大豆纤维针织物结构与性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大豆蛋白纤维是我国首度研制开发并进行工业化生产的新型纤维,纤维从开发到生产时间较短,对纤维及其织物的性能研究处于起步阶段,本文对大豆纤维织物的结构与性能进行了研究,测试结果可对大豆纤维针织物的生产提供一些借鉴,从而进一步完善大豆纤维织物的生产加工工艺,促进大豆纤维织物大规模生产的工业化进程。
     本文主要对大豆蛋白纤维织物的尺寸稳定性、拉伸性能、弹力织物的弹性等方面进行了测试研究。全文共分为五章。
     第一章综合论述了大豆蛋白纤维研究的国内外状况,以及简要介绍了大豆蛋白纤维织物在尺寸稳定性、拉伸性能、弹性等方面的一些相关理论。
     第二章简要介绍了大豆蛋白纤维的性能,及对大豆蛋白纤维纱线的性能进行了测试。选用同规格的棉纱线作为对比进行纱线的测试。通过测试分析对比,对大豆蛋白纤维纱线的特性有了进一步的认识,为今后开发研究提供了基础。
     第三章对织物的尺寸稳定性进行了研究,也是通过与棉织物的对比进行的。分为三部分进行了讨论:干松弛、湿松弛、定型工艺的影响。着重对湿松弛进行了研究。在研究中发现棉、大豆纤维织物经干松弛处理后,织物尺寸发生了收缩,湿松弛处理过程中发现织物尺寸继续收缩。但当五次洗涤后,两种织物的尺寸都不再发生改变,此时织物接近于最小能量状态,达到了全松弛状态。并且对大豆纤维织物干松弛状态与湿松弛状态进行了实物对比,发现织物的线圈形态发生了明显变化。通过对织物干松弛和湿松弛状态下线圈模型的分析发现,织物从干松弛状态到湿松弛状态变化时织物尺寸的收缩率与干松弛和湿松弛的圈高与圈距,及纱线的直径有关,与其它因素无关。全松弛状态下织物的紧度K及线圈长度平方的倒数与织物总密度之间具有一定的线性关系。通过对定型后织物的湿松弛进行研究,发现通过定型工艺提高织物的尺寸稳定性是行之有效的方法。
     第四章对大豆蛋白纤维织物拉伸性能进行了研究,发现在拉伸过
    
    摘要
    
    程中圈高与圈距存在一定的线性关系。通过线性回归方法对此进行了
    求证,发现无论是纯大豆蛋白纤维织物还是带有氨纶的大豆纤维弹力
    织物都满足一元线性回归方程,都是按直线规律变化的,并且经检验
    回归方程都显著。还发现织物平衡点不同,拉伸直线的斜率不同。由
    于圈高与圈距是按直线规律进行变化的,所以可以求得拉伸状态下的
    针织物离平衡状态时的偏差值,这样就可以预测织物收缩的大小,在
    生产过程中就可以据此控制织物的收缩,可以提高织物的尺寸稳定性。
     第五章对大豆蛋白纤维弹力织物的编织方式及编织工艺进行了简
    单介绍,并着重对织物的弹性进行了研究。研究中发现大豆纤维弹力
    织物较同规格的棉弹织物的弹性要好;在双向弹力织物中,纬向的弹
    力要好于经向的;在同种织物结构中氨纶含量越高弹性越好:在其它
    因素相同的情况下,非弹性纱的纤度越小,弹性越好。
Soybean fiber is a new type of fiber developed and first put into mass production by Chinese specialists. Study on properties of soybean fiber and fabric is at the beginning, because it is short time from development to production. Therefore, the experimental and theoretic study on the construction and properties of soybean fiber and fabric is conducted in order to derive some information for soybean fabric production, which is important and valuable to perfect producing technology and promote industry progress of large-scale manufacture of soybean fabric.
    In this thesis, the dimensional property, stretching property, elastic property etc. are emphasized or taken as the focus points of research. The thesis is divided into five parts.
    The first chapter summarizes the research condition at home and abroad, and introduces some theory correlation to the dimension property, stretching property, elasticity of spandex fabric etc.
    In the second chapter, properties of soybean fiber are briefly introduced, and properties of soybean fiber yarn are tested. The same count cotton yarn is chosen as a contrast to test the yarn property. Through testing, some properties of soybean fiber yarn are found better than the ones of cotton yarn.
    Study on the dimensional stability of soybean fabric in the third chapter also chooses cotton fabric as a contrast. It is divided into three parts: dry relaxation, wet relaxation, or an aspect of heat-setting technology. Among these parts wet relaxation is emphasized. During research fabric dimension is found to be reduced after dry relaxation, and to continue to be reduced after wet relaxation. Fabric dimension kept stability after fabric was washed five times. At this moment the completed relaxation is
    
    
    reached, being close to minimum energy condition. Through examination of photos of soybean fabric on the dry relaxation condition compared with one at wet relaxation condition, shape of loop was found to have an apparent change. By analyzing loop model on the dry relaxation and wet relaxation condition, the reduced percentage of fabric dimension was found to have some relation to height of wale and course space of the dry and wet relaxation conditions or the dimension of yarn, but having nothing with other factors. One linear relation exists between fabric tightness factor K or loop length factor l/l2 and the total density on the completed relaxation condition. Through study on wet relaxation after heat setting, which is found to be a necessary method to improve fabric dimensional stability.
    In the fourth chapter not only for soybean fabric but also cotton fabric one linear relation was found to exist between height of wale and course space during study on fabric stretching property. And it was verified by means of the linear regression method. But the slope is changed with the numerical value on the balance condition. When the deviation which exits from the stretching condition to the balance condition is obtained, then the fabric shrink trend can be predicted.
    The fifth chapter briefly introduces the knit technology of elastic soybean knitted fabric, and study on elasticity is emphasized. During research elasticity of elastic soybean knitted fabric is found to be better than one of elastic cotton fabric; The elasticity in course direction is better than one in wale direction for double directional elastic fabric; the more percentage elastic yarn occupies, the better elasticity is about the same construction fabric; the larger dimension of non elastic yarn is, the worse elasticity is on the same condition.
引文
[1]国家经济贸易委员会,大豆蛋白质纤维产业化及系列纺织产品的开发,国家技术创新项目计划项目可行性研究报告
    [2]韩光亭等,大豆蛋白纤维性能分析与研究,中国纺织经济,2001,6
    [3]D.L.Munden,The Geometry And Dimensional Properties Of Plain-Knit Fabrics, J.Text.Inst,1959,50,T448~T471
    [4]戴淑清,纬编针织物设计与生产,纺织工业出版社,1985
    [5]D.L.Munden, Dimensional Stability Of Plain-Knit Fabrics ,J.Test.Inst, 1960,51,P200~209
    [6]Knapton, J.J.E,The Dimensional Properties of Knitted Wool.Fabrics Part 1,The Plain Knitted Srructure,Textile Research Journal, 1968,38
    [7]宗平生,经编服装面料的近期发展和前景,经编信息,2002年7月第5期
    [8]陈祥勤,浅谈欧洲针织染整新设备及新技术,针织工业,2001,1,P66-68
    [9]S.Allan Heap.etc,Prediction Of Finished Weight And Shrinkage Of Cotton Knits,The Starfish Project,Part 1 ,Text.Res.J.February, 1983,P109~119
    [10]S.Allan Heap.etc,Prediction Of Finished Weight And Shrinkage Of Cotton Knits,The Starfish Project,Part 2,Text.Res.J.April, 1985,P211~222
    [11]R.Psstle and D.L.Munden ,Analysis Of The Dry-Relaxed Knitted-Loop Configuration,J. Test. hast, 1967,58,No. 8,P330
    [12]15000吨大豆纤维生产线项目可行性论证报告,国家纺织信息中心
    [13]梅士英等,大豆蛋白纤维性能及织物练染工艺初探,大豆蛋白纤维与产开发技术研讨会论文,2001,5
    [14]王华杰等,大豆蛋白纤维面料的风格,大豆蛋白纤维及产品开发技术研讨会论文,2001,4
    [15]Subrammaniam-V, Phukan-AR, Dimensional Stability of Plain Weft-Knitted Fabrics: a review of the Literature and a Survey of the Present position, Colourage, 1985, 32:No.25
    [16]黄康道等,减小全棉针织纱缩水率的构思与实践,上海纺织科技,1998,1:p17-25
    
    
    [17]沙洛夫N N,针织物收缩的研究[M],中服国律政经济出版社,1963:p24
    [18]World Markets For Elastane (Spandex) Yarn,Textile Outlook International ,January 2001
    [19]于殿名,国内外氨纶市场生产消费现状及需求预测,化工技术经济,2002,8
    [20]王文科,氨纶工业的现状及发展趋势,聚酯工业,2000,12
    [21]叶静,聚氨酯弹性纤维的现状与前景,天津纺织工学院,第40卷第1期
    [22]宋心远,氨纶的结构、性能和染整(三),印染,2003,No.1
    [23]杨栋梁,含氨纶弹力织物的产品开发与染整加工(二),印染,1999,No.2
    [24]S.ENg and C.L.Hui, Effect of Aspect Radio on Pressure Change of a Tubular Elastic Fabric,Textile Research Journal ,2001,71 (5),381~383
    [25]By S. Galuszynski and P. Ellis, Some Effects of the Fabric Elastic Constant on the Dynamics of the Fabric Formation, Journal of the Textile Institute, 1983,74 :No.6
    [26]S.ENg and C.L.Hui, Pressure Model of Elastic Fabric For Producing Pressure Garment, Textile Research Journal, 2001,71 (3)
    [27]D.Alimaa,T.Matsuo,M.Nakajima and M.Takahashi, Sensory Measurements of the Main Mechanical Parameters of Knitted Fabrics, Textile Research Journal, 2000,70(11)
    [28]Shin- Woong Park,Young-Gu Hwang, and Bok-Choon Kang,Applying Fuzzy Logic and Neutral Networks to Total Hand Evaluation of Knitted Fabrics ,Textile Research Journal, 2000,70(8)
    [29]杨旭红等,大豆蛋白纤维织物的风格,中国编织经济,2001,6
    [30]姚穆等,纺织材料学,中国纺织出版社 1997
    [31]赵书经,纺织材料实验教程,北京中国纺织出版社,1996
    [32]Knit Time,1987,p13-18
    [33]许吕崧 龙海如,针织工艺与设备,纺织出版社,1998
    [34]安瑞凤等,概率论与数理统计,纺织工业出版社,1986:p302
    [35]张传堂,郑书生,曹玉凤,胡伟,氨纶弹力针织物,江苏纺织,2002,2
    [36]胡海林,弹性棉毛布的编织及其工艺探讨,针织工业,2002,2
    
    
    [37]石宏亮,崔建伟,颜婷婷,刘广贤,经纬向弹力色织物的开发,北京纺织,2001.12
    [38]孙良仁,棉氨纶纬弹织物工艺条件探讨,染整技术,2002,8
    [39]本德萍,棉氨弹力布织造工艺的研究,四川纺织科技,2001,5
    [40]王家昭等,氨纶弹力丝生产及其应用,北京纺织工业出版社,1989
    [41]邱冠雄,吕宇起,关于纬编氨纶弹力织物生产的探讨,针织工业,1991
    [42]关幼琴,经编氨纶弹力布弹性指标测试方法的探讨,河北纺织,1989,4
    [43]梁浩祥、华雪娟,氨纶弹力织物的性能测试与分析,广西纺织科技,2002年第31卷第3期

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700