贵金属银、金及其合金纳米颗粒的化学还原法制备研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料是21世纪的研究热点。金属纳米材料因其独特的物理化学性质而引起研究者的广泛关注。其中,贵金属纳米材料在电子学、光学、催化、传感、生物标记以及光电纳米器件等众多领域具有良好的应用前景,成为国内外研究开发的重点。选择合适的保护剂,有效控制晶体的各向异性生长是制备不同形貌和尺寸纳米材料的关键。目前,研究者不断开发出简单、可靠、节约成本的新方法,旨在推动纳米材料的大规模生产。其中,化学还原法是一种具有良好发展前景的制备贵金属纳米材料的方法。
     本文采用化学还原法,在有机和水相体系中得到了不同形貌、尺寸的贵金属银、金及其合金纳米颗粒。并利用透射电子显微镜(TEM)、高倍透射电子显微镜(HR-TEM)、X-射线衍射(XRD)、电子选区衍射(SAED)、紫外-可见光谱(UV-Vis)等测试手段对其进行表征。
     首先,我们利用有机溶剂,表面活性剂司班80和银的前驱物硝酸银构成微乳液体系来制备银纳米颗粒。考察了有机溶剂种类和组成,还原剂和硝酸银浓度、比例,反应温度等条件对实验结果的影响。经过优化实验条件,最终得到环己醇-环己酮溶剂体系制备单分散银纳米颗粒的最佳条件为:环己醇和环己酮加入量分别为18 ml,12 ml,司班80加入量为3 ml,2, 2′-亚甲基双-(4-甲基-6-叔丁基苯酚)为0.09 g,硝酸银的水溶液为0.3 ml(0.058 M),反应温度为80°C,反应时间为4 h。
     在水相体系中,我们采用羧甲基纤维素钠(CMC)兼做保护剂和还原剂,分别制备得到了银、金纳米颗粒。在制备银纳米颗粒过程中,考察了CMC和硝酸银含量及二者比例,反应温度等条件对所得银纳米粒子尺寸、形貌和光学性能的影响。最终得到CMC体系中制备单分散银纳米颗粒的优化条件为:去离子水20 ml,CMC含量0.06 wt%,氢氧化钠(0.1 M)加入量0.5 ml,硝酸银(0.2 M)加入量为0.1 ml,反应温度为80°C,反应时间4 h。
     利用无机磷酸盐做保护剂制备贵金属纳米颗粒的方法未见文献报道。在水相体系中,我们首次使用磷酸钠、三聚磷酸钠(Sodium tripolyphosphate, STPP)和六偏磷酸钠(Sodium Hexametaphosphate, SHMP)做保护剂,制备了银、金及其合金纳米颗粒。在STPP体系中,可以制备得到不同形貌、尺寸的银纳米颗粒。通过对实验条件的考察,制备得到了大量的棒状银纳米颗粒,通过各种表征手段,我们研究了银纳米棒的生长机理,结果表明:STPP作为线性分子,在水溶液中起到纳米棒生长的模板作用,引起银纳米颗粒的各向异性生长;银纳米颗粒主要沿着晶体的(111)面缓慢生长,并最终形成棒状结构。此外,STPP体系同样可以制备得到粒径均匀的金和金-银合金纳米颗粒。
     聚丙烯酸钠(PAAS)是一种生物相容性良好的高分子化合物,利用其做保护剂,首次制备得到了片状银纳米颗粒。考察了PAAS浓度,葡萄糖和硝酸银浓度及二者比例,反应温度等条件对实验结果的影响,制备得到了粒径均一的球形银纳米颗粒以及三角形、五边形、六边形片状银纳米颗粒。
Nanomaterials have been the hot spot of research in the 21th century. Due to the special physicochemical properties, metal nanomaterials have attracted much attention in the past decades. Among them, noble metal nanomaterials, which possess promising potential application prospect in electronics, optics, catalysis, sensing, biolabeling and optoelectronics, have become important research area both at home and abroad. Precise control of anisotropic crystal growth by capping agents is the key to these excellent works. On the other hand, attempts have been made to develop facile, reliable and cost-effective synthetic strategies in order to enhance efficiency and realize mass production. Chemical reduction method is demonstrated to be a promising way for the synthesis of noble metal nanopartilces (NPs).
     In this paper, noble metal Ag, Au and Au-Ag alloy nanomaterials with different morphologies and sizes were prepared by chemical reduction method in organic and aqueous systems. And their properties have been characterized by X-ray diffraction(XRD), transmission electron microscopy(TEM), high-resolution tranmission electron micorscopy(HR-TEM), selected-area electron diffraction(SAED), ultraviolet-visiable spectrophotometer (UV-Vis) and so on.
     Firstly, a new micro-emulsion system composed of organic solvents, span 80 as surfactant and silver nitrate aqueous solution as the precursor, was conducted to prepare Ag nanomaterials. The effects of reaction parameters, including solvents composition, the concentrations and ratios of silver nitrate and the reducing agent, were investigated. In addition, the reaction temperatures were also considered. Based on the results of experiments discussed, the reaction conditions for preparing monodisperse Ag NPs in the system of cyclohexanol-cyclohexanone were optimized as follows: tha adding amount of cyclohexanol was 18 ml, cyclohexanone 12 ml, Span 80 3 ml, 2,2'-Methylenebis(6-tert-butyl-4-methylphenol) 0.09g, AgNO3 solution (0.058 M) 0.3 ml, reaction temperature was 80°C, and the reaction time was 4 h.
     In sodium carboxymethyl cellulose(CMC) aqueous solution system, Ag and Au nanomaterials were prepared with CMC employed as both stabilizer and reducing agent. Based on the size, morphology and optical properties of the obtained nanopartilces, the effects of concentrations and ratios of CMC and AgNO3, temperature and reaction time were discussed. Finally, the optimum condition of preparing monodisperse silver nanoparticles in CMC system was aquired as follows: the adding amount of deioned water was 20 ml, CMC 0.012 g, NaOH aqueous solution(0.1 M) 0.5 ml, AgNO3 solution (0.2 M) 0.1 ml, reaction temperature was 80°C, and the reaction time was 4 h.
     It has not been reported about the method of preparing noble metal nanomaterials with inorganic phosphate as capping agent. Ag, Au and Au-Ag alloy nanomaterials were first prepared in the phosphate-stablized system. In sodium tripolyphosphate (STPP) aqueous system, silver nanomaterials with different morphologies and sizes were obtained. Through adjustments of reaction conditions, a large number of silver nanorods have been successfully synthesized. Based on the characterization results, a possible formation mechanism has been discussed. It suggests that the preferential direction for the growth of silver nanorods is along with the plane (111). It is therefore reasonable to speculate that the linear structure of STPP and the fairly slow reaction rate are both the key factors in the formation of rod-shaped silver nanoparticles. In addition, Au and Au-Ag alloy nanoparticles with narrow size distribution were also obtained in the STPP system.
     Polyacrylate acid sodium (PAAS), a polymer with excellent biocompatibility, was used as the capping agent to produce silver nanoplates for the first time. A large number of triangle silver nanoplates were first prepared. The effects of reaction parameters, including the concentration of PASS, concentration and ratio of glucose and AgNO3, reaction temperature, were discussed. The results showed that triangle, pentagon and hexagon silver nanoplates were prepared.
引文
[1] C.M. Lieber, Nanoscale science and technology: Building a big future from small things, MRS Bulletin, 2003, 28(7): 486-491.
    [2] G.M. Whitesides, Nanoscience, nanotechnology, and chemistry, Small, 2005, 1(2): 172-179.
    [3] M.F. Hochella, Nanoscience and technology the next revolution in the earth sciences, Earth and Planetary Science Letters, 2002, 203(2): 593-605.
    [4] R.A. Vaia, T.B. Tolle, G.F. Schmitt, et al., Nanoscience and nanotechnology: Materials revolution for the 21(st) century, Sampe Journal, 2001, 37(6): 24-31.
    [5] C.A. Mirkin, The beginning of a small revolution, Small, 2005, 1(1): 14-16.
    [6] Y.N. Xia, P.D. Yang, Y.G. Sun, et al., One-dimensional nanostructures: Synthesis, characterization, and applications, Advanced Materials, 2003, 15(5): 353-389.
    [7] A.M. Morales, C.M. Lieber, A laser ablation method for the synthesis of crystalline semiconductor nanowires, Science, 1998, 279(5348): 208-211.
    [8] M.H. Huang, S. Mao, H. Feick, et al., Room-temperature ultraviolet nanowire nanolasers, Science, 2001, 292(5523): 1897-1899.
    [9] Z.W. Pan, Z.R. Dai, Z.L. Wang, Nanobelts of semiconducting oxides, Science, 2001, 291(5510): 1947-1949.
    [10] N. Silvis-Cividjian, C.W. Hagen, P. Kruit, et al., Direct fabrication of nanowires in an electron microscope, Applied Physics Letters, 2003, 82(20): 3514-3516.
    [11] A.M. Leach, M. McDowell, K. Gall, Deformation of top-down and bottom-up silver nanowires, Advanced Functional Materials, 2007, 17(1): 43-53.
    [12] N. Kramer, H. Birk, J. Jorritsma, et al., Fabrication of metallic nanowires with a scanning tunneling microscope, Applied Physics Letters, 1995, 66(11): 1325-1327.
    [13] V. Balzani, A. Credi, M. Venturi, The bottom-up approach to molecular-level devices and machines, Chemistry: A European Journal, 2002, 8(24): 5524-5532.
    [14] S.G. Zhang, Fabrication of novel biomaterials through molecular self-assembly, Nature Biotechnology, 2003, 21(10): 1171-1178.
    [15] X. Wang, J. Zhuang, Q. Peng, et al., A general strategy for nanocrystal synthesis, Nature, 2005, 437(7055): 121-124.
    [16] J.M. Ha, A. Solovyov, A. Katz, Synthesis and characterization of accessible metal surfaces in calixarene-bound gold nanoparticles, Langmuir, 2009, 25(18): 10548-10553.
    [17] R.M. Crooks, M.Q. Zhao, L. Sun, et al., Dendrimer-encapsulated metal nanoparticles: Synthesis, characterization, and applications to catalysis, Accounts of Chemical Research, 2001, 34(3): 181-190.
    [18] P. Chen, X.G. Zhang, Z.J. Mia, et al., In-situ synthesis of noble metal nanoparticles in alginate solution and their application in catalysis, Journal of Nanoscience and Nanotechnology, 2009, 9(4): 2628-2633.
    [19] P.V. Kamat, Photophysical, photochemical and photocatalytic aspects of metal nanoparticles, Journal of Physical Chemistry B, 2002, 106(32): 7729-7744.
    [20] S.R. Emory, S. Nie, Screening and enrichment of metal nanoparticles with novel optical properties, Journal of Physical Chemistry B, 1998, 102(3): 493-497.
    [21] J. Prikulis, F. Svedberg, M. Kall, et al., Optical spectroscopy of single trapped metal nanoparticles in solution, Nano Letters, 2004, 4(1): 115-118.
    [22] C.L. Yan, D.F. Xue, A modified electroless deposition route to dendritic Cu metal nanostructures, Crystal Growth & Design, 2008, 8(6): 1849-1854.
    [23] L.O. Brown, S.K. Doorn, Optimization of the preparation of glass-coated, dye-tagged metal nanoparticles as SERS substrates, Langmuir, 2008, 24(5): 2178-2185.
    [24] Y. Lu, G.L. Liu, L.P. Lee, High-density silver nanoparticle film with temperature-controllable interparticle spacing for a tunable surface enhanced Raman scattering substrate, Nano Letters, 2005, 5(1): 5-9.
    [25] A.J. Haes, S.L. Zou, G.C. Schatz, et al., Nanoscale optical biosensor: Short range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles, Journal of Physical Chemistry B, 2004, 108(22): 6961-6968.
    [26] A.J. Haes, S.L. Zou, G.C. Schatz, et al., A nanoscale optical biosensor: The long range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles, Journal of Physical Chemistry B, 2004, 108(1): 109-116.
    [27] T.I. Kamins, S. Sharma, A.A. Yasseri, et al., Metal-catalysed, bridging nanowires as vapour sensors and concept for their use in a sensor system, Nanotechnology, 2006, 17(11): S291-S297.
    [28] K.L. Kelly, E. Coronado, L.L. Zhao, et al., The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment, Journal of Physical Chemistry B, 2003, 107(3): 668-677.
    [29] I.O. Sosa, C. Noguez, R.G. Barrera, Optical properties of metal nanoparticles with arbitrary shapes, Journal of Physical Chemistry B, 2003, 107(26): 6269-6275.
    [30] Y.G. Sun, Y.N. Xia, Shape-controlled synthesis of gold and silver nanoparticles, Science, 2002, 298(5601): 2176-2179.
    [31] C.J. Murphy, T.K. San, A.M. Gole, et al., Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications, Journal of Physical Chemistry B, 2005, 109(29): 13857-13870.
    [32] Y.G. Sun, Y.N. Xia, Triangular nanoplates of silver: Synthesis, characterization, and use as sacrificial templates for generating triangular nanorings of gold, Advanced Materials, 2003, 15(9): 695-699.
    [33] G.J. Lee, S.I. Shin, Y.C. Kim, et al., Preparation of silver nanorods through the control of temperature and pH of reaction medium, Materials Chemistry and Physics, 2004, 84(2-3): 197-204.
    [34] Y.G. Sun, Y.N. Xia, Large-scale synthesis of uniform silver nanowires through a soft, self-seeding, polyol process, Advanced Materials, 2002, 14(11): 833-837.
    [35] E.C. Hao, K.L. Kelly, J.T. Hupp, et al., Synthesis of silver nanodisks using polystyrene mesospheres as templates, Journal of the American Chemical Society, 2002, 124(51): 15182-15183.
    [36] J.H. Park, S.G. Oh, B.W. Jo, Fabrication of silver nanotubes using functionalized silica rod as templates, Materials Chemistry and Physics, 2004, 87(2-3): 301-310.
    [37] S.H. Im, Y.T. Lee, B. Wiley, et al., Large-scale synthesis of silver nanocubes: The role of HCl in promoting cube perfection and monodispersity, Angewandte Chemie-International Edition, 2005, 44(14): 2154-2157.
    [38] S.T. He, J.N. Yao, P. Jiang, et al., Formation of silver nanoparticles and self-assembled two-dimensional ordered superlattice, Langmuir, 2001, 17(5): 1571-1575.
    [39] W.Z. Zhang, X.L. Qiao, L.L. Luo, et al., Controllable synthesis and UV-Vis spectral analysis of silver nanoparticles in AOT microemulsion, Spectroscopy and Spectral Analysis, 2009, 29(3): 789-792.
    [40] W.Z. Zhang, X.L. Qiao, J.G. Chen, Synthesis and characterization of silver nanoparticles: A comparison study of three microemulsion systems, Rare Metal Materials and Engineering, 2009, 38(7): 1254-1258.
    [41] Y.Y. Chen, X.K. Wang, Novel phase-transfer preparation of monodisperse silver and gold nanoparticles at room temperature, Materials Letters, 2008, 62(16): 2215-2218.
    [42] B. Pietrobon, M. McEachran, V. Kitaev, Synthesis of size-controlled faceted pentagonal silver nanorods with tunable plasmonic properties and self-assembly of these nanorods, Acs Nano, 2009, 3(1): 21-26.
    [43] C.H. Hao, D. Wang, W. Zheng, et al., Growth and assembly of monodisperse Ag nanoparticles by exchanging the organic capping ligands, Journal of Materials Research, 2009, 24(2): 352-356.
    [44] M.H. Ullah, K. Il, C.S. Ha, Preparation and optical properties of colloidal silver nanoparticles at a high Ag+ concentration, Materials Letters, 2006, 60(12): 1496-1501.
    [45] G.N. Xu, X.L. Q, X.L. Q, et al., Preparation and characterization of stable monodisperse silver nanoparticles via photoreduction, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 320(1-3): 222-226.
    [46] C.Y. Zhu, J.F. Xue, J.H. He, Controlled in-situ synthesis of silver nanoparticles in natural cellulose fibers toward highly efficient antimicrobial materials, Journal of Nanoscience and Nanotechnology, 2009, 9(5): 3067-3074.
    [47] P.K. Sahoo, S.S.K. Kamal, T.J. Kumar, et al., Synthesis of silver nanoparticles using facile wet chemical route, Defence Science Journal, 2009, 59(4): 447-455.
    [48] B. Hu, S.B. Wang, K. Wang, et al., Microwave-assisted rapid facile "green" synthesis of uniform silver nanoparticles: Self-assembly into multilayered films and their optical properties, Journal of Physical Chemistry C, 2008, 112(30): 11169-11174.
    [49] J. Chen, J. Wang, X. Zhang, et al., Microwave-assisted green synthesis of silver nanoparticles by carboxymethyl cellulose sodium and silver nitrate, Materials Chemistry and Physics, 2008, 108(2-3): 421-424.
    [50] S.P. Zhu, S.C. Tang, X.K. Meng, Monodisperse silver nanoparticles synthesized by a microwave-assisted method, Chinese Physics Letters, 2009, 26(7).
    [51] K. Li, F.S. Zhang, Preparing silver nanoparticles in supercritical water, Materials Letters, 2009, 63(3-4): 437-440.
    [52] D.K. Ferry, Materials science: Nanowires in nanoelectronics, Science, 2008, 319(5863): 579-580.
    [53] Y.B. Du, L.F. Shi, T.C. He, et al., SERS enhancement dependence on the diameter and aspect ratio of silver-nanowire array fabricated by anodic aluminium oxide template, Applied Surface Science, 2008, 255(5): 1901-1905.
    [54] G. Riveros, S. Green, A. Cortes, et al., Silver nanowire arrays electrochemically grown into nanoporous anodic alumina templates, Nanotechnology, 2006, 17(2): 561-570.
    [55] J. Choi, G. Sauer, K. Nielsch, et al., Hexagonally arranged monodisperse silver nanowires with adjustable diameter and high aspect ratio, Chemistry of Materials, 2003, 15(3): 776-779.
    [56] P.V. Adhyapak, P. Karandikar, K. Vijayamohanan, et al., Synthesis of silver nanowires inside mesoporous MCM-41 host, Materials Letters, 2004, 58(7-8): 1168-1171.
    [57] Y.Y. Wu, T. Livneh, Y.X. Zhang, et al., Templated synthesis of highly ordered mesostructured nanowires and nanowire arrays, Nano Letters, 2004, 4(12): 2337-2342.
    [58] Y.D. Yin, Y. Lu, Y.G. Sun, et al., Silver nanowires can be directly coated with amorphous silica to generate well-controlled coaxial nanocables of silver/silica, Nano Letters, 2002, 2(4): 427-430.
    [59] J. Sloan, D.M. Wright, H.G. Woo, et al., Capillarity and silver nanowire formation observed in single walled carbon nanotubes, Chemical Communications, 1999,(8): 699-700.
    [60] M. Barbic, J.J. Mock, D.R. Smith, et al., Single crystal silver nanowires prepared by the metal amplification method, Journal of Applied Physics, 2002, 91(11): 9341-9345.
    [61] B.H. Hong, S.C. Bae, C.W. Lee, et al., Ultrathin single-crystalline silver nanowire arrays formed in an ambient solution phase, Science, 2001, 294(5541): 348-351.
    [62] Y.G. Sun, Y.D. Yin, B.T. Mayers, et al., Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone), Chemistry of Materials, 2002, 14(11): 4736-4745.
    [63] Z.H. Wang, J.W. Liu, X.Y. Chen, et al., A simple hydrothermal route to large-scale synthesis of uniform silver nanowires, Chemistry: A European Journal, 2004, 11(1): 160-163.
    [64] C. Chen, L. Wang, H.J. Yu, et al., Study on the growth mechanism of silver nanorods in the nanowire-seeding polyol process, Materials Chemistry and Physics, 2008, 107(1): 13-17.
    [65] E. Braun, Y. Eichen, U. Sivan, et al., DNA-templated assembly and electrode attachment of a conducting silver wire, Nature, 1998, 391(6669): 775-778.
    [66] G. Wei, H.L. Zhou, Z.G. Liu, et al., One-step synthesis of silver nanoparticles, nanorods, and nanowires on the surface of DNA network, Journal of Physical Chemistry B, 2005, 109(18): 8738-8743.
    [67] P. Jiang, S.Y. Li, S.S. Xie, et al., Machinable long PVP-stabilized silver nanowires, Chemistry: A European Journal, 2004, 10(19): 4817-4821.
    [68] Y.J. Xiong, Y. Xie, C.Z. Wu, et al., Formation of silver nanowires through a sandwiched reduction process, Advanced Materials, 2003, 15(5): 405-408.
    [69] X.M. Sun, Y.D. Li, Cylindrical silver nanowires: Preparation, structure, and optical properties, Advanced Materials, 2005, 17(21): 2626-2630.
    [70] Y. Gao, P. Jiang, D.F. Liu, et al., Synthesis, characterization and self-assembly of silver nanowires, Chemical Physics Letters, 2003, 380(1-2): 146-149.
    [71] K.K. Caswell, C.M. Bender, C.J. Murphy, Seedless, surfactantless wet chemical synthesis of silver nanowires, Nano Letters, 2003, 3(5): 667-669.
    [72] J.Q. Hu, Q. Chen, Z.X. Xie, et al., A simple and effective route for the synthesis of crystalline silver nanorods and nanowires, Advanced Functional Materials, 2004, 14(2): 183-189.
    [73] C. Burda, X.B. Chen, R. Narayanan, et al., Chemistry and properties of nanocrystals of different shapes, Chemical Reviews, 2005, 105(4): 1025-1102.
    [74] R.C. Jin, Y.C. Cao, E.C. Hao, et al., Controlling anisotropic nanoparticle growth through plasmon excitation, Nature, 2003, 425(6957): 487-490.
    [75] M.A. El-Sayed, Some interesting properties of metals confined in time and nanometer space of different shapes, Accounts of Chemical Research, 2001, 34(4): 257-264.
    [76] R.C. Jin, Y.W. Cao, C.A. Mirkin, et al., Photoinduced conversion of silver nanospheres to nanoprisms, Science, 2001, 294(5548): 1901-1903.
    [77] X.M. Wu, P.L. Redmond, H.T. Liu, et al., Photovoltage mechanism for room light conversion of citrate stabilized silver nanocrystal seeds to large nanoprisms, Journal of the American Chemical Society, 2008, 130(29): 9500-9506.
    [78] Q.F. Zhou, Z. Xu, The preparation of nano-scale plate silver powders by visible light induction method, Journal of Materials Science, 2004, 39(7): 2487-2491.
    [79] Y.G. Sun, B. Mayers, Y.N. Xia, Transformation of silver nanospheres into nanobelts and triangular nanoplates through a thermal process, Nano Letters, 2003, 3(5): 675-679.
    [80] M. Maillard, P.R. Huang, L. Brus, Silver nanodisk growth by surface plasmon enhanced photoreduction of adsorbed [Ag+], Nano Letters, 2003, 3(11): 1611-1615.
    [81] Y.J. Xiong, A.R. Siekkinen, J.G. Wang, et al., Synthesis of silver nanoplates at high yields by slowing down the polyol reduction of silver nitrate with polyacrylamide, Journal of Materials Chemistry, 2007, 17(25): 2600-2602.
    [82] W.Z. Zhang, X.L. Qiao, J.G. Chen, et al., Self-assembly and controlled synthesis of silver nanoparticles in SDS quaternary microemulsion, Materials Letters, 2008, 62(10-11): 1689-1692.
    [83] T.C.R. Rocha, H. Winnischofer, E. Westphal, et al., Formation kinetics of silver triangular nanoplates, Journal of Physical Chemistry C, 2007, 111(7): 2885-2891.
    [84] B. Tang, J. An, X.L. Zheng, et al., Silver nanodisks with tunable size by heat aging, Journal of Physical Chemistry C, 2008, 112(47): 18361-18367.
    [85] X.L. Tian, W.H. Wang, G.Y. Cao, A facile aqueous-phase route for the synthesis of silver nanoplates, Materials Letters, 2007, 61(1): 130-133.
    [86] S.H. Chen, D.L. Carroll, Synthesis and characterization of truncated triangular silver nanoplates, Nano Letters, 2002, 2(9): 1003-1007.
    [87] P. Raveendran, J. Fu, S.L. Wallen, Completely "green" synthesis and stabilization of metal nanoparticles, Journal of the American Chemical Society, 2003, 125(46): 13940-13941.
    [88] M. McEachran, V. Kitaev, Direct structural transformation of silver platelets into right bipyramids and twinned cube nanoparticles: Morphology governed by defects, Chemical Communications, 2008,(44): 5737-5739.
    [89] B.J. Wiley, S.H. Im, Z.Y. Li, et al., Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis, Journal of Physical Chemistry B, 2006, 110(32): 15666-15675.
    [90] Y.T. Lee, S.H. Im, B. Wiley, et al., Quick formation of single-crystal nanocubes of silver through dual functions of hydrogen gas in polyol synthesis, Chemical Physics Letters, 2005, 411(4-6): 479-483.
    [91] J.M. McLellan, A. Siekkinen, J.Y. Chen, et al., Comparison of the surface-enhanced Raman scattering on sharp and truncated silver nanocubes, Chemical Physics Letters, 2006, 427(1-3): 122-126.
    [92] B.J. Wiley, Y.J. Xiong, Z.Y. Li, et al., Right bipyramids of silver: A new shape derived from single twinned seeds, Nano Letters, 2006, 6(4): 765-768.
    [93] Q. Zhang, C.Z. Huang, J. Ling, et al., Silver nanocubes formed on ATP-mediated nafion film and a visual method for formaldehyde, Journal of Physical Chemistry B, 2008, 112(51): 16990-16994.
    [94] D.B. Yu, V.W.W. Yam, Controlled synthesis of monodisperse silver nanocubes in water, Journal of the American Chemical Society, 2004, 126(41): 13200-13201.
    [95] M.C. Daniel, D. Astruc, Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology, Chemical Reviews, 2004, 104(1): 293-346.
    [96] A. Sanchez, S. Abbet, U. Heiz, et al., When gold is not noble: Nanoscale gold catalysts, Journal of Physical Chemistry A, 1999, 103(48): 9573-9578.
    [97] B. Nikoobakht, M.A. El-Sayed, Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method, Chemistry of Materials, 2003, 15(10): 1957-1962.
    [98] N.R. Jana, L. Gearheart, C.J. Murphy, Wet chemical synthesis of high aspect ratio cylindrical gold nanorods, Journal of Physical Chemistry B, 2001, 105(19): 4065-4067.
    [99] M. Zhou, B.X. Wang, Z. Rozynek, et al., Minute synthesis of extremely stable gold nanoparticles, Nanotechnology, 2009, 20(50): 505606-505615.
    [100] Y. Shao, Y.D. Jin, S.J. Dong, Synthesis of gold nanoplates by aspartate reduction of gold chloride, Chemical Communications, 2004, (9): 1104-1105.
    [101] M. Mandal, S.K. Ghosh, S. Kundu, et al., UV photoactivation for size and shape controlled synthesis and coalescence of gold nanoparticles in micelles, Langmuir, 2002, 18(21): 7792-7797.
    [102] S. Eustis, H.Y. Hsu, M.A. El-Sayed, Gold nanoparticle formation from photochemical reduction of Au3+ by continuous excitation in colloidal solutions. A proposed molecular mechanism, Journal of Physical Chemistry B, 2005, 109(11): 4811-4815.
    [103] J.U. Kim, S.H. Cha, K. Shin, et al., Preparation of gold nanowires and nanosheets in bulk block copolymer phases under mild conditions, Advanced Materials, 2004, 16(5): 459-464.
    [104] A. Housni, M. Ahmed, S.Y. Liu, et al., Monodisperse protein stabilized gold nanoparticles via a simple photochemical process, Journal of Physical Chemistry C, 2008, 112(32): 12282-12290.
    [105] B.J. Morrow, E. Matijevic, D.V. Goia, Preparation and stabilization of monodisperse colloidal gold by reduction with aminodextran, Journal of Colloid and Interface Science, 2009, 335(1): 62-69.
    [106] C.M. Shen, C. Hui, T.Z. Yang, et al., Monodisperse noble-metal nanoparticles and their surface enhanced Raman scattering properties, Chemistry of Materials, 2008, 20(22): 6939-6944.
    [107] Y.S. Shon, E. Cutler, Aqueous synthesis of alkanethiolate-protected Ag nanoparticles using bunte salts, Langmuir, 2004, 20(16): 6626-6630.
    [108] S. Chowdhury, V.R. Bhethanabotla, R. Sen, Effect of Ag-Cu alloy nanoparticle composition on luminescence enhancement/quenching, Journal of Physical Chemistry C, 2009, 113(30): 13016-13022.
    [109] J.H. Liu, A.Q. Wang, Y.S. Chi, et al., Synergistic effect in an Au-Ag alloy nanocatalyst: CO oxidation, Journal of Physical Chemistry B, 2005, 109(1): 40-43.
    [110] F.Z. Su, M. Chen, L.C. Wang, et al., Aerobic oxidation of alcohols catalyzed by gold nanoparticles supported on gallia polymorphs, Catalysis Communications, 2008, 9(6): 1027-1032.
    [111] A.A. Herzing, C.J. Kiely, A.F. Carley, et al., Identification of active gold nanoclusters on iron oxide supports for CO oxidation, Science, 2008, 321(5894): 1331-1335.
    [112] S. Link, Z.L. Wang, M.A. El-Sayed, Alloy formation of gold-silver nanoparticles and the dependence of the plasmon absorption on their composition, Journal of Physical Chemistry B, 1999, 103(18): 3529-3533.
    [113] Y.G. Sun, B. Wiley, Z.Y. Li, et al., Synthesis and optical properties of nanorattles and multiple-walled nanoshells/nanotubes made of metal alloys, Journal of the American Chemical Society, 2004, 126(30): 9399-9406.
    [114] A. Pal, S. Shah, S. Devi, Preparation of silver, gold and silver-gold bimetallic nanoparticles in w/o microemulsion containing TritonX-100, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 302(1-3): 483-487.
    [115] C.M. Gonzalez, Y. Liu, J.C. Scaiano, Photochemical strategies for the facile synthesis of gold-silver alloy and core-shell bimetallic nanoparticles, Journal of Physical Chemistry C, 2009, 113(27): 11861-11867.
    [116] Z.Q. Peng, B. Spliethoff, B. Tesche, et al., Laser-assisted synthesis of Au-Ag alloy nanoparticles in solution, Journal of Physical Chemistry B, 2006, 110(6): 2549-2554.
    [117] H.M. Bok, K.L. Shuford, S. Kim, et al., Multiple surface plasmon modes for gold/silver alloy nanorods, Langmuir, 2009, 25(9): 5266-5270.
    [118] X.Y. Liu, A.Q. Wang, X.F. Yang, et al., Synthesis of thermally stable and highly active bimetallic Au-Ag nanoparticles on inert supports, Chemistry of Materials, 2009, 21(2): 410-418.
    [119] D.H. Chen, C.J. Chen, Formation and characterization of Au-Ag bimetallic nanoparticles in water-in-oil microemulsions, Journal of Materials Chemistry, 2002, 12(5): 1557-1562.
    [120] S.W. Han, Y. Kim, K. Kim, Dodecanethiol-derivatized Au/Ag bimetallic nanoparticles: TEM, UV/VIS, XPS, and FTIR analysis, Journal of Colloid and Interface Science, 1998, 208(1): 272-278.
    [121] Y.C. Ma, F. Shi, Y.Q. Deng, Advances in gold catalysts and their application in organic reactions, Progress in Chemistry, 2003, 15(5): 385-392.
    [122] F. Wen, W.Q. Zhang, G.W. Wei, et al., Synthesis of noble metal nanoparticles embedded in the shell layer of core-shell poly(styrene-co-4-vinylpyridine) micospheres and their application in catalysis, Chemistry of Materials, 2008, 20(6): 2144-2150.
    [123] J.M. Campelo, D. Luna, R. Luque, et al., Sustainable preparation of supported metal nanoparticles and their applications in catalysis, Chemsuschem, 2009, 2(1): 18-45.
    [124] C.R. Yonzon, D.A. Stuart, X.Y. Zhang, et al., Towards advanced chemical and biological nanosensors-An overview, Talanta, 2005, 67(3): 438-448.
    [125] S.M. Moghimi, A.C. Hunter, J.C. Murray, Nanomedicine: Current status and future prospects, Faseb Journal, 2005, 19(3): 311-330.
    [126] M. Andersson, J.S. Pedersen, A.E.C. Palmqvist, Silver nanoparticle formation in microemulsions acting both as template and reducing agent, Langmuir, 2005, 21(24): 11387-11396.
    [127] B.A. Korgel, D. Fitzmaurice, Self-assembly of silver nanocrystals into two-dimensional nanowire arrays, Advanced Materials, 1998, 10(9): 661-665.
    [128] J.E. Hutchison, Greener nanoscience: A proactive approach to advancing applications and reducing implications of nanotechnology, Acs Nano, 2008, 2(3): 395-402.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700