西藏措勤麦嘎岩基的年代学与地球化学
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
西藏中部拉萨地块大规模早白垩世花岗岩类的岩浆源区和岩石成因迄今尚未得到很好约束,对这些问题的深入理解将有助于可靠地约束拉萨地块白垩纪时期的岩浆作用过程及成矿地质背景。本文报道了中部拉萨地块西部措勤地区代表性花岗岩基——措勤麦嘎岩基的锆石U-Pb年代学、元素地球化学、Sr-Nd同位素和锆石Hf同位素数据。这些新数据,结合西部措勤尼雄岩体、中部申扎岩体和东部桑巴岩体数据,讨论了中部拉萨地块早白垩世大规模花岗岩类的岩浆起源、岩石成因及其对拉萨地块白垩纪成矿地质背景的约束。
     麦嘎岩基由二长花岗岩、花岗闪长岩和大量闪长质包体组成,其中的花岗质岩石主要侵位于122±1Ma和113±2Ma,闪长质包体与后者同期(113±2Ma)。122±1Ma花岗质岩以富硅、高钾和较高铝饱和指数为特征,属I型弱过铝质高钾钙碱性系列,(~(87)Sr/~(86)Sr)i值高(0.7147),全岩εNd(t)(-12.0)和锆石εHf(t)(-15.7~-11.1)为较大的负值。113±2Ma寄主花岗质岩为偏铝质-弱过铝质高钾钙碱性I型花岗岩,相对于122±1Ma花岗质岩石,其(~(87)Sr/~(86)Sr)i偏低(0.7094~0.7156)、全岩εNd(t)(-12.1~-7.3)和锆石εHf(t)(-11.1~0.1)较高。闪长质包体(113±2Ma)为偏铝质中-高钾钙碱性系列,具变化范围大的(~(87)Sr/~(86)Sr)i(0.7058~0.7105)、负的全岩εNd(t)(-10.7~-9.8)及负的锆石εHf(t)(-14.0~-5.6)。
     本论文的综合分析表明,从中部拉萨地块西部、中部到东部,广泛发育122±3Ma和113±3Ma的岩浆活动,并且从西至东,SiO2、K2O及A/CNK含量逐渐增加,Al2O3、TFe2O3、MgO、CaO以及Mg#逐渐降低;轻重稀土分馏程度及Eu负异常程度也逐渐升高。西部措勤和中部申扎地区以I型花岗岩类为主,很可能来自古老中下地壳物质的部分熔融,与壳-幔岩浆不同比例混合有关;东部桑巴地区以S型花岗岩为主,来自加厚地壳的部分熔融,幔源物质的贡献量相对较小。西部与东部这种差异,很可能指示其基底性质和岩石圈结构有所不同,这种不同可能正是现今拉萨地块地质、地球物理和成矿特征存在东西差异的原因。麦嘎岩基及中部拉萨地块同期岩浆岩约113Ma幔源物质增加现象,进一步证实南向俯冲的班公湖-怒江洋壳岩石圈板片发生了断离。
The magma source and petrogenesis of Early Cretaceous granitoids whichwidely exposed in the Central Lhasa Terrane, Tibet, remain unconstrainted so far. Abetter understanding of these issues will help to reveal magmatic processes andmineralization background of the Lhasa Terrane during the Cretaceous. This thesisreports zircon U-Pb age, bulk-rock geochemical, Sr-Nd isotope data, and zircon Hfisotope data from the Maiga batholith, one of the representative Early Cretaceousbatholiths in the west areas of the Central Lhasa Terrane. These new data, incombination with the data of the Nixiong pluton in the west, Xainza pluton in themiddle, and Sangba pluton in the east of the Central Lhasa Terrane, the origin andpetrogenesis of these plutons and their constraints on the mineralization backgroundof the Lhasa Terrane have been explored.
     The Maiga batholith is mainly composed of monzogranite and granodiorite, withabundant dioritic enclaves. Zircon U-Pb dating for the Maiga batholith yieldsemplacement ages of122±1Ma and113±2Ma for granitic rocks. The dioriticenclaves have been dated to be113±2Ma. Granitoids of122±1Ma arecharacterized by high-Si, high-K, and high aluminum saturation index (A/CNK), andare slightly peraluminous and high-K calc-alkaline I-type granites. These rocksexhibit high (87Sr/86Sr)i(ca.0.7147) values, low negative bulk-rock εNd(t)(ca.-12.0)and zircon εHf(t)(-15.7~-11.1). Host granitoids of113±2Ma are metaluminous andhigh-K calc-alkaline I-type granite. Compared to granitoids of122±1Ma, they showrelatively low (87Sr/86Sr)i(0.7094~0.7156) and enhanced bulk-rock εNd(t)(-12.1~-7.3) and zircon εHf(t)(-11.1~0.1). Dioritic enclaves (113±2Ma) are metaluminousand medium-to high-K calc-alkaline, and are characterized by varying (87Sr/86Sr)i(0.7058~0.7105), negative bulk-rock εNd(t)(-10.7~-9.8), and zircon εHf(t)(-14.0~-5.6).
     A synthetical compiliation for existing data indicate that the122±3Ma and113±3Ma magmatic rocks are widely exposed in the Central Lhasa Terrane from thewest, via middle to the east of this terrane. We found that SiO_2, K_2O_3, A/CNK, and the degrees of REE fractionation and Eu anomaly increase from west to east, while Al_2O_3,TFe_2O_3, MgO, CaO, and Mg decrease from west to east. Existing data reveal that thegranitoids from Coqen in the west and Xainza in the middle of the Central LhasaTerrane are mainly composed of I-type granites, which can be accounted for byanatexis of an ancient middle-lower crust with varying contributions of basaltic melts.However, the coeval granitoids from Sangba in the east of the Central Lhasa Terraneare mainly composed of S-type granites derived from partial melting of a thickenedcrust, with insignificant input of basaltic melts. Thesse differences are likelycontrolled by the different nature of basement and lithospheric architecture beneaththe Central Lhasa Terrane, possibly resulting in the differences of geological,geophysical, and metallogenic features observed in the present-day Central LhasaTerrane from west to east. The increased contributions of basaltic melts at about113Ma observed in the Maiga batholith and the other coeval batholiths in the CentralLhasa Terrane further verify the model of slab break-off of the southward subductionof the Bangong Nujiang Ocean seafloor at that time.
引文
Andersen T. Correction of common lead in U-Pb analyses that do not report204Pb. ChemicalGeology,2002,192:59-79
    Barbarin B. A review of the relationships between granitoid types: their origins and theirgeodynamic environments. Lithos,1999,46:605-626
    Bouvier A, Vervoort JD, Patchett PJ. The Lu-Hf and Sm-Nd isotopic composition of CHUR:Constraints from unequilibrated chondrites and implications for the bulk composition ofterrestrial planets. Earth and Planetary Science Letters,2008,273:48-57
    Castro A, Ventas MI, Rosa JD. H-type(hybrid) granitoids: a proposed revision of the granite-typeclassification and nomenclature. Earth Science Reviews,1991,31:237-253
    Chappell BW, Stephens WE. Origin of infracrustal (I-type) granite magmas. Trans. R. Soc.Edinburgh Earth Sci,1988,79(2-3):71-86
    Chappell BW, White AJR, Williams IS, et al. Lachlan Fold Belt granites revisited: High-and low-temperature granites and their implications. Australina J. Earth Sci.,2001,47:123-138
    Chappell BW, White AJR. Two contrasting granite types. Pacific Geol,1974,8:173-174
    Chappell BW, White ARJ. Restite enclaves and the restite model. In: Didier and Barbarin B (eds).Enclaves and granite petrology. Elsevier,1991, Amsterdam:375-381
    Chappell BW. Aluminium saturation in I-and S-type granites and the characterization offractionated haplogranites. Lithos,1999,46:535-551
    Chen JL, Xu JF, Zhao WX, et al. Geochemical variations in Miocene adakitic rocks from thewestern and eastern Lhasa terrane:implications for lower crustal flow beneath the SouthernTibetan Plateau. Lithos,2011,125:928-939
    Chiu HY, Chung SL, Wu FY, et al. Zircon U-Pb and Hf isotope constraints from easternTranshimalayan batholiths on the precollisional magmatic and tectonic evolution in southernTibet. Tectonophysics,2009,477:3-19
    Chu MF, Chung SL, Song B, et al. Zircon U-Pb and Hf isotope constraints on the Mesozoictectonics and crustal evolution of southern Tibet. Geology,2006,34:745-748.
    Chung SL, Chu MF, Zhang YQ, et al. Tibetan tectonic evolution inferred from spatial andtemporal variations in post-collisional magmatism. Earth Science Reviews,2005,68:173-196
    Collins WJ, Richards SW. eodynamic significance of S-type granites in circum-Pacific orogens.Geology,2008,36:559-562
    Collins WJ. S-and I-type granites of the eastern Lachlan fold belt: products of three-componentmixing. Transaction of the Royal Society of Edinbyrgh, Earth Sciences,1996,88:171-179
    Copeland P, Harrison TM, Pan Y, et al. Thermal evolution of the Gangdese batholith, southernTibet: a history of episodic unroofing. Tectonics,1995,14:223-236
    Coulon C, Maluski H, Bollinger C, et al. Mesozoic and Cenozoic volcanic rocks from central andsouthern Tibet:39Ar/40Ar dating, petrological characteristics and geodynamical significance.Earth and Planetary Science Letters,1986,79:281-302
    De La Roche H, Leterrier J, Grande Claude P et al. A classification of volcanic and plutonic rocksusing R1-R2diagrams and major element analysis-its relationships and current nomenclature.Chemical Geology,1980,29:183-210
    DePaolo DJ. Nedymium isotopes in the Colorado Front Range and crust-mantle evolution in theProterozoic. Nature,1981,291:193-196
    Desouky MD, Feely M, Mortr P. Diorite-granite magma mingling and mixing along the axis ofGalway Granite batholith, Ireland. Journal of the Society London,1996,153:361-374
    Dewey JF, Shackelton RM, Chang CF, et al. The tectonic evolution of the Tibetan Plateau. Phil.Trans. R. Soc. Lond,1988, A327:379-413
    Didier J. The problem of enclaves in granitic rocks: A review of recent ideas on their origin[A].Science Press,1984,137-144doi:10.1016/j.jseaes.2011.08.019.
    Eby GN. The A-type granitoids: A review of their occurrence and chemical characteristics andspeculations on their petrogenesis. Lithos,1990,26:115-134
    Eyal M, Litvinovsky BA, Katzir Y, et al. The Pan-African high-K calc-alkaline peraluminous Elatgranite from southern Israel: geology, geochemistry and petrogenesis. Journal of AfricanEarth Sciences,2004,40:115-136
    Frost CD, Frost BR. High-K, iron-enriched rapakivitype granites: the tholeiite connection.Geology,1997,25:647-650
    Gao S, Liu XM, Yuan HL, et al. Determination of forty-two major and trace elements in USGSand NIST SRM glasses by laser ablation-inductively coupled plasma-mass spectrometry.Geostandards Newsletter-Journal of Geostandards and Geoanalysis,2002,26:191-196
    Gao YF, Yang ZS, Santosh M, et al. Adakitic rocks from slab melt-modified mantle sources in thecontinental collision zone of southern Tibet. Lithos,2010,119:651-663
    Griffin WL, Pearson NJ, Belousova E, et al. The Hf isotope composition of cratonic mantle:LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica etCosmochimica Acta,2000,64:133-147
    Griffin WL, Wang X, Jackson SE, et al. Zircon chemistry and magma mixing, SE China: in-situanalysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos,2002,61:237-269
    Guan Q, Zhu DC, Zhao ZD, et al. Crustal thickening prior to38Ma in southern Tibet: Evidencefrom lower crust-derived adakitic magmatism in the Gangdese Batholith. GondwanaResearch,2012,21:88-99
    Guynn JH, Kapp P, Pullen A, et al. Tibetan basement rocks near Amdo reveal "missing" Mesozoictectonism along the Bangong suture, central Tibet. Geology,2006,34:505-508
    Haines SS, Klemperer SL, Brown L. INDEPTH seismie data: From surface observations to deepcrustal proceses in Tibet. Tectonics,2003,22:1001
    Harris NBW, Xu RH, Lewis CL, et al. Isotope geochemistry of the1985Tibet Geotraverse: Lhasato Golmud. Philosophical Transactions of the Royal Society of London. Series A,Mathematical and Physical Sciences,1988,327,1594:263-285
    Hofmann AW. Chemical differentiation of the Earth: the relationship between mantle, continentalcrust, and oceanic crust. Earth and Planetary Science Letters,1988,90:297-314
    Holden P, Halliday AN, Stephens WE. Neodymium and strontium isotope content of microdioriteenclaves points to mantle input to granitoids production. Nature,1987,330:53-56
    Hoskin PWO, Black LP. Metamorphic zircon formation by solid-state recrystallization of protolithigneous zircon. Journal of Metamorphic Geology,2000,18:423-439
    Jackson SE, Pearson NJ, Griffin WL et al. The application of laser ablation-inductively coupledplasma-mass spectrometry to in situ U-Pb zircon geochronology. Chemical Geology,2004,211:47-69
    Ji WQ, Wu FY, Chung SL, et al. Zircon U-Pb chronology and Hf isotopic constraints on thepetrogenesis of Gangdese batholiths, southern Tibet. Chemical Geology,2009,262:229-245,doi:10.1016/j.chemgeo.2009.01.020
    Kapp P, DeCelles PG, Gehrels GE, et al. Geological records of the Lhasa-Qiangtang andIndo-Asian collisions in the Nima area of central Tibet. GSA Bulletin,2007,119:917-932
    Kapp P, Murphy MA, Yin A, et al. Mesozoic and Cenozoic tectonic evolution of the Shiquanhearea of western Tibet. Tectonics,2003,22(4):516-539
    Kapp P, Yin A, Harrison TM, et al. Cretaceous-Tertiary shortening, basin development, andvolcanism in central Tibet: Geological Society of America Bulletin,2005,117:865-878, doi:10.1130/B25595
    Karsli O, Chen B, Aydin F, et al. Geochemical and Sr-Nd-Pb isotopic compositions of the EoceneD lek and Sari i ek Plutons, Eastern Turkey: Implications for magma interaction in thegenesis of high-K calc-alkaline granitoids in a post-collision extensional setting. Lithos,2007,98:67-96
    Karsli O, Dokuz A, Uysal I, et al. Relative contributions of crust and mantle to generation ofCampanian high-K calc-alkaline I-type granitoids in a subduction setting, with specialreference to the Harsit Pluton, Eastern Turkey. Contrib Mineral Petrol,2010,160:467-487
    Kaygusuz A, Aydincakir K. Mineralogy, whole-rock and Sr-Nd isotope geochemistry of maficmicrogranular enclaves in Cretaceous Dagbasi granitoids, Eastern Pontides, NE Turkey:Evidence of magma mixing, mingling and chemical equilibration. Chemie der Erde,2009,69:247-277
    Keay S, Collins WJ, McCulloch MT. A three-component mixing model for granitoid genesis:Lachlan Fold Belt, eastern Australia. Geology,1997,25:307-310
    Kemp AIS, Hawkesworth CJ, Foster GL, et al. Magmatic and crustal differentiation history ofgranitic rocks from Hf-O isotopes in zircon. Science,2007,16:980-983
    Lee HY, Chung SL, Ji Jq, et al. Geochemical and Sr–Nd isotopic constraints on the genesis of theCenozoic Linzizong volcanic successions, southern Tibet. Journal of Asian Earth Sciences, InPress, Corrected Proof,2011
    Lee HY, Chung SL, Ji JQ, et al. Geochemical and Sr–Nd isotopic constraints on the genesis of theCenozoic Linzizong volcanic successions, southern Tibet. Journal of Asian Earth Sciences,2011, doi:10.1016/j.jseaes.2011.08.019.
    Lee HY, Chung SL, Lo CH, et al. Eocene Neotethyan slab breakoff in southern Tibet inferredfrom the Linzizong volcanic record. Tectonophysics,2009,477:20-35
    Leier AL, Kapp P, Gehrels GE, et al. Detrital zircon geochronology of Carboniferous-Cretaceousstrata in the Lhasa terrane, southern Tibet. Basin Research,2007,19:361-378, doi:10.1111/j.1365-2117.2007.00330.x.
    Li XH, Li WX, Li QL, et al. Petrogenesis and tectonic significance of the~850Ma Gangbianalkaline complex in South China: Evidence from in situ zircon U-Pb dating, Hf-O isotopesand whole-rock geochemistry. Lithos,2010,114:1-15
    Li XH, Li ZX, Li WX, et al. U-Pb zircon, geochemical and Sr-Nd-Hf isotopic constraints on ageand origin of Jurassic I-and A-type granites from central Guangdong, SE China: A majorigneous event in response to foundering of a subducted flat-slab? Lithos,2007,96:186-204
    Liu YS, Gao S, Gao CG, et al. Garnet-Rich Granulite Xenoliths from the Hannuoba Basalts, NorthChina: Petrogenesis and Implications for the Mesozoic Crust-Mantle Interaction. Journal ofEarth Science,2010,21(5):669-691
    Liu YS, Gao S, Yuan HL, Zhou L, Liu XM, Wang XC, Hu ZC and Wang LS.2004.U-Pb zirconages and Nd, Sr, and Pb isotopes of lower crustal xenoliths from North China Craton: insightson evolution of lower continental crust. Chemical Geology,211:87–109
    Loiselle MC, Wones DR. Characteristics and origin of anorogenic granites. Abstr.92nd Geol.Soc.Amer. Meet,1979,11:468
    Ludwig KR. Isoplot v.3.0: a geochronological toolkit for Microsoft Excel. BerkeleyGeochronology Center. Special Publication,2003,4:1-70
    Mo XX, Niu YL, Dong GC, et al. Contribution of syncollisional felsic magmatism to continentalcrust growth: A case study of the Paleogene Linzizong Volcanic Succession in southern Tibet.Chemical Geology,2008,250:49-68
    Neves SP, Vauchez A. Successive mixing and mingling of magmas in a plutonic complex ofNortheast Brazil. Lithos,1995,34:275-299
    Niu YL, O'Hara MJ. MORB mantle hosts the missing Eu (Sr, Nb, Ta and Ti) in the continentalcrust: New perspectives on crustal growth, crust–mantle differentiation and chemicalstructure of oceanic upper mantle. Lithos,2009,112:1-17
    Oyarzun R, Oyarzun J, Menard JJ, et al. The Cretaceous iron belt of northern Chile role of oceanicplates, a superplume event, and a major shear zone. Mineralium Deposita,2003,38:640-646
    Pearce JA, Lippard SJ, Roberts S. Characteristics and tectonic significance of supra-subductionzone ophiolities. In: Kokelaar BP, Howells MF(eds), Marginal Basin Geology. Geol. Soc.Lond,1984, Spec. Publ.16. London: Blackwell Sci. Publ:7794
    Pearce JA, Mei HJ. Volcanic rocks of the1985Tibet Geotraverse: Lhasa to Golmud.Philosophical Transactions of the Royal Society of London, Series A, Mathematical andPhysical Sciences,1988,327:169-201
    Pitcher WS. Granite Type and Tectonic Environment. In: Hsu K.(ed.) Mountain BuildingProcesses, Academic Press, London,1983,19-40
    Pitcher WS. The Nature and Origin of Granite. Glasgow and London: Blackie,1993,1-316
    Pitcher WS. The Nature and Origin of Granite. London: Chapman and Hall,1997
    Ravikant V, Wu FY, Ji WQ. U-Pb age and Hf isotopic constraints of detrital zircons from theHimalayan foreland Subathu sub-basin on the Tertiary palaeogeography of the Himalaya.Earth and Planetary Science Letters,2011,304:356-368
    Rollinson HR. Using Geochemical Data: Evaluation, Presentation, Interpretation. Longman GroupUK Ltd., New York,1993,1-352
    Rowley D. Age of initiation of collision between India and Asia: A review of stratigraphic data.Earth and Planet Science Letters,1996,145:1-13
    Royden LH. The tectonic expression of slab pull of continental convergent boundaries. Tectonics12,1993,303-325.
    Silva MMVG, Neiva AMR, Whitehouse MJ. Geochemistry of enclaves and host granites from theNelas area, central Portugal. Lithos,2000,50:153-170
    Soderlund U, Patchett PJ, Vervoort JD et al. The176Lu decay constant determined by Lu-Hf andU-Pb isotope systematics of Precambrian mafic intrusions. Earth and Planetary ScienceLetters,2004,219:311-324
    Sun JF, Yang JH, Wu FY, et al. Magma mixing controlling the origin of the Early CretaceousFangshan granitic pluton, North China Craton: In situ U-Pb age and Sr-, Nd-, Hf-and O-isotope evidence. Lithos,2010,120:421-438
    Sun SS and McDonough WF. Chemical and isotopic systematics of oceanic basalts: implicationsfor mantle composition and processes. In: Saunders AD and Norry MJ(eds.). Magmatism inthe Ocena Basins. Geological Society Special Publication,1989,42:313-345
    Sun WH, Zhou MF. The~860Ma, Cordilleran Type Guandaoshan Dioritic Pluton in the YangtzeBlock, SW China: Implications for the Origin of Neoproterozoic Magmatism. The Journal ofGeology,2008,116:238-253
    Sylvester PJ. Post-collisional alkaline granites. J. Geol,1989,97:261-280
    Taylor SR, McLennan SM. The geochemical evolution of the continental crust. Rev. Geophys,1995,33:241-265
    Vernon RH. Crystallization and hybridism in microgranitoid enclave magmas: microstructuralevidence. J. Geophys. Res,1990,95:17849-17859
    Wang Q, Zhu DC, Zhao ZD, et al. The ca.90Ma Magnesian andesites from southeastern Nyima,central Tibet: Petrogenesis and is implications for lithospheric removal beneath the northernLhasa Terrane. Submitted to Chemical Geology,2012
    Wen DR, Liu DY, Chung SL, et al. Zircon SHRIMP U-Pb ages of the Gangdese Batholith andimplications for Neotethyan subduction in southern Tibet. Chemical Geology,2008,252:191-201
    Whalen JB, Currie KL, Chappell BW. A-type granites: geochemical characteristics, discriminationand petrogenesis. Contrib. Mineral. Petrol.,1987,95:407-419
    Wu FY, Jahn BM, Wilder SA, et al. Highly fractionated I-type granites in NE China (I):geochronology and petrogenesis. Lithos,2003,66:241-273
    Wu FY, Ji WQ, Liu CZ, et al. Detrital zircon U–Pb and Hf isotopic data from the Xigaze fore-arcbasin: Constraints on Transhimalayan magmatic evolution in southern Tibet. ChemicalGeology,2010,271:13-25
    Xu JF, Castillo PR. Geochemical and Nd-Pb isotopic characteristics of the Tethyan asthenosphere:implications for the origin of the Indian Ocean mantle domain. Tectonophysics,2004,393:9-27
    Xu RH, Sch rer U, Allègre CJ. Magmatism and metamorphism in the Lhasa block (Tibet): ageochronological study. Journal of Geology,1985,93:41-57
    Yang JH, Wu FY, Chung SL, et al. Multiple sources for the origin of granites: Geochemical andNd/Sr isotopic evidence from the Gudaoling granite and its mafic enclaves, northeast China.Geochimica et Cosmochimica Acta,2004,68:4469-4483
    Yang JH, Wu FY, Wilde SA, et al. Tracing magma mixing in granite genesis: in situ U-Pb datingand Hf-isotope analysis of zircons. Contrib Mineral Petrol,2007,153:177-190
    Yi ZY, Huang BC, Chen JS, et al. Paleomagnetism of early Paleogene marine sediments insouthern Tibet, China: Implications to onset of the India-Asia collision and size of GreaterIndia. Earth and Planetary Science Letters,2011,309:153-165
    Yin A, Harrison TM. Geologic evolution of the Himalayan-Tibetan orogen. Annual Review ofEarth and Planetary Sciences,2000,28:211-280
    Yuan HL, Gao S, Dai MN, et al. Simultaneous determinations of U-Pb age, Hf isotopes and traceelement compositions of zircon by excimer laser-ablation quadrupole and multiple-collectorICP-MS. Chemical Geology,2008,247:100-118
    Zhang HF, Parrish R, Zhang L, et al. A-type granite and adakitic magmatism association inSongpan-Garze fold belt, eastern Tibetan Plateau: implication for lithospheric delamination.Lithos,2007,97:323-335
    Zhang XH, Mao Q, Zhang HF, et al. Mafic and felsic magma interaction during the constructionof high-Kcalc-alkaline plutons within a metacratonic passive margin: The Early PermianGuyang batholith from the northern North China Craton. Lithos,2011,125:569-591
    Zhao JM, Yuan XH, Liu HB, et al. The boundary between the Indian and Asian tectonic platesbelow Tibet, PNAS,2010,107:11229-11233
    Zhao ZD, Mo XX, Dilek Y, et al. Geochemical and Sr-Nd-Pb-O isotopic compositions of thepost-collisional ultrapotassic magmatism in SW Tibet: petrogenesis and implications forIndia intra-continental subduction beneath southern Tibet, Lithos,2009,113:190-212.
    Zhou S, Mo XX, Zhao ZD, et al.40Ar/39Ar geochronology of post-collisional volcanism in themiddle Gangdese Belt, southern Tibet. Journal of Asian Earth Sciences,2010,37:246-258.
    Zhu DC, Mo XX, Niu YL, et al. Geochemical investigation of Early Cretaceous igneous rocksalong an east-west traverse throughout the central Lhasa Terrane, Tibet. Chemical Geology,2009a,268:298-312
    Zhu DC, Mo XX, Niu YL, et al. Zircon U-Pb dating and in-situ Hf isotopic analysis of Permianperaluminous granite in the Lhasa terrane, southern Tibet: Implications for Permiancollisional orogeny and paleogeography. Tectonophysics,2009c,469:48-60
    Zhu DC, Mo XX, Zhao ZD, et al. Presence of permian extension-and arc-type magmatism insouthern Tibet: Paleogeographic implications. Geological Society of America Bulletin,2010,122(7/8):979-993
    Zhu DC, Pan GT, Chung SL, et al. SHRIMP zircon age and geochemical constraints on the originof Early Jurassic volcanic rocks from the Yeba Formation, southern Gangdese in south Tibet.International Geology Review,2008a,50(5):442-471
    Zhu DC, Pan GT, Zhao ZD, et al. Early Cretaceous subduction-related adakite-like rocks in theGangdese, south Tibet: Products of slab melting and subsequent melt-peridotite interaction?Journal of Asian Earth Sciences,2009b,34:298-309
    Zhu DC, Zhao ZD, Niu YL, et al. Bulk-rock geochemistry, zircon U–Pb age and Hf-O isotope ofthe Baingoin batholith in the northern Lhasa Terrane, Tibet: Implications for theLhasaQiangtang collision. Submitted,2012a
    Zhu DC, Zhao ZD, Niu YL, et al. Lhasa Terrane in southern Tibet came from Australia. Geology,2011b,39:727-730
    Zhu DC, Zhao ZD, Niu YL, et al. The Lhasa Terrane: Record of a microcontinent and its historiesof drift and growth. Earth and Planetary Science Letters,2011a,301:241-255
    Zhu DC, Zhao ZD, Niu YL, et al. The origin and pre-Cenozoic evolution of the Tibetan Plateau.Gondwana Research,2012b, doi:10.1016/j. gr.2012.02.002
    Zorpi MJ, Coulon C, Orisini JB. Hybridization between felsic and mafic magma in calk-alkalinegranitoids–a case study in northern Sardinia, Italy. Chemical Geology,1991,92:45-86
    曹圣华,李德威,余忠珍,等.西藏冈底斯尼雄超大型富铁矿的成矿地质特征.大地构造与成矿学,2007,31(3):328-335
    陈卫锋,陈培荣,黄宏业,等.湖南白马山岩体花岗岩及其包体的年代学和地球化学研究.中国科学(D辑),2007,37(7):873-893
    陈玉禄,陈国荣,张宽忠,等.中华人民共和国1∶250000区域地质调查报告班戈县幅,2002
    董申保,田伟.花岗岩研究的反思.高校地质学报,2007,13(3):353-361
    董昕.西藏冈底斯带西南部中新生代花岗岩年代学与地球化学.[硕士学位论文].北京:中国地质大学(北京),2008
    董昕,张泽明,耿官升,等.青藏高原拉萨地体南部的泥盆纪花岗岩.岩石学报,2010,26(7):2226-2232
    费光春,温春齐,王成松,等.西藏冈底斯东段墨竹工卡地区洞中拉辉绿玢岩锆石SHRIMPU-Pb定年及意义.地质通报,2010,29(8):1138-1142
    葛良胜,邓军,杨立强,等.西藏冈底斯地块中新生代中酸性侵入岩浆活动与构造演化.地质与资源,2006,15(1):1-10
    耿全如,潘桂堂,金振民,等.西藏冈底斯带叶巴组火山岩地球化学及成因.地球科学——中国地质大学学报,2005,30(6):747-760
    耿全如,潘桂堂,王立全,等.西藏冈底斯带叶巴组火山岩同位素地质年代.沉积与特提斯地质,2006,26(1):1-7
    郭铁鹰,梁定一等.西藏阿里地质.武汉:中国地质大学出版社,1991
    和钟铧,杨德明,王天武.冈底斯带桑巴去早白垩世后碰撞花岗岩类的确定及构造意义.岩石矿物学杂志,2006,25(3):187-193
    侯增谦,王二七.印度—亚洲大陆碰撞成矿作用主要研究进展.地球学报,2008,29(3):275-292
    黄孝文,胡为正,吴旭铃,等.西藏冈底斯带富铁矿床地质特征.资源调查与环境,2009,30(2):79-87
    纪伟强,吴福元,锺孙霖,等.西藏南部冈底斯岩基花岗岩类时代与岩石成因.中国科学(D辑):地球科学,2009,39(7):849-871
    江元生,周幼云,李建兵,等.中华人民共和国1∶250000区域地质调查报告措勤区幅,2003
    康志强,许继峰,董彦辉,等.拉萨地块中北部白垩纪则弄群火山岩: Slainajap洋南向俯冲的产物?岩石学报,2008,24(2):303-314
    康志强,许继峰,王宝弟,等.拉萨地块北部去申拉组火山岩:班公湖-怒江特提斯洋南向俯冲的产物?岩石学报,2010,26(10):3106-3116
    李昌年.岩浆混合作用及其研究评述.地质科技情报,2002,21(4):49-54
    李海平,张满社.西藏桑日地区桑日群火山岩岩石地球化学特征.西藏地质,1995,1:84-92
    李皓揚,锺孙霖,王彦斌,等.藏南林周盆地林子宗火山岩的时代、成因及其地质意义:锆石U-Pb年龄和Hf同位素证.岩石学报,2007,23(20):493-500
    李廷栋.青藏高原地质研究的新进展.地质通报,2002,21(7):370-376
    李献华,李武显,王选策,等.幔源岩浆在南岭燕山早期花岗岩形成中的作用:锆石原位Hf-O同位素制约.中国科学(D辑),2009,39(7):872-887
    林传勇,徐锡伟,史兰斌,等.西藏金山江缝合带一些岩石的初步研究(I):花岗岩.地震地质,2004,26(2):209-220
    刘登忠,陶晓风,马润则,等.中华人民共和国1∶250000区域地质调查报告措勤县幅,2003
    刘登忠,陶晓风,马润则,等.中华人民共和国1∶250000区域地质调查报告塞利普幅,2005
    刘美华.西藏北冈底斯桑巴地区花岗岩类年代学与地球化学.[硕士学位论文].北京:中国地质大学(北京),2011
    卢书炜,杜凤军,任建德,等.中华人民共和国1∶250000区域地质调查报告尼玛区幅,2002
    罗照华,黄忠敏,柯珊.花岗质岩石的基本问题.地质评论,2007,53:180-226
    莫宣学,董国臣,赵志丹,等.西藏冈底斯带花岗岩的时空分布特征及地壳生长演化信息.高校地质学报,2005,11(3):281-290
    莫宣学,罗照华,邓晋福,等.东昆仑造山带花岗岩及地壳生长.高校地质学报,2007,13(3):403-414
    莫宣学,赵志丹,邓晋福,等.印度-亚洲大陆主碰撞过程的火山作用响应.地学前缘,2003,10(3):135-148
    潘桂棠,莫宣学,侯增谦,等.冈底斯造山带的时空结构及演化.岩石学报,2006,22(3):521-533
    覃锋,徐晓霞,罗照华.北京房山岩体形成过程中的岩浆混合作用证据.岩石学报,2006,22(12):2957-2970
    汪友明,尹显科,徐韬,等.中华人民共和国1∶250000区域地质调查报告革吉县幅,2003
    王保弟,许继峰,陈建林,等.青藏高原~90百万年斑岩型矿产的厘定.岩石学报,2011,22(12):2957-2970
    王天武,程立人,李才,等.中华人民共和国1∶250000区域地质调查报告申扎县幅,2003
    王晓霞,王涛, Ilmari Happalam,等.秦岭环斑结构花岗岩中暗色包体的岩浆混合成因及岩石学意义-元素和Nd、Sr同位素地球化学证据.岩石学报,2005,21(3):935-946
    吴福元,李献华,杨进辉,等.花岗岩成因研究的若干问题.岩石学报,2007,23(6):1217-1238
    吴福元,孙德有,林强.东北地区显生宙花岗岩的成因与地壳增生.岩石学报,1999,15(2):181-189.
    吴旭玲,胡为正,黄建村.西藏尼雄周边地区富铁矿评价地质报告,2007
    吴旭铃,陈振华.西藏尼雄岩体岩石地球化学特征及其成因探讨.中国地质,2005,32(1):122-127
    吴珍汉,孟宪刚,胡道功,等.中华人民共和国1∶250000区域地质调查报告当雄幅,2003
    向树元,泽仁扎西,田立富,等.中华人民共和国1∶250000区域地质调查报告嘉黎县幅,2005
    谢国刚,邹爱建,袁建芽,等.中华人民共和国1∶250000区域地质调查报告措麦区幅,2002
    许荣科,茨邛,庞振甲,等.中华人民共和国1∶250000区域地质调查报告斯诺乌山幅、狮泉河幅,2004
    杨德明,和钟铧,王天武,等.中华人民共和国1∶250000区域地质调查报告门巴区幅,2005
    于枫.西藏冈底斯盐湖南部花岗岩的岩石学、地球化学与成因.[硕士学位论文].北京:中国地质大学(北京),2010
    于玉帅,高原,杨竹森,等.西藏措勤尼雄矿田滚纠铁矿侵入岩LA-ICP-MS锆石U-Pb年龄与地球化学特征.岩石学报,2011,27(7):1949-1960
    袁健芽,曹圣华,罗小川,等.西藏措勤县尼雄矽卡岩型铁铜矿田的发现及地质特征与找矿意义.中国地质,2008,35(1):88-94
    曾令森,刘静,高利娥,等.青藏高原拉萨地块早中生代高压变质作用及大地构造意义.地学前缘,2009,16(2):140-151
    张宏福,邵济安.辽西义县组火山岩:拆沉作用还是岩浆混合作用?岩石学报,2008,24(1):37-48
    张亮亮,朱弟成,赵志丹,等.西藏申扎早白垩世花岗岩类:板片断离的证据.岩石学报,2011,27(7):1938-1948
    张旗,王焰,潘国强,等.花岗岩源岩问题——关于花岗岩研究的思考之四.岩石学报,2008,24(6):1193-1204
    张晓倩,朱弟成,赵志丹,等.西藏措勤麦嘎岩基的锆石U-Pb年代学、地球化学和锆石Hf同位素:对中部拉萨地块早白垩世花岗岩类岩石成因的约束.岩石学报,28(5):1615-1634
    张晓倩,朱弟成,赵志丹,等.西藏措勤尼雄岩体的岩石成因及其对富Fe成矿作用的潜在意义.岩石学报,2010,26(6):1793-1804
    张招崇,董书云,黄河,等.西南天山二叠纪中酸性侵入岩的地质学和地球化学:岩石成因和构造背景.地质通报,2009,28(12):1827-1839
    赵志丹,莫宣学, Nomade S,等.青藏高原拉萨地块碰撞后超钾质岩石的时空分布及其意义.岩石学报,2006,22(04):787-794
    郑有业,徐荣科,张刚阳,等.西藏日土岩基三宫岩石序列地球化学、年代学及构造意义.岩石学报,2008,24(2):368-376
    周长勇,朱弟成,赵志丹,等.西藏冈底斯带西部达雄岩体的岩石成因:锆石U-Pb年龄和Hf同位素约束.岩石学报,2008,24(2):348-358
    朱弟成,莫宣学,王立全,等.西藏冈底斯东部察隅高分异I型花岗岩的成因:锆石U-Pb年代学、地球化学和Sr-Nd-Hf同位素制约.中国科学(D辑),2009a,39(7):833-848
    朱弟成,莫宣学,王立全,等.新特提斯演化的热点与洋脊相互作用:西藏南部晚侏罗世-早白垩世岩浆作用推论.岩石学报,2008c,24(2):225-237
    朱弟成,莫宣学,赵志丹,等.西藏冈底斯带措勤地区则弄群火山岩锆石U-Pb年代学格架及构造意义.岩石学报,2008b,24(3):401-412
    朱弟成,潘桂棠,莫宣学,等.藏南特提斯喜马拉雅带中段二叠纪—白垩纪的火山活动(Ⅰ):分布特点及其意义.地质通报,2004,23(7):645-654
    朱弟成,潘桂棠,莫宣学,等.冈底斯中北部晚侏罗世-早白垩世地球动力学环境:火山岩约束.岩石学报,2006,22(3):534-546.
    朱弟成,潘桂棠,王立全,等.西藏冈底斯带中生代岩浆岩的时空分布和相关问题的讨论.地质通报,2008a,27(9):1535-1550
    朱弟成,赵志丹,牛耀龄,等.西藏拉萨地块过铝质花岗岩中继承锆石的物源区示踪及其古地理意义.岩石学报,2011,27(7):1917-1930
    朱金初,张佩华,谢才富,等.桂东北里松花岗岩中暗色包体的岩浆混合成因.地球化学,2006,35(5):506-516

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700