高压氧预处理诱导兔脊髓缺血耐受的远期效果观察及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自1986年Murry等提出缺血预处理概念以来,人们对预处理进行了大量的研究。诸多措施(如低温、电针等)和药物(如兴奋性氨基酸拮抗剂、自由基清除剂、米诺环素等)均已被证实可诱导缺血耐受。然而,截至目前,大部分预处理相关研究的观察时间均不超过再灌后72小时。有人怀疑,这种耐受所致的保护效应并没有永久性的减少细胞死亡,只不过延缓了细胞死亡的进程。那么,随着再灌注时间的延长,这种保护效应会不会逐渐减弱甚至消失呢?这是一个存在诸多争议,很值得关注的研究热点。我们的前期研究表明高压氧(hyperbaric oxygen, HBO)预处理可模拟“缺血预处理”,减轻随后因阻闭腹主动脉所引起的脊髓缺血再灌注损伤[2],此现象亦存在于大鼠局灶性脑缺血模型[3]。另有研究表明,中枢神经系统缺血再灌注损伤后均可出现细胞凋亡现象,而脊髓缺血再灌注后细胞延迟性的死亡大部分正是凋亡而不是坏死。高压氧预处理可减少缺血区神经元的早期凋亡,阻止早期凋亡向延迟性神经损害转变,甚至可能逆转早期的凋亡,使神经元免于坏死。因此,本研究以“高压氧预处理诱导兔脊髓缺血耐受现象”为切入点,对预处理的神经保护效果进行长期观察,并研究其远期效应是否与抑制了神经元凋亡相关。
     第一部分高压氧预处理诱导兔脊髓缺血耐受的远期效果观察
     目的:探讨高压氧预处理诱导的兔脊髓缺血耐受能否长期存在。方法:实验一,16只雄性新西兰大白兔,随机分为2组(n =8):对照组,即常压空气组;HBO组,即高压氧(HBO)预处理组(100% O2,2.5 ATA,1 h/d,5 d),最后一次处理后24 h所有动物均采用肾下腹主动脉阻断法造成脊髓缺血(20 min),观察再灌后1,2,7,14,21 d时的神经功能学评分。实验二,32只雄性新西兰大白兔,分组同实验一(n =16),重复上述处理,并分别于再灌后2, 21 d每组各灌注8只动物取脊髓(L5-7),制作标本,行组织病理学观察。灌注动物前进行神经功能学评分。结果:HBO组神经功能学评分在1, 2, 7,14,21d时均明显优于对照组(P<0.05),但组内比较,HBO组再灌7,14,21d时的神经功能学评分与2d时均无显著差别(P>0.05);HBO组脊髓前角正常神经元计数在2d和21d时均明显优于对照组,但组内比较,HBO组再灌21d时的脊髓前角正常神经元计数与2d时无显著差别(P>0.05);神经功能学评分与其对应脊髓前角正常神经细胞元之间有显著相关性(r2d = 0.903,P<0.01; r21d = 0.922, P<0.01)。结论:高压氧预处理可以诱导兔脊髓缺血耐受,且此效应长期存在。
     第二部分高压氧预处理诱导兔脊髓缺血耐受的远期效果与神经元凋亡的关系
     实验一高压氧预处理诱导兔脊髓缺血耐受的远期效果与再灌后早期神经元凋亡的关系
     目的:探讨高压氧预处理诱导的兔脊髓缺血耐受的远期效果是否通过抑制再灌后早期神经元的凋亡介导。方法:50只雄性新西兰大白兔随机分为2组(n =25):对照组,即常压空气组;HBO组,即高压氧(HBO)预处理组(100% O2,2.5 ATA,1 h/d,5 d),最后一次处理后24 h所有动物均采用肾下腹主动脉阻断法造成脊髓缺血(20 min),于再灌注8 h、24 h、2 d、3 d和5 d时每组各灌注5只动物取脊髓(L5-7),制作标本,TUNEL法检测神经元凋亡情况。灌注动物前进行神经功能学评分。结果:HBO组神经功能学评分在24 h、2 d、3 d和5 d时均明显优于对照组(P<0.05),在8 h时无统计学差异。与对照组相比,HBO组凋亡神经元数在各个时间点均明显少于对照组(P<0.05);对照组与HBO组凋亡神经元均于再灌后8小时即明显出现,凋亡神经元数于再灌后2天达峰值,随后逐渐减少。结论:高压氧预处理诱导兔脊髓缺血耐受的远期效果可能是通过抑制再灌后早期神经元的凋亡产生的。
     实验二高压氧预处理诱导兔脊髓缺血耐受的远期效果与再灌后晚期神经元凋亡的关系
     目的:探讨高压氧预处理诱导兔脊髓缺血耐受的远期效果是否通过抑制再灌后晚期神经元的变性和凋亡介导。方法:40只雄性新西兰大白兔随机分为2组(n =20):对照组,即常压空气组;HBO组,即高压氧(HBO)预处理组(100% O2,2.5 ATA,1 h/d,5d),最后一次处理后24 h所有动物均采用肾下腹主动脉阻断法造成脊髓缺血(20min),于再灌注2,7,14,21d每组各灌注5只动物取脊髓(L5-7),制作标本,FJ-B染色检测变性神经元,TUNEL法检测神经元凋亡情况。灌注动物前进行神经功能学评分。结果:HBO组神经功能学评分在2,7,14,21d时均明显优于对照组(P<0.05)。FJ-B染色阳性神经元数仅在2d时明显低于对照组(P<0.05),TUNEL染色阳性神经元数仅在2d和7d时明显低于对照组(P<0.05),其余时间点两组之间比较,结果无统计学差异(P>0.05)。结论:高压氧预处理诱导兔脊髓缺血耐受的远期效果与再灌后晚期神经元的凋亡无明显关系。
     结论
     1高压氧预处理对兔脊髓缺血再灌注损伤有明显的保护作用,且此保护作用可能是永久性的。
     2高压氧预处理对脊髓缺血再灌注损伤的这种永久性的保护作用可能是通过抑制缺血再灌注后早期神经元的凋亡产生的;而与再灌后晚期神经元的变性和凋亡无关。
Background Since 1986 the concept of ischemic preconditioning was proposed by Murry, several strategies (such as low temperature, electro-acupuncture, etc.) as well as drugs (such as excitatory amino acid antagonists, free radical scavengers, minocycline, etc.) have been proved to induce ischemic tolerance in the organs. However, most observation time of these studies’did not exceed 72 hours after reperfusion. It was suspected that preconditioning didn’t permanently prevent cell death after ischemic/reperfusion injury, but only postponed the evolution of the progress of cell death. Whether the protective effects will gradually weaken, disappear or not change in a long-term observation is a question disputable but very important that need us to answer. Our previous study showed that hyperbaric oxygen (hyperbaric oxygen, HBO) preconditioning can simulate "ischemic preconditioning" and induce ischemic tolerance in spinal cord ischemic/reperfusion injury. This phenomenon also exists in focal cerebral ischemia model of rats. Another study showed that apoptosis does exist in ischemia/reperfusion injury in the central nervous system, and the delayed cell injury of ischemia/reperfusion in spinal cord is mainly caused by apoptosis rather than necrosis. Hyperbaric oxygen preconditioning can reduce early apoptosis of neurons and may even reverse apoptosis. Therefore, this study take "the ischemic tolerance induced by hyperbaric oxygen preconditioning in rabbit spinal cord" as the breakthrough point, to study the neuroprotective effect of HBO preconditioning for long-term observation and the relationship between the long-term effects and neuron apoptosis.
     PartⅠLong-standing ischemic tolerance induced by hyperbaric oxygen preconditioning in spinal cord of rabbits
     Objective To determine if the ischemic tolerance induced by hyperbaric oxygen preconditioning in spinal cord of rabbits is long-standing. Methods In experiment 1, sixteen male New Zealand rabbits were randomly assigned to 2 groups (8 in each group) : animals in control group received room air and normal ambient pressure (1 h/d, 5 d); animals in HBO group received HBO pretreatment (100% O2, 2.5 atmosphere absolute [ATA], 1 h/d, 5 d). At 24 hours after the last treatment, the spinal cord ischemia was induced for 20 min by infrarenal aortic cross clamping. At 1day, and 2, 7, 14, 21 days after reperfusion, the neurologic function was scored by the Tarlov criteria (in which 4 was normal and 0 was paraplegia). In experiment 2, thirty-two animals were also randomly assigned to HBO group and control group (16 in each group). Animals underwent the same treatment as in experiment 1. Then eight animals in each group were sacrificed at 2 days and 21 days after reperfusion, respectively. And their spinal cords (L5-7) were removed immediately for histopathologic examination. The neurologic functions were scored before they were sacrificed.
     Results The neurologic function scores in HBO group were significantly greater than in control group at all time points (P<0.05), which had no statistical differences between 7,14 or 21 days and 2days in HBO group (P>0.05). The numbers of normal neurons in the anterior spinal cord in HBO groups were also significantly greater than in control groups at 2 days and 21 days, which had no statistical differences between 2 days and 21 days in HBO groups. There was a strong correlation between the neurologic function scores and the numbers of normal neurons in the anterior horn of the spinal cords (r2d =0.903, P<0.01; r21d =0.922, P<0.01). Conclusion Hyperbaric oxygen preconditioning induced ischemic tolerance in spinal cord of rabbits and the effect is long-standing.
     PartⅡThe relationship between the long-standing ischemic tolerance induced by hyperbaric oxygen preconditioning and the cell apoptosis after reperfusion in spinal cord of rabbits
     Experiment 1 The relationship between the long-standing ischemic tolerance induced by hyperbaric oxygen preconditioning and the early stage apoptosis after reperfusion in spinal cord of rabbits
     Objective To determine if hyperbaric oxygen preconditioning induced long-standing ischemic tolerance via reducing the early stage apoptosis after reperfusion in spinal cord of rabbits. Methods Fifty male New Zealand rabbits were randomly assigned to 2 groups (25 in each group) : animals in control group received room air and normal ambient pressure (1 h/d, 5 d); animals in HBO group received HBO pretreatment (100% O2, 2.5 ATA, 1 h/d, 5 d). At 24 hours after the last treatment, the spinal cord ischemia was induced for 20 min by infrarenal aortic cross clamping. Five animals in each group were sacrificed at 8, 24 hours and 2, 3, 5 days after reperfusion, respectively. And their spinal cords (L5-7) were removed immediately for TUNEL staining. The neurologic functions were scored before they were sacrificed. Results The neurologic function scores in HBO groups were significantly less than that in control groups at 24 hours and 2, 3, 5 days after reperfusion(P<0.05), which had no statistical differences at 8 hours (P>0.05). The numbers of TUNEL positive neurons in HBO groups were significantly less than that in control groups at all time points(P<0.05). Conclusion Hyperbaric oxygen preconditioning induced long-standing ischemic tolerance via reducing early stage apoptosis after reperfusion in spinal cord of rabbits.
     Experiment 2 The relationship between the long-standing ischemic tolerance induced by hyperbaric oxygen preconditioning and the later stage apoptosis after reperfusion in spinal cord of rabbits
     Objective To determine if hyperbaric oxygen preconditioning induced long-standing ischemic tolerance via reducing the later stage apoptosis after reperfusion in spinal cord of rabbits. Methods Forty male New Zealand rabbits were randomly assigned to 2 groups (20 in each group) : animals in control group received room air and normal ambient pressure (1 h/d, 5 d); animals in HBO group received HBO pretreatment (100% O2, 2.5 ATA, 1 h/d, 5 d). At 24 hours after the last treatment, the spinal cord ischemia was induced for 20 min by infrarenal aortic cross clamping. Five animals in each group were sacrificed at 2, 7, 14, 21 days after reperfusion, respectively. And their spinal cords (L5-7) were removed immediately for TUNEL staining and FJ-B staining. The neurologic functions were scored before they were sacrificed. Results Neurologic function scores in HBO groups were significantly greater than that in control groups at all time points (P<0.05). The numbers of TUNEL positive neurons in HBO groups were significantly less than in control groups at 2 and 7 days(P<0.05), and FJ-B positive neurons in the anterior spinal cord in HBO groups was only significantly less than that in control group at 2 days(P<0.05), which had no statistical differences at other time points(P>0.05). Conclusion The long-standing ischemic tolerance induced by hyperbaric oxygen preconditioning doesn’t significantly related to later stage apoptosis after reperfusion in spinal cord of rabbits.
引文
1. Murry CE ,Jennings RB ,Reimer KA . Preconditioning with ischemia :a delay of lethal cell injury in ischemic myocardium[J]. Circulation, 1986 ,74(5) :1124-1136.
    2. Dong H, Xiong L, Zhu Z, Chen S, Hou L, Sakabe T.Preconditioning with hyperbaric oxygen and hyperoxia induces tolerance against spinal cord ischemia in rabbits [J]. Anesthesiology, 2002, 96:907–912.
    3. Xiong L Z, Zhu ZH, Dong HL , Hu WN , Hou LC, Chen SY. Hyperbaric oxygen preconditioning induces neuroprotection against ischemia in transient not permanent middle cerebral artery occlusion rat model [J]. Zhonghua Yixue Zazhi (Chin Med J), 2000, 113 (9) : 836- 839.
    4. Matsui Y, Goh K, Shiiya N. Clinical application of evoked spinal cord potentials elicited by direct stimulation of the cord during temporary occlusion of the thoracic aorta[J]. J Thorac.Cardiovasc Surg. 1994 Jun;107(6): 1519–1527.
    5. Sakurai M, Hayashi T, Abe K.Delayed and selective motor neuron death after transient spinal cord ischemia: a role of apoptosis?[J]. J Thorac Cardiovasc Surg., 1998,115(6):1310-1315.
    6. Kitagawa K, Matsumoto M, Tagaya M.‘Ischemic tolerance’phenonmenon found in the brain. Brain Res.1990;528:21-24.
    7. Matsuyama K, Chiba Y, Ihaya A. Effect of spinal cord preconditioning on paraplegia during cross–clamping of the thoracic aorta. Ann Thorac Surg.1997;63:1315-1320.
    8.徐军美,常业恬,曹德全,王亚平,胡冬煦,唐浩,倪斌,邹永华.吸入麻醉药预处理对兔心肌缺血再灌注中心肌细胞凋亡的影响.中华麻醉学杂志. 2002; 22:483-485。
    9. De Hert, SG ten Broecke, PW Mertens, Van Sommeren EW, De Blier IG, Stockman BA, Rodrigus IE. Sevoflurane but not propofol preserves myocardial function in coronary surgery patients. Anesthesiology. 2002; 97(1):42-49.
    10. Julier K, da Silva, R Garcia, Bestmann L, Frascarolo P, Zollinger A, Chassot PG, Schmid ER, Turina MI, von Segesser LK, Pasch T, Spahn DR, Zaugg M. Preconditioning by sevoflurane decreases biochemical markers for myocardial and renal dysfunction in coronary artery bypass graft surgery: adouble-blinded, placebo-controlled, multicenter study. Anesthesiology. 2003; 98(6):1315-1327.
    11. Xiong L Z, Zheng Y, Wu BI , Hou L, Zhu Z, Zhang X, Lu Z. Preconditioning with isoflurane produces dose-dependent neuroprotection via activation of adenosinetriphosphate regulated potassium channels after focal cerebral ischemia in rats. Aneath Analg. 2003; 96(1): 233-239.
    12. Park HP, Jeon YT, Hwang JW, Kang H, Lim SW, Kim CS, Oh YS. Isoflurane preconditioning protects motor neurons from spinal cord ischemia: Its doseresponse effects and activation of mitochondrial adenosine triphosphate-dependent potassium channel. Neurosci Lett. 2005; 387(2):90-94.
    13. Sang H, Cao L, Qiu P, Xiong L, Wang R, Yan G. Isoflurane produces delayed preconditioning against spinal cord ischemic injury via release of free radicals in rabbits. Anesthesiology. 2006; 105(5):953-960.
    14. Shi E, Kazui T, Jiang X, Washiyama N, Suzuki K, Yamashita K, Terada H. NS-7, a novel Na+/Ca2+ channel blocker, prevents neurologic injury afterspinal cord ischemia in rabbits. J Thorac Cardiovasc Surg. 2005 Feb;129(2):364-71.
    15. Akgun S, Tekeli A, Kurtkaya O, Civelek A, Isbir SC, Ak K, Arsan S, Sav A. Neuroprotective effects of FK-506, L-carnitine and azathioprine on spinal cord ischemia-reperfusion injury. Eur J Cardiothorac Surg. 2004 Jan;25(1):105-10.
    16. Beattie MS. Inflammation and apoptosis: linked therapeutic targets in spinal cord injury. Trends Mol Med. 2004; 10(12):580-583.
    17. Ehrlich M, Knolle E, Ciovica R. Memantine for prevention of spinal cord injury in a rabbit model . J Thorac Cardiovasc Surg. 1999;117 :285-291
    18. Francel PC, Long BA, Malik JM. Limiting ischemic spinal cord injury using a free radical scavenger 21-aminosteroid and/or cerebrospinal fluid drainage. J Neurosurg. 1993; 79(5):742-751
    19. Bowes MP, Burhop KE, Zivin JA. Diaspirin cross-linked hemoglobin improves neurological outcome following reversible but not irreversible CNS ischemia in rabbits. Stroke 1994;25(11): 2253-2257
    20.曾毅,熊利泽,陈绍洋,雷毅,雷霆重复电针预处理对兔脊髓缺血-再灌注损伤生化指标的影响中国中西医结合急救杂志2004;2
    21.雷毅,熊利泽,陈绍洋,胡渤,曾毅,王强,贺大银纳洛酮对重复电针预处理诱导脊髓缺血耐受作用的影响中国中西医结合急救杂志2003;5
    22.雷毅,熊利泽,曾毅,孙永柱,陈绍洋,王强,杨静,贺大银不同穴位重复电针预处理诱导兔脊髓缺血耐受效果的对比中国临床康复2003;26
    23. Currie D, Valkama J.Limited effects of heavy metal pollution on foraging and breeding success in the curlew (Numenius arquata). Environ Pollut.1998;101(2):253-61.
    24. Kingma DW, Shad A, Tsokos M, Fest T, Otsuki T, Frekko K, Werner E,Werner A, Magrath I, Raffeld M, Jaffe ES.Epstein-Barr virus (EBV)-associated smooth-muscle tumor arising in a post-transplant patient treated successfully for two PT-EBV-associated large-cell lymphomas. Case report.Am J Surg Pathol. 1996 Dec;20(12):1511-9.
    25. Xu F, Gao M, Wang L, Zhou T, Jin L, Jin J.Amperometric determination of morphine on cobalt hexacyanoferrate modified electrode in rat brain microdialysates. Talanta. 2002 Sep 12;58(3):427-32.
    26. Perdrizet GA, Lena CJ, Shapiro DS, Rewinski MJ. Preoperative stress conditioning prevents paralysis after experimental aortic surgery: increased heat shock protein content is associated with ischemic tolerance of the spinal cord. J Thorac Cardiovasc Surg. 2002; 124(1):162-170
    27. Wada K, Ito M, Katoh H, Shima K, Chigasaki H.Repeated hyperbaric oxygen induces ischemic tolerance in gerbil hippocampus. Brain Res 18;740(1-2):15-20
    28. Ma D, Hossain M, Pettet GK, Luo Y, Lim T, Akimov S, Sanders RD,Franks NP and Maze M. Xenon preconditioning reduces brain damage fromneonatal asphyxia in rats. J Cereb Blood Flow Metab. 2006; 26 (2):199-20
    29. Dave KR, Lange-Asschenfeldt C, Raval AP, Prado R, Busto R, Saul I and Perez-Pinzon MA. Ischemic preconditioning ameliorates excitotoxicity by shifting glutamate/γ-aminobutyric acid release and biosynthesis. J Neurosci Res. 2005; 82 (5): 665-73
    30. Yanamoto H, Xue JH, Miyamoto S, Nagata I, Nakano Y, Murao K and Kikuchi H. Spreading depression induces long-lasting brain protection against infarcted lesion development via BDNF gene-dependent mechanism. Brain Res. 2004; 1019 (1-2):178-88
    31. Furuya K, Zhu L, Kawahara N, Abe O and Kirino T. Differences in infarct evolution between lipopolysaccharide-induced tolerant and nontolerant conditions to focal cerebral ischemia. J Neurosurg. 2005; 103: 715-23
    32. Glantz L, Avramovich A, Trembovler V, Gurvitz V, Kohen R, Eidelman LA and Shohami E. Ischemic preconditioning increases antioxidants in the brain and peripheral organs after cerebral ischemia. Exp Neurol. 2005; 192 (1):117-24
    33. Arthur PG, Lim SC, Meloni BP, Munns SE, Chan A and Knuckey NW. The protective effect of hypoxic preconditioning on cortical neuronal cultures is associated with increases in the activity of several antioxidant enzymes. Brain Res. 2004; 1017 (1-2): 146-54
    34. Corbett D and Crooks P. Ischemic preconditioning: a long term survival study using behavioral and histological endpoints. Brain Res. 1997; 760:129-36
    35. Ueda M and Nowak TS Jr. Protective preconditioning by transient global ischemia in the rat: components of delayed injury progression and lasting protection distinguished by comparisons of depolarization thresholds for cell loss at long survival times. J Cereb Blood Flow Metab. 2005; 25 (8):949-58
    36. Gustavsson M, Anderson MF, Mallard C and Hagberg H. Hypoxic preconditioning confers longterm reduction of brain injury and improvement of neurological ability in immature rats. Pediatr Res. 2005; 57:305-9
    37. Dooley P and Corbett D. Competing processes of cell death and recovery of function following ischemic preconditioning. Brain Res. 1998; 794: 119-2
    38. Hua Y, Wu J, Pecina S, Yang S, Schallert T, Keep RF and Xi G. Ischemicpreconditioning procedure induces behavioral deficits in the absence of brain injury? Neurol Res. 2005; 27 (3): 261-7
    39. Danielisova V, Chavko N. KB-2796, a calcium channel blocker, ameliorates ischemic spinal cord damage in rabbits. Neurochem Res. 1994; 19(12):1503-1507.
    40. Peasley MA, Shi R. Ischemic insult exacerbates acrolein-induced conduction loss and axonal membrane disruption in guinea pig spinal cord white matter. J Neurol Sci. 2003; 216(1):23-32.
    41. Lombardi V, Val ko L, Stoic S, Valko M, OndrejickováO, HorákováL, Placek J, Troncone A. Free radicals in rabbit spinal cord ischemia: electron spin resonance spectroscopy and correlation with SOD activity. Cell Mol Neurobiol. 1998; 18(4):399-412.
    42. Stys PK. White matter injury mechanisms. Curr Mol Med. 2004; 4(2):113-130.
    43. Simpson RK, Jr Robertson CS, Goodman JC. Spinal cord ischemia induced elevation of amino acids: extracellular measurement with microdialysis. Neurochem Res. 1990; 15(6):635-639.
    44. Li S, Stys PK. Mechanisms of ionotropic glutamate receptor-mediated excitotoxicity in isolated spinal cord white matter. J Neurosci. 2000; 20(3):1190-1198.
    45. Dhodda VK, Sailor KA, Bowen KK and Vemuganti R. Putative endogenous mediators of preconditioning-induced ischemic tolerance in rat brain identified by genomic and proteomic analysis. J Neurochem. 2004; 89:73–89
    46. Tang Y Pacary E, Freret T, Divoux D, Petit E, Schuman-Bard P and Bernaudin M. Effect of hypoxic preconditioning on brain genomic responsebefore and following ischemia in the adult mouse: identification of potential neuroprotective candidates for stroke. Neurobiol Dis. 2006; 21 (1): 18-28
    47. LoPachin RM, Lehning EJ. Mechanism of calcium entry during axon injury and degeneration. Toxicol Appl Pharmacol. 1997; 143(2):233-244
    48. Naidu KA, Fu ES, Sutton ET, Prockop LD, Cantor A. The therapeutic effects of epidural intercellular adhesion molecule-1 monoclonal antibody in a rabbit model: involvement of the intercellular adhesion molecule-1 pathway in spinal cord ischemia. Anesth Analg. 2003; 97(3):857-862.
    49. Sakurai M, Hayashi T, Abe K.Delayed and selective motor neuron death after transient spinal cord ischemia: a role of apoptosis? J Thorac Cardiovasc Surg., 1998,115(6):1310-1315.
    50. Kato H, Kanellopoulos GK, Matsuo S. Neuronal apoptosis and necrosis following spinal cord ischemia in the rat. Exp Neurol. 1997;148(2):464-474.
    51. Kato H, Kanellopoulos GK, Matsuo S,et al. Protection of rat spinal cord from ischemia with dextrorphan and cycloheximide: effects on necrosis and apoptosis. J Thorac Cardiovasc Surg.1997; 114(4):609-618.
    52. Matsushita K, Wu Y, Qiu J, Lang-Lazdunski L, Hirt L, Waeber C, Hyman BT, Yuan J, Moskowitz MA. Fas receptor and neuronal cell death after spinal cord ischemia. J Neurosci. 2000; 20(18):6879-6887.
    53. Lin R, Roseborough G, Dong Y, et al.DNA damage and repair system in spinal cord ischemia[J].J Vasc Surg, 2003,37(4):847-858.
    54. Shackelford DA, Tobaru T, Zhang S, Zivin JA. Changes in expression of the DNA repair protein complex DNA-dependent protein kinase after ischemia and reperfusion. Neurosci. 1999; 19(12):4727-4738.
    55. Motoyoshi N, Sakurai M, Hayashi T, Aoki M, Abe K, Itoyama Y, TabayashiK.Establishment of a local cooling model against spinal cord ischemia representing prolonged induction of heat shock protein.J Thorac Cardiovasc Surg. 2001 Aug;122(2):351-7.
    56. Sakurai M, Hayashi T, Abe K, Sadahiro M, Tabayashi K.Delayed and selective motor neuron death after transient spinal cord ischemia: a role of apoptosis?J Thorac Cardiovasc Surg. 1998 Jun;115(6):1310-5.
    57. Fan LH, Wang KZ, Cheng B.Protective effects of ginkgo leaf extracts on neurons in spinal cord after ischemia-reperfusion injury in rabbits.Zhong Xi Yi Jie He Xue Bao. 2006 Mar;4(2):181-4.
    58. Scheller MS, Saidman LJ, Partridge BL. MAC of sevoflurane in humans and the New Zealand white rabbit. Can J Anesth. 1988; 35(2):153-156.
    59. Cassada DC, Tribble CG, Long SM, Kaza AK, Linden J, Rieger JM, Rosin D, Kron IL, Kern JA.Adenosine A2A agonist reduces paralysis after spinal cord ischemia: correlation with A2A receptor expression on motor neurons.Ann Thorac Surg. 2002 Sep;74(3):846-9; discussion 849-50.
    60. Wang LM, Yan Y, Zou LJ, Jing NH, Xu ZY.Moderate hypothermia prevents neural cell apoptosis following spinal cord ischemia in rabbits.Cell Res. 2005 May;15(5):387-93.
    61. Chen MF, Chen HM, Ueng SW, Shyr MH.Hyperbaric oxygen pretreatment attenuates hepatic reperfusion injury. Liver 18(2):110-116
    62. Kim CH, Chio H, Chon YS, Kim GT, Park JW, Kim MS.Hyperbaric oxygenation pretreatment induces catalase and reduces infarct size in ischemic rat myocardium. Eur J Physiol 442:519-525
    63. Nie H, Xiong L, Lao N, Chen S, Xu N, Zhu Z. Hyperbaric oxygen preconditioning induced tolerance against spinal cord ischemia by upregulation of antioxidant enzymes in rabbits. J Cereb Blood Flow Metab.2006; 26(5):666-674.
    64. Ohtsuki T, Matsumoto M, Kuwabara K, Kitagawa K, Suzuki K, Taniguchi N.Influence of oxidative stress on induced tolerance to ischemia in gerbil hippocampus neurons. Brain Research 599:246-252
    65. Turitto G, Rao S, Ahuja RK, Caref EB, el-Sherif N.Time-domain and frequency-domain analyses of the signal-averaged ECG in patients with ventricular tachycardia and ischemic versus nonischemic dilated cardiomyopathy. J Electrocardiol. 1994;27 Suppl:213-8.
    66. Harabin AL, Braisted JC, Flynn ET.Response of antioxidant enzymes to intermittent and continuous hyperbaric oxygen. J Appl Physiol. 1990 Jul;69(1):328-35.
    67. Li Q, Li J, Zhang L, Wang B, Xiong L.Preconditioning with hyperbaric oxygen induces tolerance against oxidative injury via increased expression of heme oxygenase-1 in primary cultured spinal cord neurons. Life Sci. 2007 Feb 27;80(12):1087-93.
    68. Gu GJ, Li YP, Peng ZY, Xu JJ, Kang ZM, Xu WG, Tao HY, Ostrowski RP, Zhang JH, Sun XJ.Mechanism of ischemic tolerance induced by hyperbaric oxygen preconditioning involves upregulation of hypoxia-inducible factor-1alpha and erythropoietin in rats. J Appl Physiol. 2008 Apr; 104(4):1185-91.
    69. Peng Z, Ren P, Kang Z, Du J, Lian Q, Liu Y, Zhang JH, Sun X.Up-regulated HIF-1alpha is involved in the hypoxic tolerance induced by hyperbaric oxygen preconditioning. Brain Res. 2008 May 30;1212:71-8.
    70. Dirnagl U, Simon RP, Hallenbeck JM.Ischemic tolerance and endogenous neuroprotection. Trends Neurosci. 2003 May;26(5):248-54.
    71. Thannickal VJ, Fanburg BL.Reactive oxygen species in cell signaling. Am JPhysiol Lung Cell Mol Physiol. 2000 Dec;279(6):L1005-28.
    72.周建光,刘景昌,方以群.高压氧对脑缺血再灌注海马CA1区神经元凋亡作用的研究.中国应用生理学杂志2001;7(1 ):82-84
    73. Calvert JW, Zhou C, Nanda A, Zhang JH.Effect of hyperbaric oxygen on apoptosis in neonatal hypoxia-ischemia rat model. J Appl Physiol. 2003 Nov;95(5):2072-80.
    74. Yin D, Zhou C, Kusaka I, Calvert JW, Parent AD, Nanda A, Zhang JH.Inhibition of apoptosis by hyperbaric oxygen in a rat focal cerebral ischemic model.J Cereb Blood Flow Metab. 2003 Jul;23(7):855-64.
    75. Li Y, Zhou C, Calvert JW, Colohan AR, Zhang JH.Multiple effects of hyperbaric oxygen on the expression of HIF-1 alpha and apoptotic genes in a global ischemia-hypotension rat model.Exp Neurol. 2005 Jan;191(1):198-210.
    76. Huang ZX, Kang ZM, Gu GJ, Peng GN, Yun L, Tao HY, Xu WG, Sun XJ, Zhang JH.Therapeutic effects of hyperbaric oxygen in a rat model of endothelin-1-induced focal cerebral ischemia.Brain Res. 2007 Jun 11;1153:204-13.
    77. Zhang Q, Chang Q, Cox RA, Gong X, Gould LJ.Hyperbaric oxygen attenuates apoptosis and decreases inflammation in an ischemic wound model.J Invest Dermatol. 2008 Aug;128(8):2102-12.
    78. Vlodavsky E, Palzur E, Feinsod M, Soustiel JF.Evaluation of the apoptosis-related proteins of the BCL-2 family in the traumatic penumbra area of the rat model of cerebral contusion, treated by hyperbaric oxygen therapy: a quantitative immunohistochemical study.Acta Neuropathol. 2005 Aug;110(2):120-6. Epub 2005 Jul 7.
    79. Liu Z, Jiao QF, You C, Che YJ, Su FZ.Effect of hyperbaric oxygen oncytochrome C, Bcl-2 and Bax expression after experimental traumatic brain injury in rats.Chin J Traumatol. 2006 Jun;9(3):168-74.
    80. Pan HC, Chin CS, Yang DY, Ho SP, Chen CJ, Hwang SM, Chang MH, Cheng FC.Human Amniotic Fluid Mesenchymal Stem Cells in Combination with Hyperbaric Oxygen Augment Peripheral Nerve Regeneration.Neurochem Res. 2009 Jan 17.
    81. Wada K, Miyazawa T, Nomura N. Mn-SOD and Bcl-2 expression after repeated hyperbaric oxygenation. Acta Neurochir Suppl. 2000; 76:285-9
    82. Ostrowski RP, Graupner G, Titova E, Zhang J, Chiu J, Dach N, Corleone D, Tang J, Zhang JH.The hyperbaric oxygen preconditioning-induced brain protection is mediated by a reduction of early apoptosis after transient global cerebral ischemia.Neurobiol Dis. 2008 Jan;29(1):1-13. Epub 2007 Jul 28.
    83. Li Z, Liu W, Kang Z, Lv S, Han C, Yun L, Sun X, Zhang JH.Mechanism of hyperbaric oxygen preconditioning in neonatal hypoxia-ischemia rat model.Brain Res. 2008 Feb 27;1196:151-6.
    84. Li JS, Zhang W, Kang ZM, Ding SJ, Liu WW, Zhang JH, Guan YT, Sun XJ.Hyperbaric oxygen preconditioning reduces ischemia-reperfusion injury by inhibition of apoptosis via mitochondrial pathway in rat brain. Neuroscience. 2009 Apr 10;159(4):1309-15. Epub 2009 Jan 13.
    85. Wang L, Li W, Kang Z, Liu Y, Deng X, Tao H, Xu W, Li R, Sun X, Zhang JH.Hyperbaric Oxygen Preconditioning Attenuates Early Apoptosis after Spinal Cord Ischemia in Rats.J Neurotrauma. 2009 Jan 18.
    86. Ganguly BJ, Tonomura N, Benson RM, Osborne BA, Granowitz EV.Hyperbaric oxygen enhances apoptosis in hematopoietic cells.Apoptosis. 2002 Dec;7(6):499-510.
    87. Weber SU, Koch A, Kankeleit J, Schewe JC, Siekmann U, Stüber F, Hoeft A, Schr?der S.Hyperbaric oxygen induces apoptosis via a mitochondrial mechanism.Apoptosis. 2009 Jan;14(1):97-107.
    88. Johnson SH, Kraimer JM, Graeber GM. Effects of flunarization on neurological recovery and spinal cord blood flow in experimental spinal cord ischemia in rabbits. Stroke. 1993; 24(10):1547-1553
    89.高鹏,熊利泽,聂煌,路志红,马福成.缺血后处理对兔脊髓缺血-再灌注损伤的保护作用.临床麻醉学杂志, 2006; 22:285-287
    90. Jacobs TP, Kempski O, Mckinley D, Dutka AJ, Hallenbeck JM, Feuerstein G. Blood flow and vascular permeability during motor dysfunction in a rabbit model of spinal cord ischemia. Stroke. 1987; 23:367-373.
    91. Matsui Y, Goh K, Shiiya N. Clinical application of evoked spinal cord potentials elicited by direct stimulation of the cord during temporary occlusion of the thoracic aorta[J]. J Thorac.Cardiovasc Surg. 1994 Jun;107(6): 1519–1527
    92. Lin R, Roseborough G, Dong Y, et al.DNA damage and repair system in spinal cord ischemia[J].J Vasc Surg, 2003,37(4):847-858
    93. Nitatori T, Sato N, Waguri S. Delayed neuronal death in the CA1pyramidal cell layer of the gerbil hippocampus following transientischemia is apoptosis. J. Neurosci. 15 (2), 1001–1011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700