内源性大麻素系统参与电针预处理诱导的脑缺血耐受
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
缺血性脑损伤是近年来导致残疾和死亡的最常见原因之一,而现在临床上针对这种致残性疾病的药物治疗效果还十分有限。寻找一种有效的、对人体伤害小的、易被患者接受的预处理方法无疑具有十分重要的意义。电针不仅继承了传统针刺激治疗的优点,而且还融合了电刺激的生理效应,具有简单易行、安全可靠、患者易接受等优点,其对脑缺血的治疗作用已被较多的临床和动物实验所证实。我们以往的研究证实,重复电针刺激百会穴预处理具有神经保护作用,能够减轻随后的缺血性脑损伤,明显减少大脑梗死容积,显著改善大鼠的神经功能损害程度,具有较明显的脑缺血损伤保护作用[1]。这种作用是由脑啡肽的释放并作用于δ和μ受体介导的[2]。研究发现,大麻素与阿片类物质的神经传递之间存在交互作用,并具有相似的药理学作用:都能够诱导产生镇痛、镇静、低体温和低血压以及免疫抑制等效应[3, 4]。此外,心脏研究中发现,缺血前给予内源性大麻素能够模拟缺血预处理的神经保护作用[5],并且,在活体和离体试验中都已证实内源性和外源性大麻素都能够对抗多种类型的急性神经元损伤,具有神经保护作用[6-9]。这些结果表明,内源性大麻素系统参与了电针预处理诱导的脑保护作用。因此,本研究拟探讨内源性大麻素系统是否参与了电针预处理诱导的脑缺血耐受。
     第一部分电针刺激百会穴预处理对内源性大麻素系统的影响
     方法
     1.单次电针预处理对大鼠脑内内源性大麻素系统的影响健康雄性SD大鼠(280~320g),随机分为3组:Sham组、SP组和EA组。Sham组未行任何处理,SP组仅腹腔注射(ip)戊巴比妥钠40 mg/kg。EA组在腹腔注射戊巴比妥钠40 mg/kg麻醉下电针刺激百会穴30 min。电针预处理后2 h进行CB1受体与NeuN免疫双重荧光染色及内源性大麻素含量测定;电针预处理后30 min、1 h和2 h行CB1受体RT-PCR和Western blot检测。
     2.重复电针预处理对大鼠脑内内源性大麻素的影响
     健康雄性SD大鼠(280~320g),随机分为4组:Sham-2组、EA-2组、Sham-24组和EA-24组。Sham-2组和Sham-24组仅每天腹腔注射戊巴比妥钠40 mg/kg,连续5 d。EA-2组和EA-24组每天在戊巴比妥钠40 mg/kg(ip)麻醉下电针刺激百会穴30 min,连续5 d。Sham-2组和EA-2组大鼠在最后一次电针预处理2 h后,Sham-24组和EA-24组在最后一次电针预处理24 h后深麻醉断头处死,检测内源性大麻素含量。
     结果
     1.单次电针预处理对大鼠脑内内源性大麻素系统的影响
     1.1 CB1受体与NeuN免疫双重荧光染色
     与Sham组和SP组相比,电针预处理显著上调了右侧半脑CB1受体的表达。CB1受体与NeuN免疫双重荧光染色表明CB1受体主要表达于神经元。电针预处理后2 h,CB1受体表达增强,并与NeuN表达相重合。
     1.2 CB1受体mRNA表达
     与Sham组和SP组相比,电针预处理结束后30 min和60 min,CB1受体mRNA表达均显著升高,而电针结束后120 min则回降至Sham组水平。
     1.3 CB1受体蛋白含量
     Western blot条带分析结果显示,与Sham组和SP组相比,电针预处理显著提高了电针后120 min时CB1受体蛋白含量。
     1.4内源性大麻素含量
     与Sham组和SP组相比,单次电针预处理显著上调了右侧半脑内源性大麻素AEA和2-AG的含量。
     2.重复电针预处理对大鼠脑内内源性大麻素的影响
     重复电针预处理显著上调了右侧半脑内源性大麻素的含量。AEA和2-AG含量在电针预处理后2 h均显著升高,在24 h时AEA含量仍维持在较高水平,而2-AG含量下降至对照组水平。
     第二部分内源性大麻素系统在电针预处理诱导脑缺血耐受中的作用
     方法
     1. CB1受体参与单次电针预处理诱导的大鼠脑缺血耐受健康雄性SD大鼠(280~320g),均在MCAO前2.5 h腹腔注射戊巴比妥钠40 mg/kg麻醉,并随机分为5组:Con组、EA-MCAO组、AM-EA-MCAO组、v-EA-MCAO组和AM-MCAO组。Con组仅行颈内动脉尼龙线线栓法致MCAO模型;EA-MCAO组在电针刺激百会穴30 min后2 h时行MCAO;AM-MCAO组在MCAO前3 h腹腔注射AM251 1 mg/kg;v-EA-MCAO组和AM-EA-MCAO组在电针预处理前30 min分别腹腔注射溶剂3 ml/kg和AM251 1 mg/kg,并在电针结束后2 h行MCAO。再灌注24 h和7 d后,进行神经功能学评分并测量大脑梗死容积百分比。
     2. CB1受体参与重复电针预处理诱导的大鼠脑缺血耐受
     健康雄性SD大鼠(280~320g),随机分为6组:Sham组、Con组、EA-MCAO组、AM-EA-MCAO组、v-EA-MCAO组和AM-MCAO组。除Sham组外其余各组动物每天腹腔注射戊巴比妥钠40 mg/kg麻醉,连续5 d。Sham组仅行假手术;Con组仅缺血再灌注;EA-MCAO组接受电针刺激百会穴30 min/d,连续5 d;AM-MCAO组每天腹腔注射AM251 1 mg/kg,连续5 d;v-EA-MCAO组和AM-EA-MCAO组每天在电针预处理前30 min分别给予溶剂3 ml/kg(ip)和AM251 1 mg/kg(ip),连续5 d。除Sham组外其余各组均在最后一次预处理24 h后行MCAO。再灌注24 h后,进行神经功能学评分并测量大脑梗死容积百分比。
     3.重复电针预处理对脑缺血再灌注后内源性大麻素的影响
     健康雄性SD大鼠(280~320g),随机分为5组:Sham组、Con-2组、EA-MCAO-2组、Con-24组和EA-MCAO-24组。Sham组、Con-2组和Con-24组每天腹腔注射戊巴比妥钠40 mg/kg,连续5 d,EA-MCAO-2组和EA-MCAO-24组每天在戊巴比妥钠40 mg/kg(ip)麻醉下电针刺激百会穴30 min,连续5 d。除Sham组外其余各组均在最后一次预处理24 h后行MCAO。Sham组在最后一次处理24 h后,Con-2组和EA-MCAO-2组在再灌注2 h后,Con-24组和EA-MCAO-24组在再灌注24 h后深麻醉断头处死,检测内源性大麻素含量。
     结果
     1. CB1受体参与单次电针预处理诱导的大鼠脑缺血耐受
     1.1神经功能学评分
     EA-MCAO组大鼠再灌注24 h和7 d后神经功能学评分显著高于Con组。单独给予CB1受体拮抗剂AM251对于MCAO大鼠的神经功能学评分没有影响,但在电针前30 min给予AM251则能够逆转电针预处理的神经保护作用。
     1.2脑梗死容积百分比
     EA-MCAO组大鼠再灌注24 h和7 d后脑梗死容积百分比显著小于Con组。单独给予CB1受体拮抗剂AM251对于MCAO大鼠的脑梗死容积百分比没有影响,但在电针前30 min给予AM251则能够逆转电针预处理的神经保护作用。
     2. CB1受体参与重复电针预处理诱导的大鼠脑缺血耐受
     2.1神经功能学评分
     Sham组神经功能学评分正常,EA-MCAO组神经功能学评分显著高于Con组。单独给予CB1受体拮抗剂AM251对于MCAO大鼠的神经功能学评分没有影响,但在电针前30 min给予AM251则能够逆转电针预处理的神经保护作用。
     2.2脑梗死容积百分比
     Sham组未见脑梗死灶。EA-MCAO组大鼠脑梗死容积百分比显著小于Con组。单独给予CB1受体拮抗剂AM251对于MCAO大鼠的脑梗死容积百分比没有影响,但在电针前30 min给予AM251则能够逆转电针预处理的神经保护作用。
     3.重复电针预处理对脑缺血再灌注后内源性大麻素的影响
     与Sham组相比Con-2组AEA含量显著升高,而Con-24组则显著下降。EA-MCAO-2组与Sham组及Con-2组相比AEA含量均显著升高,EA-MCAO-24组与Con-24组相比AEA含量显著升高。EA-MCAO-2组2-AG含量较Sham组和Con-2组均显著提高。
     小结
     1、单次及重复电针刺激大鼠百会穴能够上调脑内内源性大麻素AEA和2-AG的含量及CB1受体的表达,提示电针预处理激活了内源性大麻素系统。
     2、电针预处理上调了缺血再灌注后脑内内源性大麻素AEA和2-AG的含量,且电针预处理诱导的神经保护作用被CB1受体拮抗剂所逆转,表明电针预处理激活了内源性大麻素系统诱导了脑缺血耐受。
Cerebral Ischemia is one of the most common causes of disability and death. Clinical treatment of this debilitating disorder is inadequate. To explore an effective, less harmful and more acceptable pretreatment is of great significance. As a product of integration of traditional acupuncture and modern electrical stimulation technique, electroacupuncture possesses a number of advantages such as simple operation, safety, reliability and acceptability. Its therapeutic and protective effect of cerebral ischemic injury has been proved by clinical and animal experiments. Our previous study has demonstrated that pretreatment with electroacupuncture (EA) at the Baihui acupoint has significant neuroprotective effect on cerebral ischemic injury. It can protect the brain from the subsequent cerebral ischemic injury, significantly reduce brain infarct volumes and greatly improve the neurological function scores of rats, and this neuroprotective effect is possibly mediated by the release of enkephalins, which may bindδ- andμ-opioid receptors to induce the tolerance against focal cerebral ischemia. The interaction between endocannabinoid and opioid neurotransmission has been reported. They share a similar pharmacological profile: both induce analgesia, hypothermia, hypotension, immunosuppression and so on. Besides, previous studies demonstrated that pretreatment with either 2-AG or AEA before ischemia mimicked preconditioning inasmuch as it protected the ischemic insults in a similar fashion in rat isolated hearts. Synthetic and endocannabinoids exert neuroprotective effects in animals as well as in vitro models of various forms of acute neuronal injury. These findings indicate that the endocannabinoid system participates in the ischemic tolerance which induced by electroacupuncture. Thus, the present study is designed to explore whether the endocannabinoid system are involved in the ischemic tolerance induced by EA pretreatment at the Baihui acupoint.
     Part 1 The effect of EA pretreatment at the Baihui acupoint on the endocannabinoid system
     Methods
     1. The effect of pretreatment with single electroacupuncture on the endocannabinoid system Male SD rats weighing 280-320 g were randomly assigned to 3 groups: Sham, SP and EA groups. The rats in Sham group did not receive any treatment. The rats in SP group only received anesthesia with intraperitoneal injection (ip) of 40 mg/kg sodium pentobarbital; rats in EA group were anesthetized with 40 mg/kg sodium pentobarbital (ip) and received EA stimuli for 30 min. At 2 h after the end of EA pretreatment, CB1 receptor expression was examined and the endocannabinoid content was determined; at 30 min, 1 h and 2 h after EA pretreatment, expression of both CB1 receptor mRNA and protein was determined.
     2. The effect of pretreatment with repeated electroacupuncture on the endocannabinoid system
     Male SD rats weighing 280-320 g were randomly assigned to 4 groups: Sham-2, EA-2, Sham-24 and EA-24 groups. Rats in Sham-2 group and Sham-24 group were anesthetized with sodium pentobarbital (ip) once a day for 5 consecutive days, rats in EA-2 group and EA-24 group were anesthetized with sodium pentobarbital 40 mg/kg (ip) and received electroacupuncture pretreatment at the Baihui acupoint 30 min a day for 5 consecutive days. Rats in Sham-2 group and EA-2 group were decapitated 2 h after last pretreatment; rats in Sham-24 group and EA-24 group were decapitated 24 h after last pretreatment. The endocannabinoid content was determined.
     Results
     1. The effect of pretreatment with single electroacupuncture on the endocannabinoid system
     1.1. Double immunofluorescence for CB1 receptor and NeuN
     The CB1 receptor-like immunoreactivity in the ipsilateral hemisphere was significantly increased by EA pretreatment. Double immunofluorescence for CB1 receptor and NeuN demonstrated that CB1 receptor was mainly localized in neurons. The CB1 receptor immunoreactivities were increased and colocalized with the neuronal immunoreactivities at 2 h after EA pretreatment in the ipsilateral hemisphere.
     1.2 CB1 receptor mRNA expression
     The expression of CB1 receptor mRNA significantly increased at 30 and 60 min after EA pretreatment compared with that in Sham or SP group while it was similar at 120 min after EA pretreatment.
     1.3 CB1 receptor protein expression
     The analysis of Western blot bands indicated that EA pretreatment significantly increased CB1 receptor protein expression level compared with that in Sham or SP group at 120 min after EA pretreatment.
     1.4. The content of endocannabinoid
     Pretreatment with EA increased the brain tissue content of the endocannabinoid 2-AG and AEA.
     2. The effect of pretreatment with repeated electroacupuncture on the endocannabinoid system
     Pretreatment with repeated electroacupuncture increased the brain tissue content of the endocannabinoid 2-AG and AEA. The content of AEA was significantly increased in the EA-2 group and EA-24 group. The content of 2-AG was increased in the EA-2 group but decreased in the EA-24 group.
     Part 2
     The effect of the endocannabinoid system on the ischemic tolerance induced by EA pretreatment
     Methods
     1. CB1 Receptor is involved in the ischemic tolerance induced by pretreatment with single electroacupuncture Male SD rats weighing 280-320 g were anesthetized with sodium pentobarbital (ip) at 2.5 h before induction of focal cerebral ischemia, and were randomly assigned to 5 groups: Con, EA-MCAO, AM-EA-MCAO, v-EA-MCAO and AM-MCAO groups. The rats in Con group only received MCAO and the rats in EA-MCAO group received MCAO at 2 h after EA pretreatment for 30 min. Rats in AM-MCAO group were intraperitoneally injected with 1 mg/kg AM251 at 3 h before MCAO. Rats in v-EA-MCAO group and AM251-EA-MCAO group were administered with 3 ml/kg vehicle and 1 mg/kg AM251 at 30 min prior to the onset of EA pretreatment respectively, and then subjected to MCAO at 2 h after the end of EA pretreatment. At 24 h or 7 d after reperfusion, the neurological function scores were evaluated and the brain infarct volume, as a percentage of volume at normal cerebral hemisphere was then assessed.
     2. CB1 Receptor is involved in the ischemic tolerance induced by pretreatment with repeated electroacupuncture
     Male SD rats weighing 280-320 g were randomly assigned to 6 groups: Sham, Con, EA-MCAO, AM-EA-MCAO, v-EA-MCAO and AM-MCAO groups. All of the rats were anesthetized with intraperitoneal injection of 40 mg/kg sodium pentobarbital once a day for 5 consecutive days except those in Sham group. Rats in Sham group only received sham operation. Rats in Con group were only subjected to ischemia and reperfusion; rats in AM-MCAO group received 1 mg/kg AM251 (ip) once a day for 5 consecutive days; rats in EA-MCAO group received electroacupuncture at the Baihui acupoint for 30 min a day for 5 consecutive days; rats in v-EA-MCAO group and AM-EA-MCAO group received electroacupuncture at the Baihui acupoint for 30 min, and were respectively injected with 3 ml/kg vehicle and 1 mg/kg AM251 (ip) 30 min prior to the onset of electroacupuncture once a day for 5 consecutive days. 24 h after last treatment, each group except Sham group received the middle cerebral artery occlusion. At 24 h after reperfusion, the neurological function scores were evaluated and the brain infarct volume, as a percentage of volume at normal cerebral hemisphere was then assessed.
     3. The effect of pretreatment with repeated electroacupuncture on the endocannabinoid system after ischemia/reperfusion injury
     Male SD rats weighing 280-320 g were randomly assigned to 5 groups: Sham, Con-2, EA-MCAO-2, Con-24 and EA-MCAO-24 groups. Rats in Sham group, Con-2 group and Con-24 group were anesthetized with sodium pentobarbital 40 mg/kg (ip) for 5 consecutive days; rats in EA-MCAO-2 group and EA-MCAO-24 group were anesthetized with sodium pentobarbital 40 mg/kg (ip) and then received electroacupuncture pretreatment at the Baihui acupoint 30 min a day for 5 consecutive days. 24 h after last treatment, each group except Sham group received the middle cerebral artery occlusion with 3-0 nylon monofilament. The rat were decapitated at 24 h after last treatment in Sham group, at 2 h after reperfusion in Con-2 group and EA-MCAO-2 group, 24 h after reperfusion in Con-24 group and EA-MCAO-24 group. The endocannabinoid content was determined.
     Results
     1. CB1 Receptor is involved in the ischemic tolerance induced by pretreatment with single electroacupuncture
     1.1. Neurologic Outcome
     24 h and 7 d after reperfusion, pretreatment with EA significantly improved the neurological function scores compared with that of Con group. The CB1 receptor antagonist AM251 had no effect on neurological function scores when administered alone but reversed the beneficial effect of EA pretreatment given 30 min before the onset of EA pretreatment.
     1.2. Infarct Volume
     EA-MCAO group showed a smaller brain infarct volume at 24 h and 7 d after reperfusion compared with Con group, The CB1 receptor antagonist AM251 had no effect on infarct size when administered alone but reversed the beneficial effect of EA pretreatment given 30 min before the onset of EA pretreatment.
     2. CB1 Receptor is involved in the ischemic tolerance induced by pretreatment with repeated electroacupuncture
     2.1. Neurologic Outcome
     In sham group, no neurological deficits was observed. Pretreatment with EA significantly improved the neurological function scores at 24 h after reperfusion compared with that of Con group. The CB1 receptor antagonist AM251 had no effect on neurological function scores when administered alone but reversed the beneficial effect of EA pretreatment given 30 min before the onset of EA pretreatment.
     2.2. Infarct Volume
     In sham group, no infarct volume was observed. EA-MCAO group showed a smaller brain infarct volume at 24 h after reperfusion compared with Con group, The CB1 receptor antagonist AM251 had no effect on infarct size when administered alone but reversed the beneficial effect of EA pretreatment given 30 min before the onset of EA pretreatment.
     3. The effect of pretreatment with repeated electroacupuncture on the endocannabinoid system after ischemia/reperfusion injury
     The brain tissue content of AEA was significantly increased in Con-2 group compared with that in Sham group, but decreased at 24 h after reperfusion. Compared with that in Sham group and Con-2 group, AEA content was significantly increased in EA-MCAO-2 group. In EA-MCAO-24 group, the AEA content was also significantly increased compared with that in Con-24 group. In EA-MCAO-2 group, the 2-AG content was significantly increased compared with that in Sham group and Con-2 group.
     Summary
     1. Pretreatment with single or repeated electroacupuncture at the Baihui acupoint increases the expression of CB1 receptor and the production of the endocannabinoid 2-AG and AEA. These results indicate that pretreatment with electroacupuncture activates the endocannabinoid system.
     2. Pretreatment with electroacupuncture increases the production of the endocannabinoid 2-AG and AEA in the brain after ischemia/reperfusion injury and the protective effect of EA pretreatment is reversed by CB1 receptor antagonist. These results indicate that pretreatment with electroacupuncture activates the endocannabinoid system which is involved in the ischemic tolerance induced by pretreatment with electroacupuncture.
引文
1. Xiong L, Lu Z, Hou L, Zheng H, Zhu Z, Wang Q, Chen S. Pretreatment with repeated electroacupuncture attenuates transient focal cerebral ischemic injury in rats. Chin Med J (Engl). 2003,116:108-111.
    2. Xiong L, Yang J, Wang Q, Lu Z. Involvement of delta-and mu-opioid receptors in the delayed cerebral ischemic tolerance induced by repeated electroacupuncture preconditioning in rats. Chin Med J (Engl). 2007,120:394-399.
    3. Manzanares J, Corchero J, Romero J, Fernandez-Ruiz JJ, Ramos JA, Fuentes JA. Pharmacological and biochemical interactions between opioids and cannabinoids. Trends Pharmacol Sci. 1999,20:287-294.
    4. Massi P, Vaccani A, Romorini S, Parolaro D. Comparative characterization in the rat of the interaction between cannabinoids and opiates for their immunosuppressive and analgesic effects. J Neuroimmunol. 2001,117:116-124.
    5. Bouchard JF, Lepicier P, Lamontagne D. Contribution of endocannabinoids in the endothelial protection afforded by ischemic preconditioning in the isolated rat heart. Life Sci. 2003,72:1859-1870.
    6. Panikashvili D, Simeonidou C, Ben-Shabat S, Hanus L, Breuer A, Mechoulam R, Shohami E. An endogenous cannabinoid (2-AG) is neuroprotective after brain injury. Nature. 2001,413:527-531.
    7. Hayakawa K, Mishima K, Nozako M, Ogata A, Hazekawa M, Liu AX, Fujioka M, Abe K, Hasebe N, Egashira N, Iwasaki K, Fujiwara M. Repeated treatment with cannabidiol but not Delta9-tetrahydrocannabinol has a neuroprotective effect without the development of tolerance. Neuropharmacology. 2007,52:1079-1087.
    8. Dagon Y, Avraham Y, Link G, Zolotarev O, Mechoulam R, Berry EM.The synthetic cannabinoid HU-210 attenuates neural damage in diabetic mice and hyperglycemic pheochromocytoma PC12 cells. Neurobiol Dis. 2007,27:174-181.
    9. Kreutz S, Koch M, Ghadban C, Korf HW, Dehghani F. Cannabinoids and neuronal damage: differential effects of THC, AEA and 2-AG on activated microglial cells and degenerating neurons in excitotoxically lesioned rat organotypic hippocampal slice cultures. Exp Neurol. 2007,203:246-257.
    10. Kitagawa K, Matsumoto M, Tagaya M, Hata R, Ueda H, Niinobe M, Handa N, Fukunaga R, Kimura K, Mikoshiba K, et al. 'Ischemic tolerance' phenomenon found in the brain. Brain Res. 1990,528:21-24.
    11. Barone FC, White RF, Spera PA, Ellison J, Currie RW, Wang X, Feuerstein GZ. Ischemic preconditioning and brain tolerance: temporal histological and functional outcomes, protein synthesis requirement, and interleukin-1 receptor antagonist and early gene expression. Stroke. 1998,29:1937-1950; discussion 1950-1931.
    12. Ota A, Ikeda T, Xia XY, Xia YX, Ikenoue T. Hypoxic-ischemic tolerance induced by hyperthermic pretreatment in newborn rats. J Soc Gynecol Investig. 2000,7:102-105.
    13. Traystman RJ, Kirsch JR, Koehler RC. Oxygen radical mechanisms of brain injury following ischemia and reperfusion. J Appl Physiol. 1991,71:1185-1195.
    14. Lewen A, Matz P, Chan PH. Free radical pathways in CNS injury. J Neurotrauma. 2000,17:871-890.
    15. Danielisova V, Nemethova M, Burda J. The protective effect of aminoguanidine on cerebral ischemic damage in the rat brain. Physiol Res. 2004,53:533-540.
    16. Zhao P, Zuo Z. Prenatal hypoxia-induced adaptation and neuroprotection that is inducible nitric oxide synthase-dependent. Neurobiol Dis.2005,20:871-880.
    17. Leist M, Nicotera P. Apoptosis, excitotoxicity, and neuropathology. Exp Cell Res. 1998,239:183-201.
    18. Arvin KL, Han BH, Du Y, Lin SZ, Paul SM, Holtzman DM. Minocycline markedly protects the neonatal brain against hypoxic-ischemic injury. Ann Neurol. 2002,52:54-61.
    19. Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 1986,74:1124-1136.
    20. Grabb MC, Choi DW. Ischemic tolerance in murine cortical cell culture: critical role for NMDA receptors. J Neurosci. 1999,19:1657-1662.
    21. Yamada T, Kawahara K, Kosugi T, Tanaka M. Nitric oxide produced during sublethal ischemia is crucial for the preconditioning-induced down-regulation of glutamate transporter GLT-1 in neuron/astrocyte co-cultures. Neurochem Res. 2006,31:49-56.
    22. Loddick SA, Turnbull AV, Rothwell NJ. Cerebral interleukin-6 is neuroprotective during permanent focal cerebral ischemia in the rat. J Cereb Blood Flow Metab. 1998,18:176-179.
    23. Rosenzweig HL, Lessov NS, Henshall DC, Minami M, Simon RP, Stenzel-Poore MP. Endotoxin preconditioning prevents cellular inflammatory response during ischemic neuroprotection in mice. Stroke. 2004,35:2576-2581.
    24. Tasaki K, Ruetzler CA, Ohtsuki T, Martin D, Nawashiro H, Hallenbeck JM. Lipopolysaccharide pre-treatment induces resistance against subsequent focal cerebral ischemic damage in spontaneously hypertensive rats. Brain Res. 1997,748:267-270.
    25. Zacharowski K, Otto M, Hafner G, Chatterjee PK, Thiemermann C. Endotoxin induces a second window of protection in the rat heart as determined by using p-nitro-blue tetrazolium staining, cardiac troponin Trelease, and histology. Arterioscler Thromb Vasc Biol. 1999,19:2276-2280.
    26. Fernandez ED, Flohe S, Siemers F, Nau M, Ackermann M, Ruwe M, Schade FU. Endotoxin tolerance protects against local hepatic ischemia/reperfusion injury in the rat. J Endotoxin Res. 2000,6:321-328.
    27. Heemann U, Szabo A, Hamar P, Muller V, Witzke O, Lutz J, Philipp T. Lipopolysaccharide pretreatment protects from renal ischemia/reperfusion injury : possible connection to an interleukin-6-dependent pathway. Am J Pathol. 2000,156:287-293.
    28. Obermaier R, Drognitz O, Grub A, von Dobschuetz E, Schareck W, Hopt UT, Benz S. Endotoxin preconditioning in pancreatic ischemia/reperfusion injury. Pancreas. 2003,27:e51-56.
    29. Nishio S, Yunoki M, Chen ZF, Anzivino MJ, Lee KS. Ischemic tolerance in the rat neocortex following hypothermic preconditioning. J Neurosurg. 2000,93:845-851.
    30. Yunoki M, Nishio S, Ukita N, Anzivino MJ, Lee KS. Hypothermic preconditioning induces rapid tolerance to focal ischemic injury in the rat. Exp Neurol. 2003,181:291-300.
    31.熊利泽,朱正华,董海龙,胡文能,侯立朝.异氟醚预处理对大鼠局灶性脑缺血损伤的保护作用.中华麻醉学杂志. 2000:730-733.
    32.吴明春,熊利泽,朱正华,侯立朝,郑玉,桑韩飞.异氟醚预处理脑保护作用的剂量-效应关系.第四军医大学学报. 2002:1357-1359.
    33. Xiong L, Zhu Z, Dong H, Hu W, Hou L, Chen S. Hyperbaric oxygen preconditioning induces neuroprotection against ischemia in transient not permanent middle cerebral artery occlusion rat model. Chin Med J (Engl). 2000,113:836-839.
    34.路志红,熊利泽,朱正华,王强,郑玉,郑恒兴,侯立朝,陈敏.电针诱导大鼠脑缺血耐受作用的穴位特异性研究.中国针灸. 2002:671-673.
    35.劳宁,熊利泽,路志红,刘艳红,郑玉,巩固.百会穴在电针刺激预处理诱导脑缺血耐受中的作用.第四军医大学学报. 2003:418-420.
    36.杨静,熊利泽,王强,刘艳红,陈绍洋,徐宁.不同刺激参数及其组合对电针诱导大鼠脑缺血耐受效应的影响.中国针灸. 2004:208-212.
    37. Wang Q, Xiong L, Chen S, Liu Y, Zhu X. Rapid tolerance to focal cerebral ischemia in rats is induced by preconditioning with electroacupuncture: window of protection and the role of adenosine. Neurosci Lett. 2005,381:158-162.
    38.路志红,熊利泽,田磊,刘晓亮,刘艳红,陈绍洋.重复电针预处理对脑缺血再灌注大鼠脑皮层热休克蛋白70表达的影响.中华麻醉学杂志. 2004:453-456.
    39.曾毅,熊利泽,陈绍洋,巩固,雷毅,郑恒兴.重复电针预处理对兔脊髓缺血损伤后热休克蛋白90表达的影响.针刺研究. 2004:261-265.
    40.杨静,熊利泽,王强,刘艳红.阿片受体在电针预处理诱导大鼠脑缺血耐受效应中的作用.中华老年多器官疾病杂志. 2006:218-221.
    41. Heurteaux C, Lauritzen I, Widmann C, Lazdunski M. Essential role of adenosine, adenosine A1 receptors, and ATP-sensitive K+ channels in cerebral ischemic preconditioning. Proc Natl Acad Sci U S A. 1995,92:4666-4670.
    42. Plamondon H, Blondeau N, Heurteaux C, Lazdunski M. Mutually protective actions of kainic acid epileptic preconditioning and sublethal global ischemia on hippocampal neuronal death: involvement of adenosine A1 receptors and K(ATP) channels. J Cereb Blood Flow Metab. 1999,19:1296-1308.
    43.雷毅,熊利泽,张龙芳,陈绍洋,钱若筠,黄建成.腺苷A1受体阻断剂对电针预处理诱导脊髓缺血耐受作用的影响.中国中西医结合急救杂志. 2005:199-203.
    44.雷毅,熊利泽,张龙芳,曾毅,陈绍洋,黄怡,贺大银.电针预处理对兔脊髓缺血再灌注损伤细胞内Ca~(2+)变化的影响.中国针灸. 2004:279-282.
    45.孟培燕,孙国杰,刘胜洪,严红梅.电针预处理对血管性痴呆大鼠神经细胞谷氨酸-NMDA受体信号转导通路的影响.针刺研究. 2008:102-106.
    46.王军,于震,贾士奇,周红艳,王玉升.电针预处理对全脑缺血再灌流大鼠炎性细胞因子的影响.中国实用医药. 2008:4-5.
    47.郭佳,王磊,张莉,袁红.电针预处理对缺血再灌注损伤大鼠脑自由基含量的影响.安徽中医学院学报. 2003:29-31.
    48. Pertwee RG. Ligands that target cannabinoid receptors in the brain: from THC to anandamide and beyond. Addict Biol. 2008,13:147-159.
    49. Rodriguez de Fonseca F, Del Arco I, Bermudez-Silva FJ, Bilbao A, Cippitelli A, Navarro M. The endocannabinoid system: physiology and pharmacology. Alcohol Alcohol. 2005,40:2-14.
    50. Howlett AC, Barth F, Bonner TI, Cabral G, Casellas P, Devane WA, Felder CC, Herkenham M, Mackie K, Martin BR, Mechoulam R, Pertwee RG. International Union of Pharmacology. XXVII. Classification of cannabinoid receptors. Pharmacol Rev. 2002,54:161-202.
    51. Pellegrini-Giampietro DE, Mannaioni G, Bagetta G. Post-ischemic brain damage: the endocannabinoid system in the mechanisms of neuronal death. Febs J. 2009,276:2-12.
    52. Arevalo-Martin A, Vela JM, Molina-Holgado E, Borrell J, Guaza C. Therapeutic action of cannabinoids in a murine model of multiple sclerosis. J Neurosci. 2003,23:2511-2516.
    53. Shen M, Thayer SA. Cannabinoid receptor agonists protect cultured rat hippocampal neurons from excitotoxicity. Mol Pharmacol.1998,54:459-462.
    54. Nadler V, Mechoulam R, Sokolovsky M. The non-psychotropic cannabinoid (+)-(3S,4S)-7-hydroxy-delta 6- tetrahydrocannabinol 1,1-dimethylheptyl (HU-211) attenuates N-methyl-D-aspartate receptor-mediated neurotoxicity in primary cultures of rat forebrain. Neurosci Lett. 1993,162:43-45.
    55. Feigenbaum JJ, Bergmann F, Richmond SA, Mechoulam R, Nadler V, Kloog Y, Sokolovsky M. Nonpsychotropic cannabinoid acts as a functional N-methyl-D-aspartate receptor blocker. Proc Natl Acad Sci U S A. 1989,86:9584-9587.
    56. Hampson AJ, Grimaldi M, Axelrod J, Wink D. Cannabidiol and (-)Delta9-tetrahydrocannabinol are neuroprotective antioxidants. Proc Natl Acad Sci U S A. 1998,95:8268-8273.
    57. Hampson AJ, Grimaldi M, Lolic M, Wink D, Rosenthal R, Axelrod J. Neuroprotective antioxidants from marijuana. Ann N Y Acad Sci. 2000,899:274-282.
    58. Chen Y, Buck J. Cannabinoids protect cells from oxidative cell death: a receptor-independent mechanism. J Pharmacol Exp Ther. 2000,293:807-812.
    59. Marsicano G, Moosmann B, Hermann H, Lutz B, Behl C. Neuroprotective properties of cannabinoids against oxidative stress: role of the cannabinoid receptor CB1. J Neurochem. 2002,80:448-456.
    60. Nagayama T, Sinor AD, Simon RP, Chen J, Graham SH, Jin K, Greenberg DA. Cannabinoids and neuroprotection in global and focal cerebral ischemia and in neuronal cultures. J Neurosci. 1999,19:2987-2995.
    61. Sinor AD, Irvin SM, Greenberg DA. Endocannabinoids protect cerebral cortical neurons from in vitro ischemia in rats. Neurosci Lett. 2000,278:157-160.
    62. Shohami E, Novikov M, Mechoulam R. A nonpsychotropic cannabinoid, HU-211, has cerebroprotective effects after closed head injury in the rat. J Neurotrauma. 1993,10:109-119.
    63. Shohami E, Novikov M, Bass R. Long-term effect of HU-211, a novel non-competitive NMDA antagonist, on motor and memory functions after closed head injury in the rat. Brain Res. 1995,674:55-62.
    64. Zalish M, Lavie V. Dexanabinol (HU-211) has a beneficial effect on axonal sprouting and survival after rat optic nerve crush injury. Vision Res. 2003,43:237-242.
    65. Louw DF, Yang FW, Sutherland GR. The effect of delta-9-tetrahydrocannabinol on forebrain ischemia in rat. Brain Res. 2000,857:183-187.
    66. Belayev L, Bar-Joseph A, Adamchik J, Biegon A. HU-211, a nonpsychotropic cannabinoid, improves neurological signs and reduces brain damage after severe forebrain ischemia in rats. Mol Chem Neuropathol. 1995,25:19-33.
    67. Belayev L, Busto R, Zhao W, Ginsberg MD. HU-211, a novel noncompetitive N-methyl-D-aspartate antagonist, improves neurological deficit and reduces infarct volume after reversible focal cerebral ischemia in the rat. Stroke. 1995,26:2313-2319; discussion 2319-2320.
    68. Biegon A, Joseph AB. Development of HU-211 as a neuroprotectant for ischemic brain damage. Neurol Res. 1995,17:275-280.
    69. Leker RR, Shohami E, Abramsky O, Ovadia H. Dexanabinol; a novel neuroprotective drug in experimental focal cerebral ischemia. J Neurol Sci. 1999,162:114-119.
    70. Lavie G, Teichner A, Shohami E, Ovadia H, Leker RR. Long term cerebroprotective effects of dexanabinol in a model of focal cerebral ischemia. Brain Res. 2001,901:195-201.
    71. van der Stelt M, Veldhuis WB, Bar PR, Veldink GA, Vliegenthart JF,Nicolay K. Neuroprotection by Delta9-tetrahydrocannabinol, the main active compound in marijuana, against ouabain-induced in vivo excitotoxicity. J Neurosci. 2001,21:6475-6479.
    72. van der Stelt M, Veldhuis WB, Maccarrone M, Bar PR, Nicolay K, Veldink GA, Di Marzo V, Vliegenthart JF. Acute neuronal injury, excitotoxicity, and the endocannabinoid system. Mol Neurobiol. 2002,26:317-346.
    73. Veldhuis WB, van der Stelt M, Wadman MW, van Zadelhoff G, Maccarrone M, Fezza F, Veldink GA, Vliegenthart JF, Bar PR, Nicolay K, Di Marzo V. Neuroprotection by the endogenous cannabinoid anandamide and arvanil against in vivo excitotoxicity in the rat: role of vanilloid receptors and lipoxygenases. J Neurosci. 2003,23:4127-4133.
    74. Filbert MG, Forster JS, Smith CD, Ballough GP. Neuroprotective effects of HU-211 on brain damage resulting from soman-induced seizures. Ann N Y Acad Sci. 1999,890:505-514.
    75. Pacher P, Hasko G. Endocannabinoids and cannabinoid receptors in ischaemia-reperfusion injury and preconditioning. Br J Pharmacol. 2008,153:252-262.
    76. Mackie K, Hille B. Cannabinoids inhibit N-type calcium channels in neuroblastoma-glioma cells. Proc Natl Acad Sci U S A. 1992,89:3825-3829.
    77. Nemeth B, Ledent C, Freund TF, Hajos N. CB1 receptor-dependent and -independent inhibition of excitatory postsynaptic currents in the hippocampus by WIN 55,212-2. Neuropharmacology. 2008,54:51-57.
    78. Levenes C, Daniel H, Soubrie P, Crepel F. Cannabinoids decrease excitatory synaptic transmission and impair long-term depression in rat cerebellar Purkinje cells. J Physiol. 1998,510 ( Pt 3):867-879.
    79. Zhuang SY, Bridges D, Grigorenko E, McCloud S, Boon A, Hampson RE, Deadwyler SA. Cannabinoids produce neuroprotection by reducingintracellular calcium release from ryanodine-sensitive stores. Neuropharmacology. 2005,48:1086-1096.
    80. Eshhar N, Striem S, Kohen R, Tirosh O, Biegon A. Neuroprotective and antioxidant activities of HU-211, a novel NMDA receptor antagonist. Eur J Pharmacol. 1995,283:19-29.
    81. Bonfils PK, Reith J, Hasseldam H, Johansen FF. Estimation of the hypothermic component in neuroprotection provided by cannabinoids following cerebral ischemia. Neurochem Int. 2006,49:508-518.
    82. Facchinetti F, Del Giudice E, Furegato S, Passarotto M, Leon A. Cannabinoids ablate release of TNFalpha in rat microglial cells stimulated with lypopolysaccharide. Glia. 2003,41:161-168.
    83. Molina-Holgado F, Lledo A, Guaza C. Anandamide suppresses nitric oxide and TNF-alpha responses to Theiler's virus or endotoxin in astrocytes. Neuroreport. 1997,8:1929-1933.
    84. Galve-Roperh I, Aguado T, Rueda D, Velasco G, Guzman M. Endocannabinoids: a new family of lipid mediators involved in the regulation of neural cell development. Curr Pharm Des. 2006,12:2319-2325.
    85. Galve-Roperh I, Rueda D, Gomez del Pulgar T, Velasco G, Guzman M. Mechanism of extracellular signal-regulated kinase activation by the CB(1) cannabinoid receptor. Mol Pharmacol. 2002,62:1385-1392.
    86. Fernandez-Lopez D, Martinez-Orgado J, Nunez E, Romero J, Lorenzo P, Moro MA, Lizasoain I. Characterization of the neuroprotective effect of the cannabinoid agonist WIN-55212 in an in vitro model of hypoxic-ischemic brain damage in newborn rats. Pediatr Res. 2006,60:169-173.
    87. Guzman M. Neurons on cannabinoids: dead or alive? Br J Pharmacol. 2003,140:439-440.
    88. Sarne Y, Mechoulam R. Cannabinoids: between neuroprotection andneurotoxicity. Curr Drug Targets CNS Neurol Disord. 2005,4:677-684.
    89. Di Marzo V. Targeting the endocannabinoid system: to enhance or reduce? Nat Rev Drug Discov. 2008,7:438-455.
    90. Mayfield KP, D'Alecy LG. Delta-1 opioid agonist acutely increases hypoxic tolerance. J Pharmacol Exp Ther. 1994,268:683-688.
    91. Childers SR, Fleming L, Konkoy C, Marckel D, Pacheco M, Sexton T, Ward S. Opioid and cannabinoid receptor inhibition of adenylyl cyclase in brain. Ann N Y Acad Sci. 1992,654:33-51.
    92. Mansour A, Fox CA, Akil H, Watson SJ. Opioid-receptor mRNA expression in the rat CNS: anatomical and functional implications. Trends Neurosci. 1995,18:22-29.
    93. Schlicker E, Kathmann M. Modulation of transmitter release via presynaptic cannabinoid receptors. Trends Pharmacol Sci. 2001,22:565-572.
    94. Salio C, Fischer J, Franzoni MF, Mackie K, Kaneko T, Conrath M. CB1-cannabinoid and mu-opioid receptor co-localization on postsynaptic target in the rat dorsal horn. Neuroreport. 2001,12:3689-3692.
    95. Cichewicz DL, Martin ZL, Smith FL, Welch SP. Enhancement mu opioid antinociception by oral delta9-tetrahydrocannabinol: dose-response analysis and receptor identification. J Pharmacol Exp Ther. 1999,289:859-867.
    96. Welch SP. Blockade of cannabinoid-induced antinociception by norbinaltorphimine, but not N,N-diallyl-tyrosine-Aib-phenylalanine-leucine, ICI 174,864 or naloxone in mice. J Pharmacol Exp Ther. 1993,265:633-640.
    97. Reche I, Fuentes JA, Ruiz-Gayo M. Potentiation of delta 9-tetrahydrocannabinol-induced analgesia by morphine in mice: involvement of mu- and kappa-opioid receptors. Eur J Pharmacol.1996,318:11-16.
    98. Reche I, Fuentes JA, Ruiz-Gayo M. A role for central cannabinoid and opioid systems in peripheral delta 9-tetrahydrocannabinol-induced analgesia in mice. Eur J Pharmacol. 1996,301:75-81.
    99. Cichewicz DL, McCarthy EA. Antinociceptive synergy between delta(9)-tetrahydrocannabinol and opioids after oral administration. J Pharmacol Exp Ther. 2003,304:1010-1015.
    100. Cichewicz DL. Synergistic interactions between cannabinoid and opioid analgesics. Life Sci. 2004,74:1317-1324.
    101. Smith PB, Welch SP, Martin BR. Interactions between delta 9-tetrahydrocannabinol and kappa opioids in mice. J Pharmacol Exp Ther. 1994,268:1381-1387.
    102. Del Arco I, Navarro M, Bilbao A, Ferrer B, Piomelli D, Rodriguez De Fonseca F. Attenuation of spontaneous opiate withdrawal in mice by the anandamide transport inhibitor AM404. Eur J Pharmacol. 2002,454:103-104.
    103. Mas-Nieto M, Pommier B, Tzavara ET, Caneparo A, Da Nascimento S, Le Fur G, Roques BP, Noble F. Reduction of opioid dependence by the CB(1) antagonist SR141716A in mice: evaluation of the interest in pharmacotherapy of opioid addiction. Br J Pharmacol. 2001,132:1809-1816.
    104. De Vries TJ, Homberg JR, Binnekade R, Raaso H, Schoffelmeer AN. Cannabinoid modulation of the reinforcing and motivational properties of heroin and heroin-associated cues in rats. Psychopharmacology (Berl). 2003,168:164-169.
    105. Tanda G, Munzar P, Goldberg SR. Self-administration behavior is maintained by the psychoactive ingredient of marijuana in squirrel monkeys. Nat Neurosci. 2000,3:1073-1074.
    106. Justinova Z, Tanda G, Munzar P, Goldberg SR. The opioid antagonistnaltrexone reduces the reinforcing effects of Delta 9 tetrahydrocannabinol (THC) in squirrel monkeys. Psychopharmacology (Berl). 2004,173:186-194.
    107. Braida D, Pozzi M, Parolaro D, Sala M. Intracerebral self-administration of the cannabinoid receptor agonist CP 55,940 in the rat: interaction with the opioid system. Eur J Pharmacol. 2001,413:227-234.
    108. Manzanares J, Corchero J, Romero J, Fernandez-Ruiz JJ, Ramos JA, Fuentes JA. Chronic administration of cannabinoids regulates proenkephalin mRNA levels in selected regions of the rat brain. Brain Res Mol Brain Res. 1998,55:126-132.
    109. Corchero J, Avila MA, Fuentes JA, Manzanares J. delta-9-Tetrahydrocannabinol increases prodynorphin and proenkephalin gene expression in the spinal cord of the rat. Life Sci. 1997,61:PL 39-43.
    110. Houser SJ, Eads M, Embrey JP, Welch SP. Dynorphin B and spinal analgesia: induction of antinociception by the cannabinoids CP55,940, Delta(9)-THC and anandamide. Brain Res. 2000,857:337-342.
    111. Kumar AM, Haney M, Becker T, Thompson ML, Kream RM, Miczek K. Effect of early exposure to delta-9-tetrahydrocannabinol on the levels of opioid peptides, gonadotropin-releasing hormone and substance P in the adult male rat brain. Brain Res. 1990,525:78-83.
    112. Ellgren M, Spano SM, Hurd YL. Adolescent cannabis exposure alters opiate intake and opioid limbic neuronal populations in adult rats. Neuropsychopharmacology. 2007,32:607-615.
    113. Valverde O, Noble F, Beslot F, Dauge V, Fournie-Zaluski MC, Roques BP. Delta9-tetrahydrocannabinol releases and facilitates the effects of endogenous enkephalins: reduction in morphine withdrawal syndrome without change in rewarding effect. Eur J Neurosci. 2001,13:1816-1824.
    114. Wang Q, Gou X, Xiong L, Jin W, Chen S, Hou L, Xu L. Trans-activator of transcription-mediated delivery of NEP1-40 protein into brain has aneuroprotective effect against focal cerebral ischemic injury via inhibition of neuronal apoptosis. Anesthesiology. 2008,108:1071-1080.
    115. Parmentier-Batteur S, Jin K, Mao XO, Xie L, Greenberg DA. Increased severity of stroke in CB1 cannabinoid receptor knock-out mice. J Neurosci. 2002,22:9771-9775.
    116. Downey JM, Liu GS, Thornton JD. Adenosine and the anti-infarct effects of preconditioning. Cardiovasc Res. 1993,27:3-8.
    117. Yao Z, Gross GJ. Activation of ATP-sensitive potassium channels lowers threshold for ischemic preconditioning in dogs. Am J Physiol. 1994,267:H1888-1894.
    118. Marber MS, Latchman DS, Walker JM, Yellon DM. Cardiac stress protein elevation 24 hours after brief ischemia or heat stress is associated with resistance to myocardial infarction. Circulation. 1993,88:1264-1272.
    119. Hayakawa K, Mishima K, Hazekawa M, Sano K, Irie K, Orito K, Egawa T, Kitamura Y, Uchida N, Nishimura R, Egashira N, Iwasaki K, Fujiwara M. Cannabidiol potentiates pharmacological effects of Delta(9)-tetrahydrocannabinol via CB(1) receptor-dependent mechanism. Brain Res. 2008,1188:157-164.
    120. Bisogno T. Endogenous cannabinoids: structure and metabolism. J Neuroendocrinol. 2008,20 Suppl 1:1-9.
    121. Muthian S, Rademacher DJ, Roelke CT, Gross GJ, Hillard CJ. Anandamide content is increased and CB1 cannabinoid receptor blockade is protective during transient, focal cerebral ischemia. Neuroscience. 2004,129:743-750.
    122. Baxter GF, Goma FM, Yellon DM. Involvement of protein kinase C in the delayed cytoprotection following sublethal ischaemia in rabbit myocardium. Br J Pharmacol. 1995,115:222-224.
    123. Franklin A, Parmentier-Batteur S, Walter L, Greenberg DA, Stella N.Palmitoylethanolamide increases after focal cerebral ischemia and potentiates microglial cell motility. J Neurosci. 2003,23:7767-7775.
    124. Hoffman AF, Oz M, Yang R, Lichtman AH, Lupica CR. Opposing actions of chronic Delta9-tetrahydrocannabinol and cannabinoid antagonists on hippocampal long-term potentiation. Learn Mem. 2007,14:63-74.
    125. Hill MN, Ho WS, Sinopoli KJ, Viau V, Hillard CJ, Gorzalka BB. Involvement of the endocannabinoid system in the ability of long-term tricyclic antidepressant treatment to suppress stress-induced activation of the hypothalamic-pituitary-adrenal axis. Neuropsychopharmacology. 2006,31:2591-2599.
    126. Garcia JH, Wagner S, Liu KF, Hu XJ. Neurological deficit and extent of neuronal necrosis attributable to middle cerebral artery occlusion in rats. Statistical validation. Stroke. 1995,26:627-634; discussion 635.
    127.孙忠人,张力,唐伟,李晓捷,单丽莉,马睿杰.针刺预处理对全脑缺血大鼠脑组织细胞凋亡的影响.中国临床康复. 2006:144-145.
    128. Amantea D, Spagnuolo P, Bari M, Fezza F, Mazzei C, Tassorelli C, Morrone LA, Corasaniti MT, Maccarrone M, Bagetta G. Modulation of the endocannabinoid system by focal brain ischemia in the rat is involved in neuroprotection afforded by 17beta-estradiol. Febs J. 2007,274:4464-4775.
    129. Corchero J, Manzanares J, Fuentes JA. Cannabinoid/opioid crosstalk in the central nervous system. Crit Rev Neurobiol. 2004,16:159-172.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700