, G. A. Ozin, Chem. Eur. J.2004,10,28.
    [2]E. V. Shevchenko, D. V. Talapin, N. A. Kotov, S. O'Brien, C. B. Murray, Nature 2006,439,55.
    [3]A. M. Kalsin, M. Fialkowski, M. Paszewski, S. K. Smoukov, K. J. M. Bishop, B. A. Grzybowski, Science 2006,312,420.
    [4]M. P. Pileni, Acc. Chem. Res.2007,40,685.
    [5]J. Reyes-Gasga, J. L. Elechiguerra, C. Liu, A. Camacho-Bragado, J. M. Montejano-Carrizales, M Jose Yacaman, J. Crystal Growth 2006,286,162.
    [6]Z. Nie, D. Fava, E. Kumacheva, S. Zou, G. C. Walker, M. Rubinstein, Nat. Mater.2007,6, 609.
    [7]Y. Bae, N. H. Kim, M. Kim, K. Y. Lee, S. W. Han, J. Am. Chem. Soc.2008,130,5432.
    [8]A. E. Saunders, A. Ghezelbash, D. Smilgies, M. B. Sigman, B. A. Korgel, Nano Lett.2006,6, 2959.
    [9]A. Boker, J. He, T. Emrick, T. P. Russell, Soft Matter 2007,3,1231.
    [10]Y. Sun, Y. Xia, Science 2002,298,2176.
    [11]T. K. Sau, C. J. Murphy, J. Am. Chem. Soc.2004,126,8648.
    [12]F. Kim, S. Connor, H. Song, T. Kuykendall, P. Yang, Angew. Chem. Int. Ed.2004,43,3673.
    [13]H. Lee, S. E. Habas, S. Kweskin, D. Butcher, G. A. Somorjai and P. Yang, Angew. Chem. Int. Ed.2006,45,7824.
    [14]Y. Xiong, J. Chen, B. Wiley, Y. Xia, Y. Yin, Z. Li, Nano Lett.2005,5,1237.
    [15]G.. Chang, M. Oyama, K. Hirao, Acta Mater.2007,55,3453.
    [16]Y. Zhang, M. E. Grass, J. N. Kuhn, F. Tao, S. E. Habas, W. Huang, P. Yang, G. A. Somorjai, J. Am. Chem. Soc.2008,130,5868.
    [17]W. Niu, Z.-Y. Li, L. Shi, X. Liu, H. Li, S. Han, J. Chen, G. Xu, Cryst. Growth Des.2008,8, 4440.
    [18]M. P. Pileni, J. Phys. Chem. B 2001,105,3358.
    [19]A. Tao, P. Sinsermsuksakul, P. Yang, Nat. Nanotech.2007,2,435.
    [20]M. Mulvihill, A. Tao, K. Benjauthrit, J. Arnold, P. Yang, Angew. Chem. Int. Ed.2008,47, 6456.
    [21]S. Yamamuro, K. Sumiyama, Chem. Phys. Lett.2006,418,166.
    [22]F. Dumestre, B. Chaudret, C.Amiens, P. Renaud, P. Fejes, Science 2004,303,821.
    [23]A. Ahniyaz, Y. Sakamoto, L. Bergstrom, Proc. Natl. Acad. Sci. USA 2007,104,17570.
    [24]M. Rycenga, J. M. McLellan, Y. Xia, Adv. Mater.2008,20,2416.
    [25]J. Zhuang, H. Wu, Y. Yang, Y. C. Cao, J. Am. Chem. Soc.2007,129,14166.
    [26]J. Zhuang, H. Wu, Y. Yang, Y. C. Cao, Angew. Chem. Int. Ed.2008,47,2208.
    [27]J. Zhang, A. Kumbhar, J. he, N. C. Das, K. Yang, J.-Q. Wang, H. Wang, K. L. Stokes, J. Fang, J.Am. Chem. Soc.2008,130,15203.
    [28]T. Ming, X. Kou, H. Chen, T. Wang, H.-L. Tam, K.-W. Cheah, J.-Y. Chen, J. Wang, Angew. Chem. Int. Ed.2008,47,9685.
    [29]B. Nikoobakht, M. A. El-Sayed, Langmuir 2001,17,6368.
    [30]Y. Sun, L. Zhang, H. Zhou, Y. Zhu, E. Sutter, Y. Ji, M. R. Rafailovich, J. C. Sokolov, Chem. Mater.2007,19,2065.
    [31]Y. Xiong, H. Cai, Y. Yin, Y. Xia, Chem. Phys. Lett.2007,440,273.
    [32]N. R. Jana, L. A. Gearheart, S. O. Obare, C. J. Johnson, K. J. Edler, S. Mann, C. J. Murphy, J. Mater. Chem.2002,12,2909.
    [33]N. R. Jana, Angew. Chem. Int. Ed.2004,43,1536.
    [34]O. C. Compton, F. E. Osterloh, J. Am. Chem. Soc.2007,129,7793.
    [35]T. P. Bigioni, X. M. Lin, T. T. Nguyen, E. I. Corwin, T. A. Witten, H. M. Jaeger, Nat. Mater. 2006,5,265.
    [36]T. K. Sau, C. J. Murphy, Langmuir 2005,21,2923.
    [37]W. Lu, B.Wang, K. Wang, X. Wang, J. G. Hou, Langmuir 2003,19,5887.
    [38]R. Klajn, K. J. M. Bishop, B. A. Grzybowski, Proc. Natl. Acad. Sci. USA 2007,104,10305.
    [39]D. Yu, V. W. Yam, J. Am. Chem. Soc.2004,126,13200.
    [40]S. E. Habas, H. Lee, V. Radmilovic, G A. Somorjai, P. Yang, Nat. Mater.2007,6,602.
    [41]F. R. Fan, D.Y. Liu, Y. F. Wu, S. Duan, Z. X. Xie, Z. Y. Jiang, Z. Q. Tian, J. Am. Chem. Soc. 2008,130,6949.
    [42]S. H. Im, Y. T. Lee, B. Wiley, Y. Xia, Angew. Chem. Int. Ed.2005,44,2154.
    [43]A. R. Tao, D. P. Ceperley, P. Sinsermsuksakul, A. R. Neureuther, P. Yang, Nano Lett.2008,8, 4033.
    [1]A. R. Tao, S. Habas, P. Yang, Small 2008,4,310.
    [2]C. J. Orendorff, L. Gearheart, N. R. Jana, C. J. Murphy, Phy. Chem. Chem. Phy.2006,8,165.
    [3]S. Mahajan, N. Abdelsalam, Y. Suguwara, S. Cintra, A. Russell, J. Baumberg, P. Bartlett, Phy. Chem. Chem. Phy.2007,9,104.
    [4]M. A. El-Sayed, Acc. Chem. Res.2001,34,257.
    [5]I. O. Sosa, C. Noguez, R. G. Barrera, J. Phys. Chem. B 2003,107,6269.
    [6]Z, Tian, Z. yang, B. Ren, J. Li, Y. Zhang, X. Lin, J. Hu, D. Wu, Faraday Discuss.2006,132, 159.
    [7]Y. Sun, Y. Xia, Science 2002,298,2176.
    [8]A. Tao, P. Sinsermsuksakul, P. Yang, Angew. Chem. Int. Ed.,2006,45,4597.
    [9]C. Li, K. L. Shuford, Q.-H. Park, W. Cai, Y. Li, E. J. Lee, S. O. Cho, Angew. Chem. Int. Ed. 2007,46,3264.
    [10]C. J. Murphy, A. M. Gole, S. E. Hunyadi, C. J. Orendorff, Inorg. Chem.2006,45,7544.
    [11]R. Jin, Y. W. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, J. G. Zheng, Science 2001,294, 1901.
    [12]R. Jin, Y. W. Cao, E. Hao, G. S. Metraux, G. C. Schatz, C. A. Mirkin, Nature 2003,425,487.
    [13]X. Teng, S. Maksimuk, S. Frommer, H. Yang, Chem. Mater.2007,19,36.
    [14]L. Lu, A. Kobayashi, K. Tawa, Y. Ozaki, Chem. Mater.,2006,18,4894.
    [15]J. Xie, Q. Zhang, J. Y. Lee, D. I. C. Wang, ACS Nano 2008,2,2473.
    [16]C. G. Khoury, T. Vo-Dinh, J. Phys. Chem. C 2008,112,18849.
    [17]Z. Yin, H. Zheng, D. Ma, X. Bao, J. Phys. Chem. C2009,113,1001.
    [18]B. Kumar, C. R. Raj, Chem. Mater.2008,20,3546.
    [19]S. Link, M. A. El-Sayed, Annu. Rev. Phys. Chem.2003,54,331.
    [20]A. Narayanaswamy, H. Xu, N. Pradhan, M. Kim, X. Peng, J. Am. Chem. Soc.2006,128, 10310.
    [21]A. Narayanaswamy, H. Xu, N. Pradhan, X. Peng, Angew. Chem. Int. Ed.2006,45,5361.
    [22]B. Wiley, Y. Sun, B. Mayers, Y. Xia, Chem. Eur. J.2005,11,454.
    [23]Z. S. Pillai, P. V. Kamat, J. Phys. Chem. B 2004,108,945.
    [24]G. H. Jeong, Y. W. Lee, M. Kim, S. W. Han, J. Colloid Interface Sci.2009,329,97.
    [25]F. Hao, C. L. Nehl, J. H. Hafner, P. Nordlander, Nano Lett.2007,7,729.
    [26]I. Pastoriza-Santos, L. M. Liz-Marzan, J. Mater. Chem.2008,18,1724.
    [27]S. Nie, S. R. Emory, Science 1997,275,1102.
    [28]H. Ko, S. Singamaneni, V. V. Tsukruk, Small 2008,4,1576.
    [29]L. H. Qian, X. Q. Yan, T. Fujita, A. Inoue, M. W. Chen, Appl. Phys. Lett.2007,90,153120.
    [30]K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, J. Phys. Chem. B 2003,107,668.
    [31]J. Zhang, X. Li, X. Sun, Y. Li, J. Phys. Chem. B 2005,109,12544.
    [32]N. R. Jana, T. Pal, Adv. Mater.2007,19,1761.
    [1]C. J. Murphy, A. M. Gole, S. E. Hunyadi, C. J. Orendorff, Inorg. Chem.2006,45,7544.
    [2]B. Pietrobon, M. McEachran, V. Kitaev, ACS Nano 2009,3,21.
    [3]A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. Xia, E. R. Dufresns, M. A. Reed, Nano Lett. 2006,6,1822.
    [4]M. W. Knight, N. K. Grady, R. Bardhan, F. Hao, P. Nordlander, N. J. Halas, Nano Lett.2007,7, 2346.
    [5]B. J. Wiley, Z. Wang, J. Wei, Y. Yin, D. H. Cobden, Y. Xia, Nano Lett.2006,6,2273.
    [6]J. Chen, B. J. Wiley, Y. Xia, Langmuir 2007,23,4120.
    [7]Y. Sun, Y. Xia, Adv. Mater.2002,14,833.
    [8]Y. Sun, B. Gates, B. Mayers, Y. Xia, Nano Lett.2002,2,165.
    [9]A. Halder, N. Ravishankar, Adv. Mater.2007,19,1854.
    [10]Q. Zhang, S.-J. Liu, S.-H. Yu, J. Mater. Chem.2009,19,191.
    [11]Q. Guo, Y. Zhao, W. L. Mao, Z. Wang, Y. Xiong, Y. Xia, Nano Lett.2008,8,972.
    [12]D. Novgorodova, A. Gorshkov, A. Mokhov, Zap. Vseross. Mineral. Ova.1979,111,6989.
    [13]B. Panigrahy, M. Aslam, D. S. Misra, D. Bahadur, CrystEngComm 2009,11,1920.
    [14]E. D. la Rosa, S. Sepulveda-Guzman, B. Reeja-Jayan, A. Torres, P. Salas, N. Elizondo.M. J. Yacaman, J. Phys. Chem. C2007,111,8489.
    [15]P. Taneja, R. Banerjee, P. Ayyub, G. K. Dey, Phys. Rev. B 2001,64,033405.
    [16]A. Singh, A. Ghosh, J. Phys. Chem. C 2008,112,3460.
    [17]A. Singh, T. P. Sai, A. Ghosh, Appl. Phys. Lett.2008,93,102107.
    [18]B. Wang, G. F. Fei, Y. Zhou, B. Wu, X. Zhu, L. Zhang, Cryst. Growth Des.2008,8,3073.
    [19]X. Liu, J. Luo, J. Zhu, Nano Lett.2006,6,408.
    [20]T. C. R. Rocha, D. Zanchet,J. Phys. Chem. C 2007,111,6989.
    [21]D. Aherne, D. M. Ledwith, M. Gara, J. M. Kelly, Adv. Funct. Mater.2008,12,2005.
    [22]H. Liang, H. Yang, W. Wang, J. Li, H. Xu, J. Am. Chem. Soc.2009,131,6068.
    [23]V. K. Lamer, R. H. Dinegar, J. Am. Chem. Soc.1950,72,4847.
    [24]Y. Xia, Y. Xiong, B. Lim, S. E. Skrabalak, Angew. Chem. Int. Ed.2009,48,60.
    [25]R. Jin, Y. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, J. G. Zheng, Science 2001,294,1901.
    [26]I. Pastoriza-Santos, L. M. Liz-Marzan, J. Mater. Chem.2008,18,1724.
    [27]Y. Xiong, A. R. Siekkinen, J. Wang, Y. Yin, M. J. Kim, Y. Xia, J. Mater. Chem.2007,17, 2600.
    [28]C. Lofton,W. Sigmund, Adv. Funct. Mater.2005,15,1197.
    [29]T. Huang, T. Cheng, M. Yen, W. Hsiao, L. Wang, F. Chen, J. Kai, C. Lee, H. Chiu, Langmuir 2007,23,5722.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700